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Abstract 
 
A Symmetric Stacked Fast Binary counter design is proposed in this paper. In the circuit design, the first phase is occupied by 3-bit 
stacking circuits, which are further followed by combining circuits. The resultant novel circuit thus becomes a 6-bit stacker. A 6:3 coun-
ter has been chosen as an example to demonstrate the working of the proposed circuit. The proposed circuit is further implemented by 

using reversible logic gates. Heat dissipation is a major problem in the designing of a digital circuit. Rolf Landauer has proved that the 
information loss in a digital circuit is directly proportional to the energy dissipation. The proposed modified Symmetric Stacking counter 
is implemented using reversible logic gates thus reducing the power dissipation of the circuit. 
 
Keywords: Use about five key words or phrases in alphabetical order, Separated by Semicolon. 

 

1. Introduction 

The technology called reversible computing is the solution to the 
heat problem being faced by the electronics industry in the current 
era. For example, today's laptops produce much heat coming out 
of it. The reason behind this phenomena is that today’s computing 
uses irreversible computing methods. Heat dissipation is a major 
problem in the designing of a digital circuit. Rolf Landauer has 
proved that the information loss in a digital circuit is directly pro-

portional to the energy dissipation. the mathematical formulation 
of the above statement is that if a bit is lost in a digital system, the 
amount of energy lost is either equal or greater than KTln2 joules 
in the form of heat. To provide a solution to this problem state-
ment, reversible computing was introduced. In reversible compu-
ting, the input count is equal to the output count. There is a one to 
one relation between the inputs and outputs in a circuit. As re-
versible computing does not discard any of the bits, the energy last 

in the form of heat, is proclaimed to be zero. 
To illustrate this further, take an AND gate with two inputs. If 
there's a voltage on the first input and the second input, an output 
voltage is produced. But if one of the inputs has zero volts, the 
output produced is zero volts. So this confers that the gate produc-
es an output only if both of the inputs have a voltage. Right now, 
an ‘and’ gate is not reversible. Reversible means that, if the output 
signal can be sent back into the circuit, the original inputs are 
produced at the input end. To have a reversible circuit, the circuit 

must have the same number of ports. According to the literature 
[1], if the number of inputs is equal to the number of outputs, then 
the circuit refrains from generating any heat. This is one of the 
most significant discoveries in computer science of the 20th centu-
ry because this would imply that there's no heat problem. One can 
have massive three-dimensional circuitry in everyday electronics. 
Christopher Fritz and Adly T. Fam [2] presented a fast binary 
counter using 3-bit stacking circuits. The collected [1] bits are 

grouped together and then the circuit is followed by 6:3 counter 

without xor gates. This is done to increase the speed of the circuit 
operation. Xiaoping Cui [3] presented a hybrid parallel decimal 
multiplier by analyzing the properties of three different circuits, 
namely, overloaded decimal digit set (ODDS), excess [3] code and 
BCD 4221/5211. 
C. S. Wallace [4] proposed a multiplier design for fast numerical 
calculations. Here the entire circuitry was purely formed with 

conventional combinational logic. The time of calculations was 
reduced drastically by using the diode transistor logic. L. Dadda 
[5] presented binary multipliers using parallel counters for combi-
natorial circuits. The final result was obtained in two stages. In the 
first stage, the product of the operands was produced without a 
carry. Then in the second stage, the result was updated with carry 
propagation. 
Jonathan Scarlett [6] researched the memoryless binary input 

channels. The field of study was the mismatched decoding prob-
lem. This method was proved to be better than the conventional 
optimal decoder on the grounds of implementation limitations and 
channel uncertainty. Kwang-Chun Choi [7] proposed an error 
correction scheme for circuits with a multiphase clock in time to 
digital converters. 
In this paper, the section I gives a description of the current chal-
lenges faced by the electronics industry and the literature proposed 

by various authors in this domain. Section II explains the concept 
of symmetric bit stacking. The reversible logic is presented in 
section III.  

2. Symmetric bit stacking 

A Symmetric Stacked Fast Binary counter design is proposed in 
this paper. In the circuit design, the first phase is occupied by 3-bit 

stacking circuits, which are further followed by combining cir-
cuits. The first step used here is, small 3-bit stack circuits are used 
to form the 3-bit stacks. These 3-bit stacks are combined together 
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to form a 6-bit stack. The technique used here is symmetric tech-
nique, this adds an extra layer of logic.  

a) Three-Bit Stacking Circuits 
The inputs considered are Y0, Y1, Y2, there are 3 outputs for the 3-
bit circuits, Z0, Z1, Z2, measurements are taken in such a way that 
the number of “1” bits in the outputs is equal to the number of “1” 
bits in the input, the “1” are grouped together to the left which is 
followed by the “0”. The outputs then formed are, 

 
Z0= Y0+Y1+Y2                                                                              (1) 
 
Z1=Y0 Y1 +Y0 Y2 +Y1 Y2                                                              (2) 
 
Z2 = Y0 Y1 Y2                                                                               (3) 
 
From the above equations, the first output from equation 1 will be 

“1” if any of the input is one, from the 2nd equation it is clear that 
the output will be “1” if any two of the inputs are one, from the 3rd 
equation the output will be “1” if all the inputs are one. Since Y1 is 
having a majority function it can be implemented using one 
CMOS gate. Fig 1 shows the 3-bit stacking circuit. 
 

