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Abstract 
 

It has been proved that the solution of the quasi-classical kinetic equation for Bose and Fermi statistics can be represented in the general 

form, using the relaxation time approximation. The general solution found for the distribution function  , ,f tr p  helps calculate any non 

– equilibrium characteristics of metals, magnets, and dielectrics in any order of the perturbation theory according to the relaxation time  . 

 
Keywords: Quasi-Classical Kinetic Equation; Quasi-Equilibrium Distribution Function; Heat – Conductivity; Current Density. 
 

1. Introduction 

The problem in question appeared in the result of studying mono-

graphs and original articles [1-6] relating to application of the 

quasi-classical kinetic equation (QKE for short) to various prob-

lems of theoretical physics: calculation of the thermal conductivity 

coefficient, susceptibility, conductivity of metals, etc. It could be 

that we lost sight of some paper, which are related to the solution 

of the problem of the finding precise common decision of  the 

quasi-classical kinetic equation (QKE) in the “tau approximation”. 

However, we quite realize the fact that this problem hasn’t been 

found reflected in an external literature, that’s why the purpose of 

this paper is the elimination of this problem. In this paper, we 

don’t touch upon subject of the well-known and popular specific 

methods of finding solutions of the linear differential equations in 

partial derivatives, such as expansion in Fourier integrals, Laplas 

integrals and the wavelet integrals, which are used in a solving of 

the different problems in the theory of nonequilibrium phenome. 

Also, we don’t touch upon subject of the similar purely mathemat-

ical approaches, which are related to the application other integral 

transforms and other useful differential equations, when solving 

the linear differential ones. We would like to pinpoint our atten-

tion upon other, but very effective representation of the general 

solution of QKE in the “tau approximation”. As null approxima-

tion, we have only the function of distribution of particles or (qua-

si-particles), which is denoted as  0 , ,f tr p . This statement means 

that we hypothetically assume fulfillment of condition, which is 

imposed on all the relaxation times, existing in these subsystems is 

to strengthen the inequality 
ss s   , where s  index – some 

subsystem of particles (for example, electrons, photons, etc.) or 

quasi-particles (for example, phonons, magnons, etc.), the relaxa-

tion time  
ss  – its own the same name inside relaxation time. 

Shaded relaxation time refers to any kind of interaction between 

the oppositely charged participles or (quasi-particles), it means 

between electrons and phonons, for example. 

2. The generalized solution QKE by “tau ap-

proximation” 

We are writing QKE for the function of distribution of  Fermi – 

particle  , ,f tr p   in the general form 

 
f f

f L f
t

 
   

 
F u

p

,                                                          (1) 

where u   - the electron’s  velocity and  
 

e
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 
  

 

u H
F E   

Lorenz’ force acting on the electron in the electromagnetic field, 

H  the intensity of magnetic field,  E  the intensity of elec-

tric field, c  the speed of light in vacuum, e   the electron - 

charge. We will find the solution of equation (1) in the expanded 

form 2
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     , where    the 

small parameter  (see below). The quasi – equilibrium function of 

the distribution of Fermi – particle can be represented as 
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r p , where the electron - energy is 

 
2

2

p

m
 p ,   the chemical potential,  ,T tr   the quasi – 

equilibrium temperature, which depends on the coordinates and 

the time. Therefore, our problem is to find the exact different 

0f f , which is a full addition  2

1 2 ...f f f      to the qua-

si – equilibrium distribution function. We are writing the collision 

integral in the right side of the equation (1) in the following form 

  1

p

f
L f




   , where p   the relaxation time of the elec-
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tron with the impulse p , which connected with its interaction 

with phonons. In the result, we are getting from the equation (1) 

the following one 

                                                                             

0 0
1 0p

f f
f f

t
 

  
     

  
F u

p
.                                           (2) 

Substituting further the solution (6) in the equation (1) we are 

finding the following amendment 

                                                 

2 1 1
2 1p

f f
f f

t
 

  
     
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F u

p
.                                (3) 

Substituting (2) here, we are finding that   
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                        (4) 

 

Since 0 0 0 0 0
0, ,

f f f f f f
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u
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, we can 

easy get the linear approximation on 
0T T T    from (4)   
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                    (5) 

As a result of a simple grouping of relevant summands the approx-

imation solution (2) and (3) can be represented  as  
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                                   (6) 

We would like to point up that the formula (6) is obtained in the 

second order of the time of relaxation on p  and the function of 

distribution is the equilibrium function with constant and homo-

geneous temperature 
0T , i.e. 

 

0

0

1

1

p

T

f

e

 




. In the opinion of 

many authors seeking the approximate solutions for explanation 

the experimentally found different weakly anomalous properties 

of the metal, the solution (6) in the second – order approximation 

on the relaxation time p
 
must provide an answer for possible 

amendments to any of the physical characteristics of the metal. 

