

Copyright © 2018 Ramzi A. Haraty, Gongzhu Hu. This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.28) (2018) 325-331

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Software process models: a review and analysis

Ramzi A. Haraty 1 *, Gongzhu Hu 2

1 Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon

2 Department of Computer Science, Central Michigan University, Mount Pleasant, MI 48859, USA

*Corresponding author E-mail: rharaty@lau.edu.lb

Abstract

Modeling of software process has been a very challenging problem and constantly debated in the software development community in

the past 30+ years, largely due to the complex nature of the software development process that involves not only the technical knowledge

and skills but also many other factors, such as human, management, quality assessment, and cost. Although the situations of creating

software differ greatly from one case to another, there are some common themes shared by many of the situations, and hence various

software process models have been emerged to address these common themes. In this paper, we present a review of the software process

models commonly used in practice, from traditional to agile, and assessment of these models with metrics and case studies.

Keywords: Software Process; Software Development Life Cycle; Traditional Models; Agile Models; Process Metrics; Model Evaluation

1. Introduction

The process of creating software is similar to the process of mak-

ing any other products that involves many components and fac-

tors. Only when the components are well designed and fit togeth-

er, the product can have a better chance to be successful. Software

processes, however, differ quite significantly from product pro-

cesses in other industries. Product processes in other industries

(auto industry, for example) are often stable, have long-term prod-

uct design and development strategies with anticipated customer

expectations that do not change frequently in any significant way.

Software processes, however, are more likely conducted under

dynamically changing environments, from product requirements

and functionality, time and cost constraints, to users’ satisfaction.

Methodologies to address the problems specific to software devel-

opment started in 1960’s but only quite primitive at the beginning

and became somewhat mature in the last 30 years. The evolution

of software development methodologies can be roughly divided

into two periods with traditional or plan-driven models in the first

period and agile models in the second. As agile models are getting

more and more acceptance, traditional models continue to be mod-

ified, improved, and used today.

All the software process models are based on the concept of soft-

ware development life cycle (SDLC), but traditional models inter-

pret SDLC in a much narrow sense. They divides the “life” of

software development process into well defined

Phases and specifies the activities in each phase and the process

flows between the phases. The most influential traditional model

is the waterfall model proposed by Winston Royce in 1970 [25].

Many variations of the waterfall model were proposed during that

period, such as spiral model [6], V-shaped model [12] and W

model [13].

There are clear limitations and weaknesses of traditional models

particularly for complex and large software projects, as reported in

many publications in the literature. Agile methodologies started

gaining momentum in early 2000’s, particularly when the Agile

Alliance published The Agile Manifesto in 2001 [1]. The agile

idea is focused on repeated light-weight practices for rapid and

continuous delivery of software in small chunks with close collab-

oration from the customer as well as among members of the de-

velopment teams. No rigid plan or requirements is determined in

advance, as these can change during the development process.

Being flexible and adaptive to changes are in the DNA of agile

methods while still achieve the ultimate goal of producing cus-

tomer satisfied software within the time and cost framework. Var-

ious agile-like models have been proposed and developed in the

last 10–15 years, such as Extreme Programming [4], Scrum [27],

[9], Lean Software Development [23], and Kanban [2].

In this paper, we present a brief review of commonly used tradi-

tional and agile models, model evaluation metrics, case studies

and trend in software development

In any medium, provided the original work be properly cited.

2. Traditional software process models

The process of creating a software contains these essential build-

ing blocks regardless of what model is used:

Functional and non-functional requirements, time and cost con-

straints, design of the software product, implementation, testing,

delivery, and maintenance. Software development models differ in

the ways these building blocks are structured and how they are

related in the process. Traditional models are basically follow the

idea of process flow between these components (called stages or

phases), like a finite state machine [35], to form what is called the

software life cycle (SLC). The most basic and influential SLC

development model is the waterfall model. There are many tradi-

tional models, but we only briefly discuss the three classical and

representative models in this section: waterfall, V-shaped, and

spiral.

