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Abstract

In this paper, we determine the Gutman Index and Harary Index of Unitary Cayley Graphs. The Unitary Cayley Graph Xn is the graph with
vertex set V (Xn) = {u|u ∈ Zn} and edge set {uv|gcd(u− v,n) = 1 and u,v ∈ Zn}, where Zn = {0,1, ...,n−1}
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1. Introduction

The general concepts of graph theory can be viewed in [2]. Here, we
consider the Unitary Cayley Graph Xn = Cay(Zn;Un) where Zn is
the additive group of intergers modulo n and Un is the multiplicative
group of its units (n > 1) . Therefore, its vertex set comprises of
elements u in {0,1, ...,n−1} and u, v are adjacent if and only if
gcd(u− v,n) = 1. Xn is φ(n)-regular where φ(n) =|Un|. Also, it is
complete when n is prime p and complete bipartite when n is a prime
power pt (for the properties of unitary Cayley graphs, see [4]).
A topological index, also known as graph-theoretic index, is graph
invariant and is a type of molecular descriptor [3]. Several distance-
based and degree-based topological indices have been defined.
Among them, we choose 2 distance based topological indices−
Gutman Index and Harary Index for the computation of the respec-
tive indices of Unitary Cayley graphs.
Gutman proposed the idea of Gutman Index Gut(G) (Schultz index
of the 2nd kind) of a connected undirected graph G in 1994 [1]and it
is defined as

Gut(G) = ∑
u,v∈V (G)

d(u)d(v)dG(u,v). (1)

Plavšić et.al introduced the Harary index [5] of a graph G on n
vertices in 1993 and it is defined as

H(G) = ∑
u,v∈V (G)

1
dG(u,v)

(2)

In both defintions, the summation goes over all unordered pairs of
vertices of G, V (G) represents the vertex set of graph G and dG(u,v)
denotes the number of edges in a shortest path connecting vertices u
and v. Also, d(u) and d(v) denote the degrees of vertices u and v.
In this paper, the folowing two lemmas (for the proof, see [4]) are
applied for the computation.
Lemma 1.1: The Unitary Cayley graph Xn,n≥ 2, is bipartite if and
only if n is even.

Lemma 1.2: For integers n ≥ 2, a and b, denote by Fn(a− b) the
number of common neighbours of distinct vertices a, b in the Unitary
Cayley graph Xn is given by

Fn(a−b) = n∏
p/n

(1− ε(p)
p

), (3)

where ε(p) =

{
1, if p divides (a-b)
2, if p doesnot divide (a-b)

(p is prime).

2. Gutman Index of Unitary Cayley Graphs

In this section, Gutman Index of the Unitary Cayley graphs is deter-
mined.
Theorem 2.1: Let Xn be the Unitary Cayley graph on n vertices.
Then for an integer n≥ 2, we deduce:

1. if n is prime, Gut(Xn) =
n(n−1)3

2 .

2. if n = 2r and r > 1, Gut(Xn) =
n3(3n−4)

16 .

3. if n is odd but not prime, Gut(Xn) =
nφ(n)2[2(n−1)−φ(n)]

2 .
4. if n is even and has an odd prime divisor, Gut(Xn) =

nφ(n)2[5n−4(φ(n)+1)]
4 .

Proof: Let Xn be the Unitary Cayley graph and Xn is φ(n)-regular.

1. Suppose n is prime p.
Then Xp = Kp, a complete graph.
Therefore, by definition of Gut(G) and H(G),

Gut(Xn) = φ(n)2 +φ(n)2 + · · ·+φ(n)2︸ ︷︷ ︸
n(n−1)

2

= (n−1)2 · [n(n−1)
2

]

=
n(n−1)3

2
.

(4)
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2. Suppose n = 2r and r > 1.
Then Xn = Kn/2,n/2, a complete bipartite graph with V (Xn) =
V (AUB); A = {0,2, ...,n−2}, B = {1,3, ...,n−1}.
Therefore, by applying lemma 1.2, we obtain the distance be-
tween (n/2)2 pairs of vertices as 1 and distance between n(n−2)

4
pairs of vertices as 2.

