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Abstract

Rainbow connection number and chromatic index are two significant parameters in the study of graph theory. In this work, rainbow
connection number and chromatic index of Rough Ideal based Rough Edge Cayley Graph G(T (J)) are evaluated. We prove that the rainbow
connection number of G(T (J)) is 2 and the chromatic index of G(T (J)) is 2(2n−m)(3m−1).
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1. Introduction

A Computer scientist Z.Pawlak[14] introduced the concept of Rough
set theory in the early 1980’s as an extension of set theory to deal with
the vagueness in the Information system. Colouing of a graph plays
an important role in graph theory[1] and it has wide applications.
Vizing in his theorem has found the range of the chromatic index
for a simple graph. Vizing’s theorem and Edge chromatic Graph
theory was discussed by Robert Green in 2015 [8]. For interval
graphs the rainbow connection number and diameter was obtained
by Sudhakaraiah, et.al[11] in 2012.There are various research carried
out on algebraic graph theory. Rainbow connection number[10], [12]
of Cayley graphs was discussed by Yingbin Ma and Zaiping Lu[13]
in 2017. Hengzhe li and Xueliang Li[2] have described the rainbow
connection number of graphs with diameter 3.
As an algebraic approach to Rough set theory the authors Praba.B
and R.Mohan[4] defined two operations praba∆ and praba∇ on the
set of all rough sets T and proved T to be a rough Lattice. Later
the author Praba, et.al[5] proved T to be the Rough semiring under
these two operations. The characterization of Rough semiring was
given by Manimaran, et.al. The concept of Edge Rough Graph was
first introduced by Meilian Liang,et.al[3]. The roughness in Cayley
graphs was given by M.H. Shahzamanian, et al[9]. The concept of
Rough Ideal based Rough Edge Cayley Graph was introduced by
B.Praba and Benazir Obilia[6], [7] as an algebraic graph theoretical
approach to Rough set theory. In our earlier work we have obtained
the clique number, girth, Wiener index, Maximal independent set and
domination number of Rough Ideal based Rough Edge Cayley Graph.
This paper is structured as follows: Section 2 gives the prerequisites
for the understanding of the article. In section 3 we obtain the
diameter and rainbow connection number of Rough Ideal based
Rough Edge Cayley Graph. In section 3 we obtain the chromatic
index of Rough Ideal based Rough Edge Cayley Graph and section
5 gives the conclusion.

2. Preliminaries

2.1. Graph Theory

[3] Let G be a group and S a set of generators. The Cayley graph
Γ(G,S) is (V (Γ), E(Γ)) where vertex set V (Γ) is G and the edge
set E(Γ) consists of all ordered pairs (g,gs) such that g is in G and
s is in S. [1] Let Γ be a (undirected) graph, and v,w two vertices in
V (Γ). The distance between v and w, denoted d(v,w), is the number
of edges in a shortest path connecting them. The diameter of Γ is
the maximum distance between any two vertices in V (Γ). [1] An
edge colouring of a graph G = (V,E) is a map C : E → S, where
S is a set of colours, such that for all e, f ∈ E, if e and f share a
vertex, then C(e) 6=C( f ).The chromatic index of a graph χ

′
(G) is

the minimum number of colours needed for a proper colouring of G.
[2],[10],[11],[12],[13] A path in an edge-colored graph G is rainbow
if no two edges of the path are colored the same. The rainbow
connection number rc(G) of G is the smallest integer k for which
there exists a k-edge-coloring of G such that every pair of distinct
vertices of G is connected by a rainbow path. Vizing’s Theorem [8]
”For all finite, simple graphs G, ∆(G) ≤ χ

′
(G) ≤ ∆(G)+ 1 where

∆(G) is the maximum degree of a graph.”