2.1. Waterfall model

Winston Royce proposed waterfall model in 1970 [25]. In this

model, the components in the software process are arranged as a

http://creativecommons.org/licenses/by/3.0/
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page9
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page9
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10

326 International Journal of Engineering & Technology

linear sequence, with the flow from the first component “down” to

the last one, like waterfalls, as depicted in Fig. 1. The solid-arrow

flow is the basic model and the dashed-arrow flow indicates itera-

tive feedback.

Fig. 1: The Waterfall Model [25].

The waterfall model has been perceived as an one-way flow of

control in the software development process, where the process is

denoted S = (s1; s2; ; sm), in which stage sk starts only after stage sk

1 is complete. All the system and software requirements must be

well specified at the beginning before analysis and design of the

software product can begin, and cannot be changed during the

entire process. In fact, the original waterfall model described in

[25] had feedback loops as well as break-downs of these stages.

Nevertheless, the one-way linear flow of the development process

has been considered the main characteristics of the waterfall mod-

el. In this model, everything is well planned, the software product

blueprint (design) strictly reflects the analysis of the requirements,

and the blueprint is vigorously followed during

implementation and testing to ensure the requirements are met.

The 7-stage waterfall in the original model has been massaged and

adjusted into 5-stage, 6-stage, revised 7-stage and even more-stage

waterfalls. Most noticeable revisions include combination of sys-

tem requirements and and software requirements in to a single

“Requirements” stage, and the addition of a “Maintenance and

Support” stage at the end of the process. These revisions share the

common strengths and weaknesses.

The primary strength of the waterfall model is the predictability of

the product quality because “things are precise as planned.”

The main drawback of this model is its inflexibility of adapting

changes while changes are the game in software development.

More often than not, even the customers are not sure about their

needs at the beginning, hence the system and software require-

ments would change that have ripple effect on the later stages of

the process. Because of this inflexibility, risk (project may fail)

remains high throughout most of the development cycle until at

the later stages (coding and integration) when problems are un-

covered but it is “too late” while the functionality of the project is

expected to rise, as illustrated in Fig. [2] given in [3]. This is also

the main criticism of the waterfall model that led to the rise of

agile models.

Fig. 2: Risk and Functionality Profile of Waterfall [3].

2.2. Spiral model

Barry Boehm introduced the spiral model in 1988 that was applied

to the TRW Software Productivity System [6]. The model takes

the waterfall stages into repetitive loops with the prototypes of the

software design refined and improved in each loop, like the pro-

cess going into a spiral, as shown in Fig. 3.

A distinctive feature of the spiral model is the added risk analysis

into the loops. Here risk means the conditions and events that may

make it harder for the development team to achieve its goals. In

each iteration, the prototype of the project is evaluated and risk is

assessed for the next iteration in the process. Sometimes the spiral

model is categorized as a risk-driven model. The product proto-

type is iteratively updated (and hopefully improved) as the spiral

spins outward and ends up with an operational prototype for im-

plementation. A more detailed description of the

Fig. 3: Spiral Model [6].

Spiral model with enhancement was published in 2014 by the

originator of the mode [7], that provided principles and guidelines

of using spiral model for software projects to be successful.

The spiral model provides some flexibility to the process, such as

allowing additional functionality to be added at the later stage of

the development. However, the model is not widely used mainly

because it is quite costly to use that requires skilled risk assess-

ment professionals throughout the process and the model does not

work well for small projects.

2.3. V-shaped model

The “Vee” model was introduced by Kevin Forsberg and Harold

Mooz in 1991 [12] that followed the basic outlines of the “Vee”

charts developed by NASA. The model emphasizes on integration

and verification (testing). Just like the waterfall model, the soft-

ware development life cycle is also a sequential process, but envi-

sions the cycle as a V. The left side consists of the earlier phases

of the cycle (requirement, specification, analysis, design) and

descents just like in the waterfall model, while later phases (inte-

gration and verification) of the project cycle ascent on the right

side of the V. In this model, detailed work can start early and even

in parallel. For example, testing procedures can be developed

early in the life cycle before coding is done. A V-shaped model is

shown in Fig. 4 that is from [11] but with the dashed lines added

to indicate the relationships of the phases in the planning.

