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Abstract 
 

In this article, we have introduced the concepts of divided square difference cordial labeling behavior of some special graphs called 

Jewel graph,𝐶𝑛−2 + 𝐾2, Wheel graph, Helm graph, Flower graph,𝑃𝑛 + 𝐾𝑚
̅̅ ̅̅ , 𝐾𝑚

̅̅ ̅̅ ∪ 𝑃𝑛 + 2𝐾1 and Bistar. 
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1. Introduction 

For basic notation and terminology in graph theory we refer to 

Bondy and Murty [2], F. Harary [7] and Rosen Kenneth.H [10] 

while for number theory we refer Burton [4].Most graph labeling 

methods were introduced by Rosa [9] in 1967. A dynamic survey 

on different graph labeling along with an extensive bibliography 

was found in Gallian [6]. The concept of cordial labeling was 

introduced by Cahit [3]. Dhavaseelan et.al [5] introduced the con-

cept of even sum cordial labeling graphs.The concept of divisor 

cordial labeling was introduced by P. Lawrence Rozario Raj and R. 

Valli [8]. Also further results on divisor cordial labeling was given 

by S.K.Vaidya and N.H.Shah[11]. Alfred Leo et.al [1] introduced 

the concept of divided square difference cordial labeling graphs. 

In this paper, the concepts of divided square difference cordial 

labeling behavior of jewel graph,Cn−2 + K2, Wheel graph, Helm 

graph, Flower graph,Pn + Km
̅̅ ̅̅ , Km

̅̅ ̅̅ ∪ Pn + 2K1 and Bistar are in-

troduced 

2. Preliminaries 

Definition 2.1:[6]The Graph labeling is an assignment of num-

bers to the edges or vertices or both subject to certain condition(s). 

If the domain of the mapping is the set of vertices (edges), then the 

labeling is called a vertex (edge) labeling. 

 

Definition 2.2:[6]A mapping 𝑓: 𝑉(𝐺) → {0,1}  is called binary 

vertex labeling of G and 𝑓(𝑉) is called the label of the vertex 𝑣 of 

G under 𝑓. 
 

The concept of cordial labeling was introduced by Cahit [3]. 

 

Definition 2.3:[3]A binary vertex labeling f of a graph G is called 

a Cordial labeling if |𝑣𝑓(0) − 𝑣𝑓(1)| ≤ 1  and                     

|𝑒𝑓(0) − 𝑒𝑓(1)| ≤ 1.  A graph G is cordial if it admits cordial 

labeling. 

 

Definition 2.4:[1]Let 𝐺 = (𝑉, 𝐸) be a simple graph and 𝑓: 𝑉 →
{1,2,3, … |𝑉|} be bijection. For each edge 𝑢𝑣, assign the label 1 if 

|
(𝑓(𝑢))2−(𝑓(𝑣))2

𝑓(𝑢)−𝑓(𝑣)
| is odd and the label 0 otherwise. f is called divided 

square difference cordial labeling if |𝑒𝑓(0) − 𝑒𝑓(1)| ≤ 1, where 

𝑒𝑓(1) 𝑎𝑛𝑑𝑒𝑓(0) denote the number of edges labeled with 1 and 

not labeled with 1 respectively.  

 

A graph G is called divided square difference cordial if it admits 

divided square difference cordial labeling. 

 

Definition 2.5:[10]A Wheel graph 𝑊𝑛is a graph formed by con-

necting a single universal vertex to all vertices of a cycle. A Wheel 

graph with n vertices can also be defined as the 1-skeleton of an 

n-1 gonal pyramid. 

 

Definition 2.6:[5]The Helm graph 𝐻𝑛 is the graph obtained from 

a wheel graph 𝑊𝑛 by adjoining a pendent edge at each node of the 

cycle. 

 

Definition 2.7:[5]The Flower graph 𝐹𝑙𝑛  is the graph obtained 

from the Helm graph 𝐻𝑛by joining each pendent vertex to apex of 

the Helm 𝐻𝑛. 

 

Definition 2.8:[5]Bistar𝐵𝑚,𝑚is the graph obtained by joining the 

apex vertices of two copies of star 𝐾1,𝑛. 

 

Proposition 2.9 [1] 

1) Any path Pn is a divided square difference cordial graph. 

2) Any cycle Cn is a divided square difference cordial graphex-

cept n = 6, 6 + d, 6 + 2d, …whered = 4. 

3) The Star graph K1,n  is a divided square difference cordial 

graph. 

3. Main result 

Proposition 3.1 

The Jewel graph is a divided square difference cordial graph. 

Proof 

Let G be a Jewel graph. 