 
Fig. 1: Three-Bit Stacking Circuit. 

 

b) Converting Bit Stack to Binary Number 
For implementing a 6:3 counter circuit, the 6-bit stack discussed in 
Section II must be converted to a binary number. In order to get a 
faster and more efficient count, intermediate values such as M, N, 
O, are used to compute quickly the output bits without the need of 
the bottom layer of the stackers. The binary representation of the 
“1” input bits is C2, C1, S. These are called for the output bits. 
In order to compute S, it should be noted that the determination of 

parity bits of the outputs from the 1st layer of 3-bit stackers is easy. 
Parity might occur in H if zero or two “1” bits appear in X0, X1, 
and X2. The even parity bits of M and N bits are denoted as Me 
and Ne, they are shown below, 
 

Me =  M0
̅̅ ̅̅ +  M1M2

̅̅ ̅̅                                                                       (4) 

 

Ie =  I0̅ +  I1I2̅                                                                              (5) 

 
For all the input bits S indicates the odd parity. The sum between 
the two different parities is odd we can compute 
 
S =  Me ⨁ Ne                                                                               (6) 

 
Even though there is an XOR gate delay, it is not present in the 

critical path. When the count is [2-3] or [6] then we note that C1 = 
1. Two cases arise in this. First, we need to see that we have at 
least two inputs but not more than [3] inputs in total. For this, the 
intermediate vectors M, N, P can be used. Checking of at least two 
inputs, we need to see the length of the stack which is two from 
either top-level stacker or two stacks having length one, which 
produces M1 + N1+M0 N0. To check for the input set, not having 
more than three inputs, we need to see to that no K bits are set as 

K vector. We get 
 

(P0 + P1 + P2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)                                                                              (7) 

 

Secondly, we need to see if all the 6 inputs as “1”. This can be 
done by checking all the sets from both M and N are set. We know 
that these bits are in a stack, so we can just check the rightmost bit 
of the stack in this case, which yields M2 N2. On the whole this 
yields, 
 
C1 = (M1 + N1 + M0 N0) (P0 + P1 + P2) + H2 I2                      (8) 
 

C2 can easily be calculated as it is set when we have at least 4-bit 
set 
 
C2 = K0 + K1 + K2                                                                        (9) 
 
The construction of the 6:3 counter circuit can be done by using 
the equation (4)-(9). The 6:3 counter circuit is shown in Fig 2. 
 

 
Fig. 2: 6:3 Counter Based on Symmetric Stacking. 

 
The critical path delay is reduced to seven basic gates by using 
larger CMOS gates. This 6:3 counter performs better than the 
existing design as there are no XOR gates in the critical path. 
There is one drawback of this counter that is the wiring complexi-
ty. On comparing this with the traditional counters, the Symmetric 
approaches, as shown in Fig 1 and 2, signals cross after the first 
layer of the stackers. 

3. Reversible logic 

The Fundamental motivation of reversible logic comes from ener-
gy concerns. Computers use a lot of energy. There are more than 3 
billion personal computers in use and in excess of 30 million serv-
ers running constantly around the world. All of these some up to 

use a tremendous amount of energy. More than two and a half 
percent of the entire energy budget of the world. In the 1940s with 
the advent of electronic computers, physicists started to ask them-
selves this question why did their house-sized computer use so 
much energy. But it wasn't until the early 60s that Philander, a 
German physicist with IBM came up with a surprising answer he 
found that it is irreversibility that places a lower limit on what we 
can do with respect to energy. So this is codified in what's known 

as Landauer's principle which says that for every irreversible op-
eration, one has to dissipate a minimal amount of energy.  
For the last 40 years, the semiconductor industry on which the 
computers are built, have been able to exponentially decrease the 
amount of energy used per bit operation. So even though the limit 
placed by Landa was principal which is very tiny, it's been the 
case that has been able to decrease the energy with an order of 
magnitude every one and a half two years.  
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As the advent of multi-core processors and so on that heat is actu-
ally becoming a serious problem now the key insight here is that 
this applies only to irreversible computations. if the reversible 
computations are used then this barrier disappears and energy 
consumption per operation should be lowered, basically without 
limit but of course this particular limit is a very tiny amount and in 
fact it's been it's so tiny that it took 50 years from the from the 
establishment of the theoretical principle to experimental valida-