Researchers have proposed and developed some extensions of the

V-shaped models, such as the W model [13, 29]. In W model, a

second V is added to have the two V’s intertwining together to

allow parallel execution of the phases of the project cycle. The

second V emphasizes on testing that is integrated into the model.

A W model for component-based development (CBD) was pro-

posed by Kung-Kiu Lau et al. in 2011 [16]. In their model, one V

is defined for the component development process and the other V

is defined for system development process, and the two processes

are conjoined into a single CBD process.

file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page2
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page2
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page3
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page3
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10

International Journal of Engineering & Technology 327

Fig. 4: The V-Shaped Model.

3. Agile software process models

The waterfall model and other traditional models were considered

too rigid in practice. People started to realize that more flexible

and practical models are needed. Quite a few software profession-

als put into practice in the 1990’s the idea of Agile. In 2001, 17

agile practitioners gathered in Utah trying to find common goals.

The Agile Software Development Alliance was formed at the

meeting and all the participants signed the Manifesto for Agile

Software Development [1] that has become the guiding principles

for agile development models. At the core, “Agile Methodologies

is about the mushy stuff of values and culture” to deliver good

products to the customers in an environment that the acts of peo-

ple are most important [14].

In this section, we review the basic characteristics of agile devel-

opment and four agile models: Extreme Programming (XP),

Scrum, Lean, and Kanban.

3.1. Agile characteristics and life cycle

There are long and short definitions for agile development, and all

share these points [21]:

 Requirements are assumed to change.

 Systems evolve during a series of short iterations.

 Customers participate during each iteration.

 Documentation is developed only as needed.

The key characteristics of agile can be summarized into three

phrases: adapting change, rapid delivery, constant user involve-

ment.

The process in the agile life cycle is illustrated in Fig. 5 adapted

from [20]. The product goes through a series of short iterations

(Development i; i = one; n) with new functionality added in each

iteration. During each iteration, design, coding, integration and

testing are carried out to achieve incremental improvements. The

client then releases the product for approval. If not accepted (cli-

ent may request changes, for example), the development team will

incorporate changes, adjust and track system features, and start the

next cycle. The system is continuously visible to all stakeholders

who are closely participating in the process for the entire devel-

opment period. Agile is now the dominating method used today

for software development.

Fig. 5: Agile Life Cycle [20].

3.2. Extreme programming (XP)

Extreme programming (XP) model was created by Kent Beck in

1996 when he was working on the Chrysler Corp.’s payroll appli-

cation. The methodology was further defined and explained in a

book [4]. Extreme programming is a “lightweight discipline of

software development” methodology that emphasizes on customer

satisfaction by delivering software as the customer needs it rather

than delivering the software far in the future that satisfies all the

requirements planned in advance. XP model recognizes five val-

ues: communication, simplicity, feedback, courage, and respect. A

set of rules was established as the guide for software development

using XP to reflect these values. Those rules [36] that are the most

critical are summarized in Table 1.

Table 1: Rules of Extreme Programming [36]

Aspect Rule

 User stories are written

Planning
Release plan creates release schedule

make frequent small releases

 Project is divided into small iterations

 Open work space

Managing
standup meeting starts each day

Measure project velocity

 Fix XP when it breaks
 Keep it simple

Designing Create spike solutions to reduce risk
 Refactor whatever and whenever possible

 Customer is always availabe

 Code standards
Coding Code unit test first

 All code is pair programmed

 Integrate often
 Code must pass all unit tests before release

Testing Tests are created when a bug is found

 Acceptance tests are run often

There was a heated debate in the early 2000’s, when XP (and agile

in general) was just getting momentum, about the future

Direction of software development. In addition to pointing out

some weaknesses of XP, some criticism (such as [24]) argued that

in extreme programming there is only coding but no requirements,

no schedules, no documentation. A decade later, agile methodolo-

gies including XP has matured to the point that they are the domi-

nating models in the software development landscape.