The jewel graph can be constructed by taking 

 V(G) = {u, v, x, y, ui, 1 ≤ i ≤ n} and  
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 E(G) = {ux, xy, uv, vy, xui, vui, 1 ≤ i ≤ n}.  

In this graph, |V(G)| = n + 4 and |E(G)| = 2n + 4. 

Now we can label the graph by defining a map                            

f: V(G) → {1,2, … , n + 4}  and assign the label values as                    

f(u) = 1, f(x) = 2, f(y) = 3, f(v) = p where p is the largest prime 

number and p ≤ n + 4  . Also we can label the vertices 

u1, u2, … , un with labels 4,5,6 … , n + 4 other than p. 

Then we get ef(0) = ef(1). 
Thus |ef(0) − ef(1)| ≤ 1. 
Hence G is a divided square difference cordial graph. 

Example 3.2  

 

 
Fig. 1: Jewel Graph When n = 7. 

 

Proposition 3.3 

The graph Cn−2 + K2 is a divided square difference cordial graph 

except for n − 2 = 6,6 + d, 6 + 2d, …where d = 4. 

Proof 

Let G be a graph Cn−2 + K2. 

Let v1, v2, … , vn−2  are the vertices of Cn−2  and vn−1, vn are the 

vertices of K2. Construct the graph Cn−2 + K2. 
Define a map f: V(G) → {1,2, … , n}as follows. 

First we can label the cycle Cn−2 by Proposition 2.9.  

Then label K2 by takingf(vn−1) = n − 1, f(vn) = n. 

Then we get |ef(0) − ef(1)| ≤ 1. 
Hence G is a divided square difference cordial graph. 

Example 3.4 

 

 
Fig. 2: Graph C5 + K2. 

 

Proposition 3.5 

The Wheel graph Wnis a divided square difference cordial graph 

except for n = 6,6 + d, 6 + 2d, …where d = 4. 

Proof 

Let G be a Wheel graph Wn. Let u, v1, v2, … , vn are the vertices of 

Wn. Here u is the apex vertex. In this graph, |V(G)| = n + 1 and 
|E(G)| = 2n. 

Now, define a map f: V(G) → {1,2, … , n + 1} as follows. First we 

can label the cycle Cn by Proposition 2.9. Then we can label the 

apex vertex f(u) = n + 1. 

Then we get |ef(0) − ef(1)| ≤ 1. 
Hence G is a divided square difference cordial graph. 

 

Example 3.6 

 

 
Fig. 3:Wheel Graph W12. 

 

Proposition 3.7 

The Helm graph Hnis a divided square difference cordial graph 

except for n = 6,6 + d, 6 + 2d, …where d = 4. 

Proof 

Let G be a Helm graph Hn . Let x, v1, v2, … , vn, u1, u2, … , un  are 

the vertices of Hn. Here x is the apex vertex, v1, v2, … , vn are the 

vertices of the cycle Cnand u1, u2, … , un are the pendent vertices. 

In this graph, |V(G)| = 2n + 1and |E(G)| = 3n. 

Now, define a map f: V(G) → {1,2, … ,2n + 1}as follows. First we 

can label the Wheel Wn by proposition 3.5. Then we can label the 

pendent vertices 𝑢1, 𝑢2, … , 𝑢𝑛 as 𝑓(𝑢𝑘) = 𝑛 + 𝑘 + 1,1 ≤ 𝑘 ≤ 𝑛. 

Then we get  

 

ef(0) − ef(1) = {
0, if n is even
1, if n is odd

 

 

Thus, |ef(0) − ef(1)| ≤ 1. 
Hence G is a divided square difference cordial graph. 

Example 3.8 

 
Fig. 4:Helm Graph H8. 

Proposition 3.9 

The flower graph Flnis a divided square difference cordial graph. 

Proof 

Let G be a flower graph Fln. Let x, v1, v2, … , vn, u1, u2, … , un are 

the vertices of Fln. Here x is the apex vertex, v1, v2, … , vn are the 

vertices of the cycle Cnand u1, u2, … , un are the pendent vertices. 

In this graph, |V(G)| = 2n + 1and |E(G)| = 4n. Now, define a 

map f: V(G) → {1,2, … ,2n + 1} as follows. First we can label the 
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Helm Hnby proposition 3.7. Then join the pendent vertices to the 

apex vertex to get the Fln graph. 

Then we get |ef(0) − ef(1)| ≤ 1. 
Hence G is a divided square difference cordial graph. 

Example 3.10 

 

 
Fig. 5: Flower Graph Fl8. 

