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Abstract 
 

The paper indicates that the application of roughness models and the theories of contacting rough surfaces developed by Greenwood-

Williamson and N.B. Demkin for solving the problems of hermetology leads to significant errors. This is explained by much greater con-

tact pressures than for the tribology problems, by describing only the initial part of the reference surface curve, the lack of allowance for 

the plastic extrusion of the material. A brief review of methods for describing the introduction of a sphere into an elastoplastic reinforced 

half-space is given. The properties of the elastoplastic reinforced material are described by the power law of Hollomon. To describe the 

indentation and flattening of single spherical asperity, the results of finite element modeling are used. The cases of contacting a rigid 

rough surface with an elastoplastic half-space and a rigid smooth surface with a rough surface are considered. To determine the relative 

contact area, the discrete roughness model is used in the form of a set of spherical segments distributed along the height in accordance 

with the curve of the reference surface. 
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1. Introduction 

At present, the models of roughness and the theory of contacting 

of rough surfaces developed by Greenwood-Williamson [1], N.B. 

Demkin [2] and their followers. However, the use of such models 

to solve the problems of hermetology leads to significant errors, 

which is explained by the following: 1) contact pressure of sealing 

is about 1-2 orders of magnitude higher than that of friction; 2) in 

the sealing joint, contacting of all asperities is possible and it is 

required the description of the entire profile bearing curve and not 

only its initial part; 3) extrusion of the material into the intercon-

tact space under elastic-plastic contact is not taken into account. 

Therefore, to describe the sealing joint, a rough surface model that 

adequately describes the real surface and corresponds to the entire 

bearing curve and not just its initial part. In addition, in order to 

improve the accuracy of the calculation of the contact characteris-

tics in a discrete model of a rough surface, the real distribution of 

microroughness dimensions must be taken into account. 

Tightness of sealing joints is ensured by loading their sealing sur-

faces with contact pressures and depends to a large extent on the 

contact interaction of rough surfaces, which is characterized by the 

type of contact, the convergence of surfaces, the relative contact 

area and the gap density in the joint [1]. To seal media with high 

energy parameters (pressure over 40 MPa and a temperature above 

300oC), metal materials are mainly used.  

To calculate the contact characteristics listed above, a discrete 

roughness model is widely used in the form of a set of spherical 

segments whose height distribution corresponds to the bearing 

surface’s curve of the rough surface [1], for which a regulated 

incomplete beta function is used. In most cases, when contacting 

metallic rough surfaces, the contact is elastoplastic [2], therefore, 

in determining the contact characteristics, it is necessary to take 

into account the parameters of material hardening [3]. In this case, 

it is possible indentation spherical asperities into a less solid sur-

face or flattening of spherical asperities by a harder surface. In [3], 

the author believes that the parameters of the contact interaction in 

these cases are approximately the same. With purely elastic de-

formation in contact, the validity of such an approach is undoubt-

ed, but with elastoplastic deformation it is not obvious and needs 

additional investigation [4]. In this connection, it is of practical 

interest for the problems of hermetology to compare the depend-

ences of the relative areas of the contact on the load during the 

indentation and flattening of spherical asperities of rough surfaces. 

Since the contact of two rough surfaces can be regarded as the 

contact of an equivalent rough surface with a smooth surface [3], 

in the present paper we compare the contacts of a rigid rough sur-

face with an elastoplastic half-space and a rigid smooth surface 

with a rough surface. First, consider the indentation and flattening 

of single spherical asperities. 

2. Contacting the single spherical asperity 

A detailed analysis of the methods for calculating elastoplastic 

deformation during the indentation of spherical asperities was 

considered in [3], where it was noted that the regularities of elas-

toplastic contact have not been sufficiently studied, and some 

proposed solutions require refinement and improvement. One of 

the important problems in this case is the consideration of harden-

ing of the material and the description of the effects of "sink-in / 

pile-up" (elastic punching and plastic material displacement). 

With the growth of the applied load, the region of limited elasto-

plasticity and the region of developed elastoplasticity are distin-

guished [6, 7], but there is no common opinion about the bounda-

ries of the regions. Therefore, a description of the elastoplasticity 

regions by a single expression is of some interest. 
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In the description of elastic-plastic hardening material used by the 

Hollomon’s power law.  
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where n  is the exponent of hardening; Eyy  , y  is the 

yield strength, E  is the elastic modulus.  

The value of the hardening exponent can be determined from the 

parameters of the conditional tension diagram according to [3]: 

The approach of the authors for describing the indentation of the 

sphere in various elastic-plasticity regions by a single expression 

is described in [8, 9]. The essence of the method is the application 

of the kinetic indentation diagram and the similarity method for 

deformation characteristics. In this case, the concept of "plastic 

hardness" [10] is used, as the resistance characteristics of the ma-

terial of contact plastic deformation. Plastic hardness is represent-

ed in the form: 

 

yyh nKHD  ),( ,            (2) 

 

where ),( nK yh   is the parameter defined by the "double inden-

tation" method [3] using the results of finite element analysis, the 

introduction of a sphere into an elastoplastic hardening half-space 

[11, 12]. 