3.3. Scrum

Hirotaka Takeuchi and Ikujiro Monika first used the term Scrum

in 1986 to explain the need for new approaches for product devel-

opment [32]. They argued that a fast and flexible process is need-

ed rather than sticking with the old sequential approach to devel-

oping new products, as they were calling for “stop running the

relay race and take up rugby.”

file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page9
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page4
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page4
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10

328 International Journal of Engineering & Technology

Scrum as a software development methodology was first intro-

duced in 1995 by Ken Schwaber [27]. According to [27], Scrum is

a loose set of activities going through an unpredictable system

development process. Being flexible to respond to the unpredicta-

bility and incorporate controls and risk management can signifi-

cantly increase the probability of system success.

Scrum is a framework within which various processes and tech-

niques can be employed [28]. In the Scrum framework, three key

roles (product owner, development team, Scrum master) closely

work together to go through the process. The life cycle of the pro-

ject consists of these steps:

1) Product backlog: documents about all the features to be de-

veloped with priority order.

2) Sprint backlog: list of things the team thinks can be done in

the current sprint.

3) Sprint: project is divided into a series of 1-to-4-week periods

(sprints), with design, coding, testing, and documentation in

each sprint. No changes are allowed mid-sprint.

4) Scrum meeting: 15-minute daily meeting to review what was

done yesterday, brainstorm what to do today and what are

the blocking factors.

Fig. 6: Software Development Process in the Scrum Framework.

The artifacts, events, and steps in the Scrum development process

are illustrated in Fig. 6 (adapted from [9]). The development team

works closely with the Scrum master and the product owner

throughout the process and creates an increment of potentially

shippable product at the end of each sprint, ensuring fast delivery

of high-quality product.

3.4. Lean development

The core concept of lean development is reduce waste and

deliver quality products fast, namely, achieving leanness in

the development process of a product. Lean development

was originated from the manufacturing industry with Toyota

Product Development System leading the effort successful-

ly. When applying to the software development, the lean

method focuses on seven principles [23]:

1) Eliminate waste: Develop and deliver exactly what the cus-

tomer wants. Do not do anything more.

2) Amplify learning: Learning from the experience in the pre-

vious cycles is critical to the improvement of the product in

the next cycle.

3) Decide as late as possible: Late decision making is more ef-

fective in the environment involving uncertainty. Better de-

cision can be made if delayed.

4) Deliver fast: Rapid development enables reliable feedback

and learning.

5) Empower the team: Develop team is involved in the details

of technical decisions as they know better.

6) Build integrity in: Software needs to have a coherent archi-

tecture, fit its purpose, be maintainable, adaptable, and ex-

tensible.

7) See the whole: Software system consists of interdependent

and interactive parts. “The ability of a system to achieve its

purpose depends on how well the parts work together, not

just how well they perform individually.”

The concepts of Lean has been successfully applied to software

development (e.g. case studies in [18]), but a more recent study

concluded, “Advices to industry professionals to apply lean prin-

ciples to large-scale software development is scarce” [22].

3.5. Kanban

Kanban is another agile method that emphasizes on continual

delivery while lets the development team to balance their work

load. Kanban is a Japanese word meaning “sign,” “signal card,” or

“visual board.” It was used to name a software development

method for a distinctive feature of the method that emphasizes on

visual display of the development process so that everyone in the

team is fully aware of what is going on. An example of a kanban

board is shown in Fig. [7] (adapted from [2]), in which each box

on the board is a work item.

Fig. 7: Example of a Kanban Board [2].

The figure shows the two metrics: lead-time and delivery rate.

Lead time L of an item is the duration between the commitment

and delivery of the item. The average delivery rate R is the ratio of

average work-in-progress over average lead-time according to

Little’s Law:

Delivery rate is the number of completed work items per time.

The essential activities in a Kanban system [2] are:

1) Visualize Use kanban board and other tools to visualize the

work and policies.