2.2. Rough Set Theory

In this section we consider an approximation space I = (U,R) where
U is a non empty finite set of objects, called universal set and
R be an equivalence relation defined on U. [14] For any approx-
imation space, the equivalence classes induced by R is defined
by [x] = {y ∈U | (x,y) ∈ R}. For any X ⊆ U , the lower approx-
imation is defined as R−(X) = {x ∈U | [x]⊆ X} and the upper
approximation is defined by R−(X) = {x ∈U | [x]∩X = φ}. The
rough set corresponding to X is RS(X) =

(
R− (X) ,R− (X)

)
. [4]
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If X ⊆U , then the number of equivalence classes(Induced by R)
contained in X is called as the Ind.weight of X. It is denoted by
IW (X). [4] Let X ,Y ⊆ U . The Praba ∆ is defined as X∆Y =
X ∪Y, i f IW (X ∪Y ) = IW (X)+ IW (Y )− IW (X ∩Y ). If IW (X ∪Y )>
IW (X) + IW (Y )− IW (X ∩Y ), then identify the equivalence class
obtained by the union of X and Y. Then delete the elements of
that class belonging to Y. Call the new set as Y. Now obtain X∆Y .
Repeat the process until IW (X ∪Y ) = IW (X)+ IW (Y )− IW (X ∩Y ).
[4] Praba ∇ of X and Y is denoted by X∇Y and it is defined as
X∇Y = {x | [x]⊆ X ∩Y}∪PX∩Y , where X ,Y ⊆U and PX∩Y con-
tains those elements of U whose corresponding equivalence classes
are not a subset of X ∩Y but will have non empty intersection with
X and Y.

Theorem 2.1. [5] For any approximation space I =(U,R), (T,∆,∇)
is a semiring called the Rough semiring.

Remarks 2.1. [5] Without loss of generality let us assume that there
are n-equivalence classes {X1,X2, ...,Xn} in U. Out of which there
are m classes {X1,X2, ...,Xm} (say) have cardinalities greater than
one and the remaining n-m clsses have cardinality equal to one.
Note that |T | = 2n−m3m. Let B = {xi | xi ∈ Xi, i = 1,2, ...,m} and
J = {RS(X) | X ∈ P(B)} then J is an ideal of the Rough semiring
called the Rough Ideal .

2.3. Rough Ideal based Rough Edge Cayley Graph

[6],[7] In this section, we consider an approximation space I = (U,R)
where U is the non empty finite set of objects and R is an equivalence
relation on U . Let (T,∆,∇) be the rough semiring induced by I. Let
B be the set of representative elements of Xi, i = 1,2, ...,m and J be
the rough ideal as in the previous section. We also assume that M is
the union of none, one or more equivalence classes whose cardinal-
ity is equal to one and M

′
is the union of one or more equivalence

classes whose cardinality is equal to one.
[6],[7] Rough Ideal based Rough Edge Cayley Graph denoted
G(T (J)) =

(
V,E

)
where V ∈ T and

E =

{(
RS(X),RS(Z)

)
| RS(X)∇RS(Y ) = RS(Z),RS(Y ) ∈ J

}

2.4. Category Graph

[6],[7] Cardinality of T (|T |) is 2n−m3m. We divide the vertices (the
elements of T) into 13 categories in such a way that all elements
belonging to a particular category will behave similarly. The vertices
are grouped in categories by the following conditions:

1. The degree of each vertex in a particular category will be same.
2. The distances from any vertex of a particular category to ele-

ments of other categories will be same.

In Table: 1, we give the 13 categories and degree of the vertices in
each category.
[6],[7] The category graph corresponding to a given Rough Ideal
based Rough Edge Cayley graph is defined as follows: The vertices
of the category graph (CG) are C1,C2, ...,C13. Two vertices Ci and
C j are connected if elements in Ci are connected to elements in C j
by an edge in the Rough Ideal based Rough Edge Cayley graph. The
Category graph is shown in Figure:1

Table 1: Categories and Degrees of each vertex in the categories

Category (Ci) Vertices Degree of each vertex
in the Category d(Ci)

