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Abstract 
 

In this paper, we define the monophonic embedding of graph G into graph H and we present an algorithm for finding the monophonic 

wirelength of circulant networks into the family of grids M(n×2), n≥2.The monophonic embedding of a graph G into a graph H is an 

embedding denoted by fm is a bijective map from the vertex set of G into the vertex set of H and fm is a one-one mapping from the edge 

set (x, y) of G into Pm(H) where Pm(H) is the set of monophonic paths between fm(x) and fm(y) for every fm(x), fm(y)H. The monophonic 

wirelength of fm of G into H is the sum of distances of monophonic paths between two vertices fm(x) and fm(y) in H such that (x, y)
E(G). This paper presents a monophonic algorithm to find the monophonic wirelength of circulant networks G(2n, ±S) , where S

{1,2,3,…,n} into the family of grids M[n×2],n≥2. We also derived a Lemma to get the monophonic edge congestion MEC(G,H). 
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1. Introduction 

The distance d(x, y) between two vertices x and y in a graph G is 

the length of the shortest path from x to y in G . An edge xixj is a 

chord of a path x0,x1,x2,…,xn if j ≥ i+2 . A monophonic path is a 

path if it contains no chord. The length of the longest x-y mono-

phonic path of a graph G is called the monophonic distance 

dm(x,y) for every vertices x,y in G. A monophonic path from x to 

y with length dm(x,y) is called an x - y monophonic “as stated in 

[1,2,3,4]”. Consider a graph H, since other graphs or networks are 

embedded into it , as host graph and graphs or networks which are 

embedded in H are called guest graph “as given in [5,6,7]”. Let 

G(V,E) and H(V,E) be finite graphs with n vertices. An embed-

ding f of G into H is defined as follows: 

1) f  is a bijective map from V (G) → V (H) 

2) f is a one-to-one map from E(G) to {Pf (f (u), f (v)) : Pf (f(u), 

f(v)) is a path in H between f (u) and f (v) for (u, v) ∈E(G)} 

“as defined in [8,9]. i.e., The embedding f of G to H is a bi-

jective mapping from the vertex set of G to the vertex set of 

H and every edge (u, v) E(G) is mapped to a path be-

tween f (u) and f (v) in H. The edge congestion of an em-

bedding f of G into H is the maximum number of edges of 

the graph G that are embedded on any single edge of H. The 

wirelength of an embedding f of G into H is given by 
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If we find an embedding of G into H which produces the mini-

mum wirelength WL(G, H), such problem is called the wirelength 

problem “as stated in [9]”. We use definitions, Lemmas and Theo-

rems from [1], [2], [5], [6], [7], [8] and [9] for this work. 

 

2. Monophonic wirelength problem 

Definition 2.1: Let G(V, E) and H (V, E) be finite graphs with n 

vertices. An embedding fm: G → H is called a monophonic em-

bedding if fm maps each vertex of G into a vertex of H and each 

edge (x, y) of G is mapped to a monophonic path between fm(x) 

and fm(y) in H. 

 

Definition 2.2: Let fm: G → H be a monophonic embedding. The 

monophonic edge congestion of fm of G into H is the maximum 

number of edges of the graph G that are embedded on an edge 

e∈H and is given by 
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The monophonic wirelength problem of a graph G into H is the 

problem of finding a monophonic embedding f m : G→ H that 

produces the monophonic wire length MW L(G, H). 

 

Definition 2.3: Let fm: G → H be a monophonic embedding. The 

monophonic wirelength MWL (G, H) of fm is given as 
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Proposition 2.4: For embeddings f : G → H and the monophonic 

embeddings fm: G → H, WLf (G, H) ≤ MWLfm(G,H) 

 

Proof: From Lemma 2.3 “as proved in [2]”, we have 
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And using definitions “as defined in [9]” we write, 
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Therefore, 
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Lemma 2.5: (Monophonic congestion Lemma)Let G be an r-

regular graph with n vertices. Let H be a finite graph with n verti-

ces. Let fm: G → H be a monophonic embedding of G into H. Let 

the graph H \ Ej , j = 1,2,…,p; 0<p≤|E(G)| , have the components 

Hi ,i =1,2 and Gi = fm −1(Hi),where Ej’s are the edge cuts of H, 

form a partition in H and have the following properties:  

 

i) For m≥0, there are m edges (x, y) ∈Gi, i = 1, 2; such that the 

monophonic path  )(),( yfxfP
mmfm

 has exactly two 

edges in Ej. 

ii) The monophonic path  )(),( yfxfP
mmfm

has exactly one 

edge in Ej for every (x,y)∈ G with x∈ G1& y∈G2 where G1 

is the maximum subgraph in G. Then )(
jf

EMEC
m

 is 

monophonic and the monophonic wirelength of fm of G into 

H is given by 
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Where,  MEC fm (Ej)= r |V (G1)| −2 |E (G1)|+2, m ≥ 0. 