2) Limit work in progress (WiP): WiP should be minimized.

Too much on-going work is wasteful.

3) Manage flow: Managing flow of work should maximize the

delivery of value of work items. The value of a work item is

a function of cost of delay.

4) Make policies explicit: Policies like WiP limit, capacity al-

location, definition of “done” may be clearly stated and

stick at the top of each column on the kanban board.

5) Implement feedback loops: Cadences (cyclical meetings and

reviews) should be properly scheduled for feedback.

6) Improve collaboratively, evolve experimentally: Seek con-

tinuous and incremental improvement without endpoint.

4. Model evaluation metrics

Evaluation of software process models is just as important as the

models themselves. In this section, we give a brief reviewof some

evaluation metrics.

4.1. Metrics in agile development

file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page5
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page5
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page9
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page9
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page9

International Journal of Engineering & Technology 329

Agile methods have been widely adopted in the software industry,

and evaluation of the usage of these models is an important factor

for the organizations to make decisions for software development

in the future. Kupiainen et al. published a systematic study [15]

about the use of metrics in agile software development in indus-

tries. In 30 primary students from a large list of over 774 publica-

tions, a total of 102 metrics were found. These metrics are closely

related to the motivations of using agile in the organizations and

expected benefits. Here we just list a few of these metrics: busi-

ness value delivered, customer satisfaction, defect count, velocity,

effort estimate, percentage of stories prepared for sprint, lead time,

cost performance index, work in progress, cycle time, implement-

ed vs wasted requirements, etc. The top reasons for using metrics,

the most popular and important metrics in their study are listed in

Table 2.

Table 2: Top Reasons and Most Important Metrics [15]

 Metric

 sprint planning

 progress tracking

Reason for using metrics software quality measurement
 fixing software process problems

 motivating people

 velocity
Quantitative metrics effort estimate

 defect count

 customer satisfaction

Qualitative metrics
technical debt

build status

 progress as working code

Table 3: Metrics for process models [8]

Metric Measure

NOA Number of activities in a process
NOAC Number of activities and control-flow elements

NOAJS Number of activities, joins, and splits

CFC Control-flow complexity
HPC Halstead process complexity

IC Interface complexity

CNC Coefficient of network complexity
RT Restrictiveness estimator

Where Cand (a) = f about (a); Cor (a) = 2 f anout (a) (1)

And

Cxor (a) = 1

Halstead process complexity HPC is a measure based on the num-

ber of activities, splits, joins, and control-flow elements.

Interface complexity IC of an activity a is determined by the num-

ber of inputs and outputs of a as

IC = length (Ninput Nout put) 2

Coefficient of network complexity CNC is the ratio of number of

edges vs the number of nodes in the graph:

CNC = Nedge = Nactivity; join; split

Restrictiveness estimator RT measures the number of feasible

sequences in the graph:

RT = 2 åri j 6(n 1) = (n 2) (n 3)

 i j

Where ri j is the reachability matrix (i.e. transitive closure of adja-

cent matrix) and n is the number of nodes.

4.2. Model Complexity Metrics

Complexity of software process models has direct effects on the

success or failure of applying the models on software products. In

general, the more complex of a model, the harder for the model to

be understood and maintained. There are many metrics for meas-

uring model complexity suggested in the literature, from model

size, structure, to comprehensiveness. Cardoso et al. provided a

survey [8] in 2006, in which complexity metrics of process models

are reviewed as an analogy to the metrics of programs. The NOA,

NOAC, and NOAJS metrics are based on the line-of-code measure

for programs, and the other metrics are based on the graph struc-

ture of the process model. A summary of the metrics is given in

Table 3.