C1 RS(φ) 2n−m(3m−2m)−1
C2 RS{xi} 2(2n−m)(3m−1)
C3 RS(Xi ∪M) 2
C4 M

′
1

C5 RS({x1 x2, ...,xr}) 2r(3)m−r(2)n−m +2r−2
C6 RS({x1 x2, ...,xr}∪M

′
) 2r

C7 RS({X1 X2, ...,Xr}∪M) 2r

C8 RS({x1 x2, ...,xm}) 2m +2n−3
C9 RS({x1 x2, ...,xm}∪M

′
) 2m−1

C10 RS({X1 X2, ...,Xm}∪M) 2m−1
C11 RS(Qr ∪M) 2r

C12 RS(Qm ∪M) 2m−1
C13 RS({xi}∪M

′
) 2

3. Rainbow Connection Number of the Rough
Ideal based Rough Edge Cayley graph

Throughout this paper, we consider the Rough Ideal based Rough
Edge Cayley graph G(T (J)) with the corresponding category graph
CG. Note that for any category Ci , all the vertices in Ci will have
the same degree in G(T (J)) and hence the degree of the vertices in
Ci is denoted by d(Ci)
In this section we are going to obtain the diameter of G(T (J)) in two
different cases namely when all the equivalence classes have cardi-
nality greater than one and if there exists one equivalence class of
cardinality greater than one. Also, the Rainbow connection number
of G(T (J)) is obtained..

Theorem 3.1. Diameter of G(T (J)) is 2 or 3.

Proof. Case:1 When n = m
Consider the Categories C1 and C2 from the Category graph
corresponding to G(T (J)). The category C1 consists of the
single element RS(φ) and C2 consists of the elements of the
form RS({xi}),xi ∈ B. RS({xi}) is adjacent to all the vertice
of the form RS(Y ) such that RS({xi})∇RS(X) = RS(Y ) where
RS(X) ∈ J and RS(Y ) ∈ T and RS(X)∇RS(Y ) = RS({xi}). Ele-
ments of the form RS(Xi), RS(

{
x1,x2, ...,xr

}
), RS(

{
x1,x2, ...,xr

}
∪

M
′
), RS(

{
X1,X2, ...,Xr

}
∪M), RS(

{
x1,x2, ...,xm

}
), RS({x1,x2, ...,xm}∪

M
′
), RS(

{
X1,X2, ...,Xm

}
∪M), RS(Qr ∪M), RS(Qm ∪M) and

RS(Xi ∪M
′
) are adjacent to RS({xi}). (i.e.)The category C2 is

adjacent to the categories C3, C5, C6, C7, C8, C9, C10, C11, C12
and C13. By the similar argument, the category C1 is adjacent
to the categories C3, C5, C6, C7, C11 and C13. The categories
C8, C9, C10, C12 are adjacnt only to C2 and not to C1. Hence the
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categories C8, C9, C10, C12 are at a distance 1 to C2 and are at a
distance 2 to C1. The category C4 will have no elements in thi case.
Thereby we have exhausted all the categories. Hence the diameter
of G(T (J)) is 2.
Case:2 When m < n
By the similar argument in Case:1, the categories
C3, C5, C6, C7, C8, C9, C10, C11, C12 and C13 are adjacent
to the category C2 and the category C1 is adjacent to the categories
C3, C5, C6, C7, C11 and C13. The categories C8, C9, C10, C12 are
adjacnt only to C2 and not to C1. The category C4 is adjacent only to
C1. Hence the categories C8, C9, C10, C12 are at a distance 1 to C2,
at a distance 2 to C1 and at a distance 3 to C4. Hence the diameter of
G(T (J)) is 3.

Corollary 3.1. Rainbow connection number of G(T (J)) is 2.

Proof. It is trivial by the theorem 3.1.

Example 3.1. Let us consider the approximation space I =
(U,R) where U = {x1,x2,x3,x4}. Let X1 = [x1] = {x1,x3} and
X2 = [x2] = {x2,x4} be the equivalence classes induced by R.

T =

{
RS(φ),RS(U),RS(X1),RS(X2),RS({x1}),RS({x2}),RS(X1∪

{x2}),RS({x1}∪X2),RS({x1}∪{x2})
}
.