In [8], in order to generalize the results of the study of the depend-

ence P–h (force - displacement) are reduced to the form k–  , 

where yPPk  , yhh . Critical force yP  the value of the 

indentation yh  correspond to the appearance of plastic defor-

mation in the near-surface layer. According to [13], this occurs 

when the maximum pressure in the center of the contact area 
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where 613.1yK  for Poisson's ratio 3.0 . 

Then when the sphere is indented by the radius R critical force yP  

and the value of the indentation yh  are equal 
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where  Eyy , E  is the reduced modulus of elasticity. 

A simpler way to calculate the contact characteristics for the in-

dentation of a sphere with radius R is the expression from [12]: 
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where epP  is the applied force, h is the the value of the indenta-

tion,  nAA y , ,  nBB y , , Rhh  . 

The dependences obtained in [9] k –   for different elastic-

plasticity regions are represented in the form 
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To determine the depth ch , on which the sphere comes into con-

tact with the material of the half-space, the results of [14] should 

be used: 
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where  nMM y , ,  nNN y ,  . 

The actual contact area for the indentation 

 

22 RhcAr  . (8) 

 

A number of works [15-17] used the empirical Mayer law to ac-

count for material hardening during elastoplastic contact, which 

establishes the relationship between the force when the sphere is 

pressed in and the diameter of the print. In [16, 17], the influence 

of the single physico-mechanical properties of real materials on 

the features of the formation of contact elastoplastic deformations 

is emphasized. However, it explicitly features of the elastoplastic 

hardening body are not taken into account, which is a disad-

vantage of this approach. This defect was eliminated in [18, 19], in 

which the authors used the interrelation of the Mayer index with 

the hardening exponent [20, 21].The obtained dependences are in 

good agreement with the results of finite element analysis [12] and 

experimental data [22]. 

The flattening of the sphere by a rigid flat surface is less well stud-

ied. Basically, finite element modeling is used for this. For an 

elastically ideally plastic material, the authors of [23, 24] proposed 

convenient expressions for practical use 
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where iB , i , iC , i  are the constants for different ranges of 

values yhh ; the critical values used in [24] yP  and yh  practi-

cally coincide with those determined from Eq. 4. 

The proposed approach was developed by the authors [25], which 

received a similar dependence for elastoplastic hardenable materi-

al described expressions (1).When the exponent of hardening 

changes from 0 to 1, the properties of the material vary from elas-

tically ideally plastic to elastic. 

Relative force when the sphere is flattened 
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where 

96081.007598.0)(11  nnBB , 

43352.110725.0)(11  nn , for 61  yhh ; 

68998.182815.0)(22  nnBB , 

21111.131831.0)(22  nn , for 1106  yhh . 

 

The actual contact area in the flattening 
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Where 

13173.101763.0)(11  nnCC , 

03997.104715.0)(11  nn , for 61  yhh ; 

94066.023235.0)(22  nnCC , 

14559.118325.0)(22  nn , for 1106  yhh . 

 

Eqs. 10-11 describe the corresponding characteristics for different 

regions of elastoplasticity and are similar in form to Eq. 6. 
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In what follows, in order to simplify the comparison of the charac-

teristics of the contact during the indentation and flattening of the 

sphere, we use Eq. 5, Eqs. 7-8 and Eqs. 10-11. 

Fig. 1 shows the dependence of the reduced contact area 

 2RAA rr   on the relative load P  during the indentation and 

flattening of the sphere for different values of the hardening pa-

rameters εy and n. 

 

a)  

b)  

Fig. 1. Dependencies PAr   for different values of hardening parame-

ters. 

 

3. Contacting the single spherical asperity 

 

We use the discrete roughness model given in [3]. The asperities 

can be represented in the form of a set of identical spherical seg-

ments of radius  max
2 2 RaR c  , base ca  and height maxR . 

To describe the curve of the support surface, we use a regularized 

incomplete beta function. The density function of the height dis-

tribution of the asperities is described by the expression: 
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where p and q are parameters of the beta-function, which are de-

termined by the height parameters of the rough-

ness;  qpps  ; s 1 . 

When using Eqs. (5), (7), (10) and (11) for the i-th asperity of a 

rough surface, it should be taken into account that 

 

 

  ,2

2

2

,
2

max
2

2
max

max













 



















cc

i

i

a

Ru

a

Ru

R

h

Ruh

 (13)

 

 

where ε is the relative convergence, u  is the initial distance to the 

vertex of the i-th asperity; number of vertices in the layer du  
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Summing up the efforts and the areas over all asperities with the 

indentation of a rough surface, we obtain 

 

 
 

.