So, Gut(Xn) = ∑
u,v∈V (Xn)

d(u)d(v)dG(u,v)

= ∑
u,v∈V (Xn)

d(u)d(v)+2 ∑
u,v∈V (Xn)

d(u)d(v)

= (n/2)2
∑1+(n/2)2

∑2

= (n/2)2 ·n2/4+2(n/2)2 · n(n−2)
4

=
n3(3n−4)

16
.

(5)

3. Suppose n is odd but not prime.
i.e., n = (p1)

α1(p2)
α2 · · ·(pr)

αr ; pi 6= 2 and 1 ≤ i ≤ r. There-
fore, we can infer that to every pair of distinct vertices, there
exists a common neighbour by lemma 1.2.
Then distance between nφ(n)

2 pairs of vertices is 1 and distance

between n[n−(φ(n)+1)]
2 pairs of vertices is 2.

Gut(Xn) = ∑
u,v∈V (Xn)

d(u)d(v)dG(u,v)

= ∑φ(n)2 +2∑φ(n)2

= φ(n)2 · [nφ(n)
2

]+2nφ(n)2 · [n− (φ(n)+1)
2

]

=
nφ(n)2[2(n−1)−φ(n)]

2
.

(6)

4. Suppose n is even and has an odd prime divisor p. Then Xn
is bipartite with vertex partition A = {0,2, ...,n−2} and B =
{1,3, ...,n−1}. Also, d(u) = d(v) = φ(n) since Xn is φ(n)-
regular.
Claim: Calculate dG(u,v)
To obtain dG(u,v), consider 2 cases.
Case 1: Consider u ∈ A.
Taking v ∈ A, we obtain a common neighbour by lemma 1.2.
Thus dG(u,v) = 2. Taking v ∈ B, we obtain dG(u,v) = 1 and
dG(u,v) = 3 by considering B as the union of 2 sets B1 and
B2 comprising of elements adjacent to u and non-adjacent to v
respectively.
Case 2: Consider u ∈ B.
Similarly, we obtain dG(u,v) as 1, 2 and 3 when v ∈ B1, v ∈ A
and v2 respectively.

Gut(Xn) = ∑
u,v∈V (Xn)

d(u)d(v)dG(u,v)

= ∑
u,v∈V (Xn)

d(u)d(v)+2 ∑
u,v∈V (Xn)

d(u)d(v)+

3 ∑
u,v∈V (Xn)

d(u)d(v)

=
φ(n)2 ·nφ(n)

2
+2

φ(n)2 · (n2−2n)
4

+

3
φ(n)2[n/2−φ(n)]n

2

=
nφ(n)2[5n−4(φ(n)+1)]

4
.

(7)

3. Harary Index of Unitary Cayley Graphs

We determine Harary Index of Unitary Cayley graphs in this section.
Theorem 3.1:For the Unitary Cayley graph Xn (n > 1),
the Harary Index ,

H(Xn)=


n(n−1)

2 , n is prime
n(3n−2)

8 , n = 2r and r > 1
n(φ(n)+n−1)

4 , n is odd but not prime
n[5n+2(4φ(n)−3)]

24 , n is even and has an odd prime divisor

(8)

Proof: For n is prime, we get a complete graph Xn. So by definition,
H(Xn) = 1+1 · · ·+1︸ ︷︷ ︸

n(n−1)
2

=
n(n−1)

2 .

For n = 2r and r > 1, we get a biclique Xn with vertex partition.
Thus H(Xn) =

n(3n−2)
8 .

For n is odd but not prime, we get dG(u,v) as 1 and 2 (using lemma
1.2) respectively.

Thus, H(Xn) = ∑
u,v∈V (Xn)

1
dG(u,v)

=
nφ(n)

2
+1/2 · n[n− (φ(n)+1)]

2

=
n[φ(n)+n−1]

4
.

(9)

For n is even and has an odd prime divisor, we get a bigraph Xn.
Then it can be easily understood from theorem 2.1 that dG(u,v) is 1,
2 and 3 respectively.

Thus, H(Xn) = ∑
u,v∈V (Xn)

1
dG(u,v)

= ∑
1
1
+∑

1
2
+∑

1
3

=
nφ(n)

2
+

n2−2n
8

+
n[n/2−φ(n)]

6

=
n[5n+2(4φ(n)−3)]

24
.

(10)

4. Conclusion

In this paper, terminologies used were discussed as well. Moreover,
the Gutman Index and Harary index of Unitary cayley graphs Xn
were deduced for an integer n≥ 2.
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