The vertices of G(T (J)) are the elements of T. Each element
RS(X) in T is connected to RS(X)∇RS(Y ) where RS(Y ) ∈

J. If B = {x1,x2} then P(B) =
{

φ ,{x1} ,{x2} ,{x1,x2}
}

, J ={
RS(φ),RS({x1}),RS({x2}),RS({x1,x2})

}
There are 2 equivalence classes and those 2 are of cardinal-
ity greater than one. (i.e.) n = 2 and m = 2. For exam-
ple, consider the categories C1 and C3. The only element in
category C1 is RS(φ). The elements of the category C3 are
RS(X1) and RS(X2). RS(X1)∇RS({x2}) = RS(φ) where RS({x2})∈
J. RS(X2)∇RS({x1}) = RS(φ) where RS({x1}) ∈ J. Hence,
the elements of the category C3 are connected to C1. Con-
sider the categories C8 and C12 The only element in category
C8 is RS({x1,x2}). RS ({x1}∪X2)∇RS({x1,x2}) = RS({x1,x2}),
RS (X1∪{x2})∇RS({x1,x2}) = RS({x1,x2}). Hence the elements
of C12 are connected to C8. By using the similar argument between
all categories, the category graph is obtained and the category graph
in this case when n = m = 2 is shown in figure:2. By case :1 of the-
orem 3.1, the diameter of G(T(J) is 2 and the rainbow conncetion
number is also 2.

Example 3.2. Let I = (U,R) be an approximation space,then
U = {x1,x2,x3,x4,x5,x6}. Let {X1,X2,X3} be the equivalence
classes induced by R. X1 = {x1,x3}= [x1], X2 = {x2,x4,x6}= [x2]
and X3 = {x5}= [x5]. {X1,X2} are the equivalence classes whose
cardinality is greater than one and {x1,x2} be the pivot elements of
these classes. {X3} is the equivalence classes whose cardinality is
equal to one. In this example,

T =

{
RS(φ),RS({x1}),RS({x2}),RS(X1),RS(X2),RS(X3),RS(X1∪

{x2}),RS({x1} ∪ X2),RS({x1} ∪ {x2}),RS({x1} ∪ X3),RS({x2} ∪
X3),RS(X1 ∪X3),RS(X2 ∪X3),RS({x1}∪X2 ∪X3),RS(X1 ∪{x2}∪

X3),RS({x1}∪{x2}∪X3),RS(U)

}
B = {x1,x2} then J =

{
RS(φ),RS({x1}),RS({x2}),RS({x1,x2})

}
In this example, there are 3 equivalence classes and out of which
the cardinalities of 2 equivalence classes are greater than one.
(i.e) n = 3 and m = 2. The Category Graph of G(T(J)) is shown in
figure:3.

By case :2 of theorem 3.1, the diameter of G(T(J) is 3 and the
rainbow conncetion number is 2.

4. Chromatic Index of the Rough Ideal based
Rough Edge Cayley Graph

Theorem 4.1. Chromatic Index of G(T (J)) is 2(2n−m)(3m−1).

Proof. To prove this, first we prove that the vertices of C2 are having
the highest degree in G(T (J)). We prove this comparing the degree
of the vertices in each of the categories. Consider the degrees of
each categories in the category graph corresponding to G(T (J)).

d(C1) = (2n−m)(3m−2m)−1 (1)

d(C2) = 2(2n−m)(3m−1) (2)

Hence d(C2)> d(C1).

d(C3),d(C13) = 2 (3)
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It is obvious that d(C3),d(C13) < d(C2).

d(C6),d(C7),d(C11) = 2r,1 < r < m. (4)

Maximum degree these d(C6),d(C7), d(C11) can have is 2m−1.
Hence d(C2)> d(C6),d(C2)> d(C7) and d(C2)> d(C11)

d(C9),d(C10),d(C12) = 2m−1. (5)

Hence d(C2) > d(C9),d(C2) > d(C10), d(C2) > d(C12).