 

Proof: As Ej , j = 1,2,…,p are edge cuts of H,
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there are ‘m’ edges (x,y) ∈ Gi, i = 1,2; the monophonic path 
 )(),( yfxfP

mmfm in H has exactly two edges in Ej. 

Therefore, the monophonic edge congestion is increased by 2m 

from the edge congestion of Ej. Also the monophonic path

 )(),( yfxfP
mmfm  in H has exactly one edge in Ej for every 

 (x,y)∈G with x∈G1 and y∈G2. Hence 

mTEMEC
jfm

2)(  .  

Where |T| = r |V (G1)| −2 |E (G1) by Lemma 2 in [9].  

Therefore, ECfm is monophonic as G1 is maximum in G. The edge 

cuts Ej, j = 1, 2, p form a partition in H. Thus, we write 
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3. Monophonic wirelength on circulant net-

works 

Definition 3.1:A circulant undirected graph denoted by G(n, ±S) 

where S  {1,2,3,…,[n/2]} ,n ≥ 3 is defined as a graph consisting 

of the vertex set V ={0,1,2,…,n-1} and the edge set E={ (i,j) : |i-

j|≡s(mod n), s∈ S} “ as defined in [5]”.  

To present the monophonic wirelength on circulant networks, we 

consider the monophonic embedding fm from the circulant graph 

G[2n, ±S], S  {1, 2, 3… n}, into the grid M (n×2), n ≥2. 

3.1. Monophonic algorithm 

Consider the monophonic embedding fm : G[2n, ±S]→M [n×2]. 

Let V(G [2n, ±S]) = {0, 1, 2… 2n-1} and these vertices are la-

beled as the vertices of a cycle in clockwise.Let V(M [n×2]) = {0, 

1, 2… 2n-1}, these vertices are named as follows 

• In Column 1 of M [n×2] the vertices {0, 1, 2… n-1} are 

named in an ascending order from the top.  

• In Column 2 of M [n×2] the vertices {n, n+1…, 2n-1} are 

named in an ascending order from the top. 

 

Lemma 3.2:For n ≥2, the rows of the grid M[n×2] is defined as 

Ri = {i-1, n+i-1} ; i = 1,2,…,n are maximum subgraphs in 

G[2n;{1,2,…,n}].  

The proof holds by Theorems 3.3 and 3.4 “as proved in [6]”. 

 

Lemma 3.3:For j = 1,and n ≥ 2, the column of the grid M[n×2] is 

given by Cj ={0,1,2,…,n-1}, which is maximum in 

G[2n;{1,2,…,n}].  

The proof  follows from Theorem 3.3 and 3.4 “as proved in [6]”. 

 

Theorem 3.4:Let fm : G[2n, ±S]→M [n×2] be a monophonic 

embedding. For n ≥ 2, the wirelength of G[2n,±S], 

S { 1, 2…, n} into M [n×2] induced by fm is monophonic.  

 

Proof: Let Ai1 and Ai2 be the components of M[n×2] \ Hi , Hi be 

the horizontal edge cut of the grid M[n×2] .Then the vertex set of 

Ai1 is the rows of the component Ai1. (ie) V(Ai1) is Ri ,i 

=1,2,…,2n-1. Refer Figure 1(a). Let Bj1 and Bj2 be the components 

of M [n×2] \ Wj,Wj be the vertical edge cut of the grid M [n×2]. 

Then the vertex set of Bj1 is Cj, j = 1. Under fm let Gi1 = 

 
1

1

im
Af   and Gi2=  

2

1

im
Af  . Since the horizontal edge cuts 

satisfy the properties stated in Lemma 2.5 and are maximum in G, 

)(
if
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is monophonic for i=1,2,…2n-1. For this see 

Figure 1(b). Let Gj1 =  
1

1

jm
Bf   and Gj2=  

2

1

jm
Bf  . Moreover 

the vertical edge cut Wj satisfies the properties stated in Lemma 

2.5. Also by Lemma 3.3, Gj1 is a maximum sub graph induced by 

the vertices of Cj, j = 1. Hence by Lemma 2.5, )(
jf

WMEC
m

is 

monophonic for j=1.Thus ),( HGMEC
mf

is monophonic. 

 

 
Fig. 1:(a) Each Hiis an edge cut of the grid on M [6×2] which disconnects 

M [6×2] into two components Ai1and Ai2 where V (Ai1) Is Ri. (b) Each Wjis 
an edge cut of the grid on M[6×2] which disconnects M [6×2] into two 

components Bj1and Bj2 where V (Bj2) is Cj. 