 

Proposition 3.11 

The graph Pn + Km
̅̅ ̅̅  is a divided square difference cordial graph. 

Proof 

Let G be a Pn + Km
̅̅ ̅̅  graph. Let v1, v2, … , vm are the vertices of Km

̅̅ ̅̅  

and u1, u2, … , un are the vertices of Pn. 

Then u1, u2, … , un, v1, v2, … , vm are the vertices of Pn + Km
̅̅ ̅̅ . 

Let the edge set be 

 

E(G) = {uiui+1, u1vj, unvj, 1 ≤ i ≤ n − 1,1 ≤ j ≤ m} 

 

In this graph, |V(G)| = m + n and |E(G)| = 2m + n − 1. 

Now, define a map f: V(G) → {1,2, … , m + n} as follows. 

We can label the path by Proposition 2.9 and Km
̅̅ ̅̅ by                            

f(vj) = n + j, 1 ≤ j ≤ m. 

Then we get |ef(0) − ef(1)| ≤ 1. 
Hence G is a divided square difference cordial graph. 

Example 3.12 

 

 
Fig. 6:Graph P6 + K5

̅̅̅̅ . 

 

Proposition 3.13 

The graph (Km
̅̅ ̅̅ ∪ Pn) + 2K1 is a divided square difference cordial 

graph. 

Proof 

Let G be a (Km
̅̅ ̅̅ ∪ Pn) + 2K1 graph.  

Let x, y are the vertices of 2K1 , v1, v2, … , vm  are the vertices of 

Km
̅̅ ̅̅  and u1, u2, … , un are the vertices of Pn. 
Then x, y, u1, u2, … , un, v1, v2, … , vm  are the vertices of                     
(Km
̅̅ ̅̅ ∪ Pn) + 2K1. 

In this graph, |V(G)| = m + n + 2and |E(G)| = 2m + 3n − 1. 

Now, define a map f: V(G) → {1,2, … , m + n + 2} . We can                

construct the path Pn  by Proposition 2.9, label Km
̅̅ ̅̅  by                  

f(vj) = n + j, 1 ≤ j ≤ m and 2K1  by f(x) = m + n + 1, 

f(y) = m + n + 2. 
Then we get |ef(0) − ef(1)| ≤ 1. 
Hence G is a divided square difference cordial graph. 

Example 3.14 

 

 
Fig. 7: Graph(K4

̅̅̅̅ ∪ P6) + 2K1. 

 

Proposition 3.15 

Bistar 𝐵𝑚,𝑚 is a divided square difference cordial graph. 

Proof 

Let G be a 𝐵𝑚,𝑚 graph. 

Let 𝑢1, 𝑢2, … , 𝑢𝑚  and 𝑣1, 𝑣2, … , 𝑣𝑚 are the vertices of each copy 

of 𝐾1,𝑚with the apex vertex 𝑥 𝑎𝑛𝑑 𝑦.  

In this graph, |𝑉(𝐺)| = 2𝑚 + 2 and |𝐸(𝐺)| = 2𝑚 + 1. 

Let the edge set be 𝐸(𝐺) = {𝑥𝑦, 𝑦𝑣𝑖 , 𝑥𝑢𝑖 , 1 ≤ 𝑖 ≤ 𝑚}. 

Now, define a map 𝑓: 𝑉(𝐺) → {1,2, … ,2𝑚 + 2} as follows. 

We can label the vertices by taking, 

 

𝑓(𝑥) = 1, 𝑓(𝑦) = 𝑚 + 2, 𝑓(𝑢𝑖) = 𝑖, 2 ≤ 𝑖 ≤ 𝑚 + 1 

 

𝑓(𝑣𝑖) = 𝑚 + 2 + 𝑖, 1 ≤ 𝑖 ≤ 𝑚 

 

Then we get |𝑒𝑓(0) − 𝑒𝑓(1)| ≤ 1. 

Hence G is a divided square difference cordial graph. 

Example 3.16  

 

 
Fig. 8:Bistar𝐵5,5. 

4. Conclusion 

In this paper, the concepts of divided square difference cordial 

labeling behaviour of Jewel graph, 𝐶𝑛−2 + 𝐾2, Wheel graph, Helm 

graph, Flower graph, 𝑃𝑛 + 𝐾𝑚
̅̅ ̅̅ , 𝐾𝑚

̅̅ ̅̅ ∪ 𝑃𝑛 + 2𝐾1 , Bistar 𝐵𝑚,𝑚 were 

discussed. This work can be extended to other type of graphs such 

as neutrosophic graphs, fuzzy graphs, intuitionistic fuzzy graphs. 
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