d(C4) = 1 < d(C2) (6)

d(C8) = 2m +2n−3 < d(C2) (7)

From equation (1) to (7) we have exhausted all the degrees of all
the categories except d(C5).
Now consider d(C5) = 2r(3)m−r(2)n−m +2r−2,1 < r < m.
Max{d(C5)} = 3(2n−1)+2m−1−2.
To prove d(C2) > d(C5)
(i.e.) to prove for any n ≥ 3,m ≥ 3, 3(2n−1) + 2m−1 −
2 < 2(2n−m)(3m−1).
(i.e.) to prove for any n≥ 3,m≥ 3,

3(2n−2)+2m−2−1 < (2n−m)(3m−1 (8)

This can be done by induction on n and m.
When m = 3
It is obvious that L.H.S < R.H.S
Induction on n: When n = 3
Obviously L.H.S < R.H.S.
Assume for any n = k,

3(2k−2)+1 < 32(2k−3) (9)

To prove that for any n = k+1, 3(2k−1)+1 < 32(2k−2)

R.H.S = 32(2k−2)

= 2(32)(2k−3)

> 2(3(2k−2)+1) (by(9))

> (3)(2k−1)+1 = L.H.S

Hence for m = 3 equation (8) is true.
Assume that for any m = p,

3(2n−2)+2p−2−1 < (2n−p)(3p−1) (10)

To prove for any m = p+1, 3(2n−2)+2p−1−1 < (2n−p−1)(3p)
Induction on n:
When n = p+1, L.H.S = 2p+1−1
R.H.S = 3p.
Hence L.H.S < R.H.S.
Assume that for any n = l > p+1,

3(2l−2)+2p−1−1 < (2l−p−1)(3p) (11)

To prove for any n = l +1, 3(2l−1)+2p−1−1 < (2l−p)(3p)

R.H.S = (2l−p)(3p)

= 2(2l−p−1)(3p)

> 2(3(2l−2)+2p−1−1) (by (11))

> 3(2l−1)+2p−2

> 3(2l−1)+2p−1−1 = L.H.S

Hence for any n≥ 3,m≥ 3, 3(2n−2)+2m−2−1 < (2n−m)(3m−1).
(i.e) d(C2) > d(C5) and hence d(C2) is maximum. Hence by
Vizing’s theorem, the chromatic index of G(T (J)) is 2(2n−m)(3m−1).

Remarks 4.1. In the above theorem, we have proved that d(C2)
is maximum. (i.e.) ∆(G(T (J))) = d(C2). By Vizing’s theorem, the
chromatic index is ∆(G(T (J))) or ∆(G(T (J)))+ 1. We claim that
the chromatic index of G(T (J)) is d(C2) and the proof of the fact
that the chromatic index of G(T (J)) is not d(C2)+ 1 is left as an
open problem.

Example 4.1. For example 3.1, the categories of vertices and their
corresponding degrees are shown in table : 2
From table :2, we observe that d(C2) = 6 and its maximum. Hence

Table 2: Categories of vertices with its degrees when n=2 and m=2.

Categories Vertices Degrees d(Ci)

C1 RS(φ) 4
C2 RS ({x1}) ,RS ({x2}) 6
C3 RS ({X1}) ,RS ({X2}) 2
C4 - -
C5 - -
C6 - -
C7 - -
C8 RS ({x1,x2}) 5
C9 - -
C10 RS(U) 3
C11 - -
C12 RS ({x1}∪X2),RS (X1∪{x2}) 3
C13 - -

by theorem 4.1, the chromatic index of G(T (J)) is 6. The diagramat-
ical justification is shown in figure :4.

5. Conclusion

In this work, the rainbow conncetion number of G(T (J) is 2 and the
chromatic index of G(T(J)) is 2(2n−m)(3m−1) has been proved and
illustrated with examples. As we have used Vizing’s theorem, the
proof of the statement tthat the chromatic index of G(T (J) is not
2(2n−m)(3m−1)+1 is left as an open prroblem.
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