tion.  
Now on trying to add something to the output of the machine suf-
ficient enough to make it reversible, so in this case an additional 
output is added so that it is not just a plus machine but a plus-
minus machine such that when we give it X, Y it returns both their 
sum and their difference, now if this 3:1 is given it results in for-
eign. Now when the machine is run backwards and optional inputs 
such as 8 and 2 are given then it's not difficult to see that these 

actually uniquely define the inputs 5 & 3 okay so this machine 
now has the property of reversibility so it can be seen that it's not 
actually the same as having performed with the plus machine 
which means that somehow reversible computations are funda-
mentally different. 
 

(A) Logic Diagram 

 
 

(B) Truth Table 

 
Fig. 3: Feynman Gate. 

 
(A) Logic Diagram 

 
 

(B) Truth Table 

 
Fig. 4: Double Feynman Gate. 

 
(A) Logic Diagram 

 
 

(B)Truth Table 

 
Fig. 5: Toffoli Gate. 

 
(A) Logic Diagram 
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(B) Truth Table 

 
Fig. 6: Fredkin Gate. 

 
(A) Logic Diagram 

 
 

(B) Truth Table 

 
Fig. 7: Peres Gate. 

 

The power dissipation of each of the gates is listed in the table 
below. 
 

Table 1: Average Power 

S. No. Gate Average Power 

1 Feynman Gate 3.6817E-06 

2 Double Feynman gate 6.0256E-06 

3 Toffoli gate 4.4939E-06 

4 Fredkin Gate 8.1265E-06 

5 Peres Gate 1.4538E-05 

4. Reversible logic representation of three-bit 

stacker circuit 

As discussed in the sections II and III, adapting reversible logic 

technology to the existing circuits balances the fan out of the cir-
cuits. The circuit presented in figure1 is implemented using the 
reversible logic gates. The gates used are Fredkin and Peres, 
whose individual gate level functionality us presented in figures 6 
and 7. 
 

 
Fig. 8: Reversible Logic 3-Bit Stacker Circuit. 

 
Here, X0, X1 and X2 are the inputs and Y1, Y2 and Y3 are the 
outputs. The intermediate connections are given the labels W1, 
W2, W3 and so on. As discussed earlier, each gate produces gar-
bage results which are denoted by ‘g’. The output of the proposed 
circuit exactly matches with the conventional circuit and is depict-
ed in figure 9. 

 

 
Fig. 9: Simulation Result of Reversible Logic 3-Bit Stacker Circuit. 

 
The implementation of the stacked symmetric counter using re-
versible logic gate involves the substitution of the gates without 

disrupting the signal flow and the preserving the truth table.  
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Fig. 10: 6:3 Counter Based on Symmetric Stacking Using Reversible 

Logic. 

 
The proposed counter circuit uses a total of 37 gates with combi-
nations of Peres, Fredkin and not gates. The total power consumed 
by the circuit is 3.6904e-04 W. the circuit has been further opti-
mized by replacing Peres gates with Fynman gate. 
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Fig. 11: Optimized 6:3 Counter Based on Symmetric Stacking Using 

Reversible Logic. 

 
The resultant optimized circuit consumes less power and is also 
area efficient. The comparison of the power of the circuits men-
tioned in figures 10 and 11 is depicted below. 

 
Table 2: Average Power Comparison 

S. 

No. 
Circuit Power 

1 
6:3 Counter based on symmetric stacking using 

reversible logic (fig. 10) 

3.6904e-

04 

2 
Optimized 6:3 Counter based on symmetric stack-

ing using reversible logic (fig. 11) 

3.2911e-

04 

 
The simulation result of the proposed circuit is shown in figure 12. 
 

 
Fig. 12: Simulation Result of the Optimized 6:3 Counter Based On Sym-

metric Stacking Using Reversible Logic. 

5. Conclusion 

In this brief, a new binary counter based reversible logic is pro-
posed. We showed that this counting method can be used to im-
plement 6:3 counters, which can be used in any binary multiplier 

circuit to add the partial products. Heat dissipation is a major 
problem in the designing of a digital circuit. Rolf Landauer has 
proved that the information loss in a digital circuit is directly pro-
portional to the energy dissipation. The mathematical formulation 
of the above statement is that if a bit is lost in a digital system, the 
amount of energy lost is either equal to or greater than KTln2 
joules in the form of heat. To provide a solution to this problem 
statement, reversible computing was introduced. The proposed 6:3 

symmetric staked counters produced expected results and the addi-
tion of reversible logic formulation further increased the efficien-
cy. 
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