 

Theorem 3.5:The monophonic wirelength of an r-regular graph 

G with 2n vertices into the grid M[n×2], n≥2 is given by MWL(G, 

M[n×2]) = WL (G, M [n×2]) +2m 

 

Proof: Let fm : G → M [n×2] be a monophonic embedding. Since 

each edge (x, y) of G is mapped to a monophonic path between 

fm(x) and fm(y) in M[n×2], the edges of G are transformed into 

edges vertically or horizontally in M[n×2].Therefore there exists 

horizontal edge cuts Hi , i= 1,2,…,2n-1 in M[n×2]. As there are no 

monophonic paths  )(),( yfxfP
mmfm

, for every (x, y)∈Gi, i 

= 1, 2; having edges in Hi , the monophonic edge congestion of Hi 

is equivalent to the edge congestion of the edges of Hi .Also there 

exists a vertical edge cut Wj , j = 1. For m ≥ 0, there are m edges 
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(x,y)∈Gi , i = 1, 2; the monophonic paths  )(),( yfxfP

mmfm

have exactly two edges in Wj and so the monophonic edge conges-

tion of the edges of Wjis increased by 2m from the edge conges-

tion of the edges of Wj. Hence the monophonic wirelength of each 

row equals the wirelength of each row of M[n×2] and the mono-

phonic wirelength of each column differs by 2m from the wire-

length of columns of M[n×2]. 

Therefore MWL(G,M[n×2]) = WL(G,M[n×2])+2m 

 

Theorem 3.6:MWL(G[2n,±1] , M[n×2])= WL(G[2n,±1], 

M[n×2])= 2(2n-1). 

Proof: As there is no edge (a ,b) ∈ Gi, i = 1, 2; the monophonic 

path  )(),( bfafP
mmfm

∈ M[n×2] has exactly two edges 

in Ej , m=0. Therefore, the result follows from Theorem 3.5. 

4. Monophonic embedding algorithm 

4.1. Aim 

To find a monophonic embedding fm : G→   H that produces the 

monophonic wirelength ),( HGMWL
mf

, where G is the fami-

ly of circulant graph with 2n vertices of r-regular and H is the 

family of grid M[n×2],n ≥ 2. 

4.2. Monophonic algorithm 

i) Label the vertices of G[2n,{1,2,3…,n-1}] as a cycle from 

0,1,2,…,2n-1  

ii) Label the vertices of M[n×2] as follows: 

• In Column 1 of M [n×2] the vertices {0, 1, 2, n-1} are la-

beled in an ascending order from the top.  

• In Column 2 of M [n×2] the vertices {n, n+1…, 2n-1} are 

labeled in an ascending order from the top. 

Case (i): Input:  

Pre-image: The family of circulant graph G[2n,{1, 2, n-1}], n ≥2.  

Image: The family of grids M[n×2] n ≥ 2. 

Output: A monophonic embedding fm of G[2n,{1,2,3…,n-1}] into 

M(n×2) given by fm(x) = x with monophonic wire length 

MWL(G[2n,{1,2,3,…,n-1}] , M[n×2]) = WL+2(n-1)(n-2) ,n≥2. 

Case (ii): Input:  

Pre-image: The family of circulant graphs G[2n,{1, 2, n-2}], n ≥ 3. 

Image: The family of grids M[n×2], n≥ 3. 

Output: A monophonic embedding fm of G[2n,{1,2,3…,n-2}] into 

M[n×2] given by fm(x) = x with monophonic wire length 

MWL(G[2n,{1,2,3,…,n-2}], M[n×2]) = WL+2n(n-3) ,n≥3. 

Case (iii): Input:  

Pre-image: The family of circulant graphs G[2n,{1, 2,…, n-4}], n 

≥ 5.  

Image: The family of grids M[n×2],n ≥ 5. 

Output: A monophonic embedding fm of G[2n,{1,2,3…,n-4}] into 

M[n×2] given by fm(x) = x with monophonic wire length 

MWL(G[2n,{1,2,3,…,n-4}], M[n×2]) = WL+2(n+2)(n-5) ,n≥5. 

Case (iv): Input:  

Pre-image: The family of circulant graphs G [2n, {1, 2, …,n}], n 

≥2. 

Image: The family of grids M [n×2], n ≥ 2. 

Output: A monophonic embedding fm of G[2n,{1,2,3…,n}] into 

M[n×2] given by fm(x) = x with monophonic wire length 

MWL(G[2n,{1,2,3,…,n}], M[n×2]) = WL+2(n-1)(n-2) ,n≥2. 

Proof: For all the above Cases (i) to (iv), using Theorem 3.4, the 

mapping fm is monophonic and by Theorem 3.5, the results fol-

lows. 

5. Conclusion 

In this paper, we applied the monophonic idea on graph embed-

ding f of two graphs from G into H. Using this concept; we have 

obtained a modified result in the wirelengthproblem, which does 

not exist. A new technique was found from the existing one. We 

have taken all possible family of circulant networks under study 

and applied the monophonic algorithm on f and based on the sta-

tistical data we obtained we came to the conclusion which yields 

the above findings. 
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