Control-flow complexity CFC is similar to the Cyclomatic meas-

ure for program complexity, defined based on the flow graph of a

process P. CFC(p) is the sum of complexity measures of activity a

2 p, where a may be an and-split, or-split, or an xor-split in the

graph:

CFC (p) = åCand (a) + åCor (a) + åCxor (a)

 a2p a2p a2p

5. Case studies

Some case studies have been researched on applying various soft-

ware process models to real-world software projects, and and re-

sults were reported showing the pros and cons of these models

applied in different project environments. The Scrum Standish

Group CHAOS Report [30] showed that the success rates of tradi-

tional software projects (i.e. using the Waterfall model) and pro-

jects using an agile approach are 11% and 39%, respectively. Ta-

ble 4 shows the comparison of the projects traced by the CHAOS

project database.

Table 4: CHAOS Resolution by Agile vs Waterfall [30]

Model Successful Challenged Failed

Waterfall 11% 60% 29%
Agile 39% 52% 9%

5.1. FBI’s sentinel project

The Sentinel project was initiated in 2006 to be an internal system

used by over 30,000 FBI employees, with original estimated

budge of $451 million, to be deployed by end of 2009 [26]. It

started using the traditional software

development model, but only delivered two of the four phases of

the system in summer 2010 after spending $405 million. FBI

shifted the process to agile model in 2010, and project was com-

pleted in summer 2012 with reduced development team and small

budget. The comparison of using different models in the project is

given in Table 5.

Table 5: Models Used for the FBI Sentinel Project [26]

Measure Model

 Waterfall Agile

duration 4 years 12 months
staff size 400 45

budget (million) $405 $30

result half done completed

5.2. Shift from waterfall to scrum at intel

Software development at Intel went from the traditional approach-

es, mostly waterfall, to agile or scrum approach. Intel has benefit-

ed from the shifting, such as reduced cycle time by 66%, uncov-

ered software bugs, weak tools, and poor engineering habits [10].

The effort of adopting scrum method has changing the Product

Development Engineering unit at Intel “from a command-and-

control, plan-based organization into an inspecting and adapting,

self-organizing, empirical planning-based organization.”

file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page6
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page6
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page6
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page7
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10

330 International Journal of Engineering & Technology

5.3. Agile at yahoo

Yahoo started its Scrum pilot program in 2005 with four teams

and has grown rapidly to 40 teams in just one year, and to over

150 teams using agile approaches [5]. In comparison of using

Scrum vs the methods previous used, the responses from the team

members overwhelmingly in favor of the Scrum method, shown in

Table 6.

Table 6: Percentage of Responses [5]

How much was done in 30 days? 2% 24% 74%

Clarity of goals 6% 14% 80%

Business value produced in 30 days. 2% 34% 64%

Overall quality and “rightness” produced. 5% 41% 59%

Collaboration and cooperation within team? 0% 11% 89%
Amount of time wasted / work thrown out? 19% 13% 68%

Overall feelings about using Scrum. 9% 14% 77%

In addition, 81% of team members said they would continue to use

Scrum.

5.4. Agile Practice at Google

Google has many very successful customer-oriented products such

as search and gmail developed in the “startup culture” environ-

ment where most decisions were made by the engineering teams

themselves without much interference from the management.

However, a lot problems arose when the project AdWords

(Google’s online advertising service software) grown to become

very big with very high rate. Of changes in the project. AdWords

is a B2B application, quite different from most of other customer-

oriented products, requiring much more business involvement. To

address these problems, agile practices was carefully introduced

into several project teams at Google. As stated in [31], the agile

approach had resistance initially simply because of the googley

way of developing software that many engineers did not believe

any formal process can be helpful. After “trying it out” of the agile

approach, the project teams had adopted it and put it into daily

practice [31].

5.5. Lean management at BBC worldwide

A case study of applying lean ideas to managing software devel-

opment of the BBC Worldwide Webmedia Department’s software

processes by a 9-person development team was reported in [19].

The data collected from a 12-month period, three months after

implementation of lean started, contains 84 features (52% were

small) in the first 5 months and 64 features (75% were small) in

the last 5 months. The study shows that using lean method can

actually improve software development, as shown in Table 7.

Table 7: Improvement by Using Lean at BBC Worldwide [19]

Measure Change

Lead time to deliver software +37%

Consistency of delivery +47%

Defects reported by customers 24%

6. Trend

In this section, we review several recent surveys that show the

growing trend of agility in the software industry, as well as in

many other industries.