However, it turns out not so exactly, we will make sure of it after 

finding the exact solution of QRE by “tau approximation”.  Note, 

the symbols of the quasi – equilibrium function of the distribution 

and the equilibrium function are the same, but this fact does not 

cause confusion. As we could see from (6) the parameter  must 

be proportional to the time of the relaxation p . So, the n-th term 

of series must be proportional to the time  
n

p
in each order in the 

method of sequential approximations. The general iterative formu-

la in the series it easy to write the following expr.  
2

2 2

2 1 0p pf f f
t t

  
      

           
      

F u F u
p p

, it is 

obvious that,  

  01

n

nn n

n pf f
t

 
  

     
  

F u
p

                                 (7) 

Therefore, the exact solution of the quasi – classical kinetic equa-

tion in “tau approximation” can be written as the sum of an infi-

nite number of the summands  

                               

 2
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0
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n
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p

n
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t

  
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  
 F u

p

,                    (8) 

where the relaxation time p  is traditionally determined by the 

following approximate formula

 

 

 

0

1

p

p

p p
f f

L f

f



 


   ,                                                        (9)  

In which the right side is the functional derivative of the collision 

integral of distribution function. It is clear to see that the solution 

(8) in the approximation (9) is approximate, but we could predict a 

number of effects, which in the first approximation on the relaxa-

tion time couldn’t demonstrate themselves. For the practical and 

more convenient application of the formula (8) it is conveniently 

written it in the following form  
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,                  (10) 

 

where for the linear operator was used the symbol 

ˆ
pA

t


  
    
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F u

p

. As it can be seen from (10), the written 

expression is the alternating series of the geometric progression 

with the ratio Â . So, we can write the series by the following 

integral  

                                       

 
 

 
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0 0 0
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1ˆ1 , ,
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n
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
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
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.                  (11) 

We are accepting (11) to the shorthand notation for the operators: 

ˆˆ ˆ, ,p p pB C D
t

  
 

   
 

F u
p

,  i.e. ˆ ˆˆ ˆA B C D   . Using a 

know rule  
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,   

 

where the expressions in the square brackets are the commutators 

of the corresponding operators and the operator Â  is the linear 

derivative operator, namely, the operator Â  must get the all 

property of the operator of the translation, for example 

   e  


  
a

r r r a , where a  some constant vector, we are 

getting immediately the exact solution in the following integral 

form                          
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2 2 2

0
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, ,
p p p
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tf e e e e f d
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In the accordance commutations rules we are getting the following 

commutators  
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Substituting their into (12),  we are founding that   
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where F the index of the gradient operator means that it is acting 

on its right the force F . And, hence  
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Finally, calculating the last commutator in the exponent we are 

getting that  
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In the case of homogeneous fields F force does not depend on the 

coordinates, the formula (14) is simplified. So, we are getting that     
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Through the substitution in the (15) the quasi – equilibrium distri-

bution function 
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  we are getting easy for Fermi – 

particles  
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Analogical distribution take place and for Bose – particles.  

 

3. The application of the formulas (15) and (16) 

We would like to consider some examples of calculation to 

demonstrate the functional ability of the formulas (15) and (16). 

First, we are starting with the current density. According to the 

definition, the electron current is calculated by this formula 
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,                                                                    (17) 

where the factor “2” is finding, due to the degeneracy of states on 

the spin election. In the case when it is considered the interaction 

of the spin with the magnetic field, the expression (17) is disported 

into the sum of the two summands, one of which considers the 

polarization of the electron along the magnetic field, and the other 

is not. Considering the magnetic field is constant and typing the 

abbreviation  
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 , where    the angle 

between the fixed vector F  and the impulse p . Choosing the 

direction of the current density along the vector F  and using the 

common solution (15), we get it of (17)  
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After the integration of the parts of the inner integral, we are get-

ting that   

                                         

4 0

2 3

0 0 0

cos sin
8

fe
j e d d p d

m



     
 

 

 
 

  
.                              (18) 

Since we are learning a degenerate electron gas, in the accordance 

with the general properties of the Fermi distribution function, we 

are entitled to assume that the partial derivative of the energy dis-

tribution function is approximately equal to the delta function,  i.e.  
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the equation (18), we are getting that 
2 2 2 2cos 2 sinp m F        . Due to this fact and the great 

property of delta function the triple  integral is simplified to the 

double integral  

                 

 
4

2 2 2 2

2 3

0 0

cos sin cos 2 sin
8

F

e
j e d F m F d

m



          




   
. 

By the designation cosx   the integral on x  is founded in the 

symmetrical limits and we will get only the x odd - degree. It 

means as a result we are getting the following one  

 
1

2 2 2 2 2 2 2 2

2 3

0 0

2 2 2 2 2 2 2

2 2

2

F

F

e F
j e d x F x m F

m

m F F x dx


      



    



   

  

  .       (19) 

Introducing one more designation 
2 2 2

2 2 22 F

F

m F

 


  




, we are 

finding that      

                                      

   
3

2 2 2 2
2 3

0

2 F

e F
j e m F J d

m


     





 
,                           (20) 

where 
   

1

2 2 2

0

1 2 1J x x x dx    
. We can see that if 

 0 0   , it is the classical expression for the current densi-

ty from the (20)  
3

2 33

Fe Fp
j

m




 .                                                                              (21) 

But the most surprising thing is elsewhere. As a result of the inte-

gral (21) of calculation, we are getting the following 

   
3

2
1

1
3

J    . Substituting this expression in (20), we are 

getting the exact formula for the current density as in (37)!  It 

means that in any order of the perturbation theory on the relaxa-

tion time  , the current density is 
3

2 33

Fe Fp
j

m




 . Using the differ-

ential law of Ohm j E , where    conduction, we are 

getting well-known formula of  Drude 
2 3

2 33

Fe p

m





 . Here we 

are using the equality F eE . Thereby, we have shown that the 
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formula of Drude is exact one and it has no any corrections for the 

electron degenerating gas in a precise accounting of all the sum-

mands of the iterative solution for the relaxation time  .  

4. Conclusion  

1. The exact expression for metal conductivity in all orders 

of the perturbation theory according to the relaxation 

time   has been found. It has been proofed that the 

Drude’s formulae in tau approximation is exact. Its has 

no additions according to relaxation time; 

2. The exact expression for the thermal conductivity coef-

ficient of metals has been calculated; 

3. The general formula of conductivity in the general non-

linear case has been found when the amplitude of the ex-

ternal oscillating field is not small.  
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