6.1. Agility in the software industry – HP survey

A 2015 survey [33] of 601 software developers and IT profession-

als conducted by HP shows that agile is on the rise and accelerated

more rapidly since 2010. The percentages of the companies using

waterfall-agile development methods in the survey is given in

Table 8(a) and the main reasons for adopting for those whose

companies use agile are given in Table 8(b).

Among those 475 responders with some adoption of agile methods

in 2017, only 4% using agile in 2004, and the adoption sharpy

accelerated during the 2009–2010 period, as shown in Fig. 8.

6.2. Agility across industries – version one survey

Version One conducts annual world-wide survey of the state of

agile for since 2006 across a wide spectrum of industries, educa-

tion, government, and non-profit. Software is the largest industry

in the survey. The results of the surveys [34] were released in the

year after the survey was conducted. The sizes and demographics

of the annual surveys are given in Table 9.

The survey result reveals that enterprise agility continues8

Table 8: HP Survey Result: Waterfall vs Agile [33] (A) Primary Devel-

opment Method Used in Organization

Method %

Pure Waterfall 2

Leaning towards Waterfall 7

Hybrid 24

Leaning towards Agile 51

Agile 16

(B) Key Motivators

Key motivators %

Enhance collaboration between teams 54
Increase the level of software quality 52

Results in increased customer 49

satisfaction
Shortens time to market 43

Reduces cost of development 42

Fig. 8: Agile Adoption over Time [33].

to increase (e.g. 94% of responders’ organizations practice agile),

and there is still a lot of opportunity for growth (e.g. 60% of re-

sponders said less than half of teams use agile, and 80% said their

organizations are at or below a “still maturing” level). An over-

whelming majority of 98% responders stated that their organiza-

tion has realized success from agile projects.

We collected the data from the VersionOne annual state of agile

reports from 2007 (2nd) to 2016 (11th) to find the top responses

regarding the following three areas of using agile methodologies,

and if these top responses have changed over the years.

1) Agile methods used

2) Agile techniques employed

3) Benefits of adopting agile

Since some choices given in a few questions in the annual surveys

varied from year to year, we could only select those that are com-

mon in most years. The trends of the above three survey items are

shown in Fig. 9.

The agile methods used by survey responders’ organizations are

plotted in Fig. 9(a) measured in the percentage of the responses.

Scrum is by far the most commonly used agile method throughout

the years (50-58%), while the use of ScrumBan and Kanban has

steadily increased although still a small minority. XP decreased

significantly from 12% in 2007.

6.3. Traditional models are still useful

file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page7
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page7
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page8
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page8
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page8
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page8
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page9
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page9

International Journal of Engineering & Technology 331

Although the survey and some other reports show that the tradi-

tional software development life cycle models have gradually

faded out of favor as more and more companies and institutions

are adopting agile approaches, the traditional methods are still

well and live, and considered a reliable approach to software de-

velopment. A 2013 case study of a successful home health com-

ponent of a hospital healthcare system found that the traditional

approach “is still as useful today as it ever was” [17].

6.4. Co-exist of traditional and agile methods

The software development community accepts agile methodolo-

gies rapidly in the last 15 years and many agile-like models have

been introduced and practiced. This does not mean that the tradi-

tional models will be totally taken over anytime soon. Just like old

programming languages COBOL and FORTRAN still comprise a

large chunk of shares in today’s software systems, traditional

software process models, like the waterfall model, are well-

defined and developed, and have shown strength in relatively sta-

ble software systems such that the one mentioned in the previous

section 6.3. As stated in the SEI technical report [21], traditional

and agile has some very basic similarities while possess signifi-

cant differences. We have reviewed their differences in this paper;

here we only summarize their similarities as identified in [21]:

1) Share the same goal: deliver a quality product in a

file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page8
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10
file:///D:/D.blal/12_papers/GONGZHU%20paper4xxx.doc%23page10