,

,
2

2

max

1
1

0

32

max
12

1

max

R

a
f

f

fq
q

duu
u

a

Re

f
ER

aq

yc
y

y

q

y

c

n

AA

c

BA

q
cc











 























 














 (15) 

    























 











0

21
2

2

max
2

1
2

2
2 duu

u

a

R
M n

NN

c

N . (16) 

 

When the rough surface is flattened: 
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The condition for the transition of the boundary of the elasto-

plastic region 6yhh  in the Eqs. (10) and (11) for a separate 

spherical asterity in the Eqs. (17) and (18)  should be represented 

in the form 
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In Fig. 2 shows the relative contact area η relative to the relative 

load yqq  when a rigid rough surface is introduced into the 

elastoplastic hardened half-space and when the unevenness of the 

rough surface is flattened by a rigid smooth surface for different 

values of the hardening parameters εy and n. The values of the 

parameters of the curve of the reference surface: 5.3,5.3  qp . 

 

a)   

b)  

Fig. 2. Dependencies  q  for different values of hardening parame-

ters. 
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4. Conclusion 

 

1. As it follows from Fig. 1, the values of the reduced con-

tact area rA
 
during the indentation and flattening of the 

sphere differ insignificantly. And, depending on the combi-

nation of the values of the hardening parameters, the re-

duced contact area during the indentation can be more or 

less than when flattening. As the plasticity of the material 

increases (by decreasing the values of the parameters εy and 

n), the values of the reduced contact area increase. More 

effective is to reduce the value of εy. 

2. When the rough surface interacts with a smooth surface 

with the same load, the relative contact area during flatten-

ing is always greater than during the indentation. With the 

same adjustment parameters, the range of variation in the 

relative contact area is significantly less than the similar 

range of variation in the values of the reduced contact area 

of a particular asperity. 

3. An increase in the relative contact area improves the 

tightness of the joints. However, the effectiveness of this 

contact characteristic requires a comprehensive analysis in 

conjunction with another important contact characteristic - 

the density of gaps in the sealing joint. Such an analysis for 

indentation of a rigid rough surface into an elastoplastic 

hardened half-space is given by the authors of [3]. There-

fore, one of the problems of future research of the authors 

will be to determine the gap density in the joint when the 

asperity of the rough surface is flattened. 

4. An important problem of hermetology is to predict the 

tightness of joints with possible unloading of the sealing 

joint. Such investigations have been carried out for the case 

of the indentation of a rigid rough-hovered surface into an 

elastoplastic hardened half-space [26, 27]. A solution of a 

similar problem is also planned for the case of flattening 

roughness of a rough surface by a rigid smooth surface. 

References  

[1] Greenwood JA & Williamson JBR (1966), Contact of nominally 

flat sufaces. Proc Roy Soc, A295, 301-313. 

[2] Demkin NB (1970), Contacting rough surfaces. Nauka, Moscow. 
[3] Ogar PM, Gorokhov DB, & Kozhevnikov AS (2017), Contact  

tasks in hermetic sealing studies  of fixed joints. BrSU, Bratsk. 

242 p. 

[4] Ogar PM, Gorokhov DB & Elsukov VK (2017), Criteria for the 

appearance of plastic deformations at contacting rough surfaces 

of joints  in technological equipment. Systems Methods Technol-
ogies 3(35) , 32-39. doi: 10.18324/2077-5415-2017-3-32-39. 

[5] Kazankin VA (2016), Development of a technique for calculating 

the strength of fixed joints, taking into account the contact stiff-
ness of matched parts of close hardness. Dissertation, VolSTU, 

Volgograd. 145 p. 

[6] Lankov AA (2009), The probability of elastic and plastic defor-
mations during compression of metallic rough surfaces. Trenie-i-

smazka-v-mashinah-i-mekhanizmah 3, 3-5. 

[7] Voronin NA (2003), Theoretical model of elastic-plastic introduc-
tion of rigid sphere. Friction and Wear 24, 16-26. 

[8] Ogar PM &Tarasov VA (2013) Kinetic indentation application to 

determine contact characteristics of sphere and elastoplastic half-
space. Advanced Materials Research  664, 625-631. doi: 

10.4028/www.scientific.net/AMR.664.625. 

[9] Ogar PM, Tarasov VA & Turchenko AV (2013), Tribomechanics 

of elastoplastic contact. Modern technologies. System analysis. 

Modeling 2(18), 116-122. 

[10] Drozd MS, Matlin MM & Sidyakin YI (1986), Engineering 
methods for calculating elastoplastic contact deformation. Me-

chanical Engineering, Moscow. 

[11] Lee H, Lee J &  Pharr GM (2005), A numerical approach to 

spherical indentation techniques for material property evaluation. 

J Mech Phys Solids 53, 2037-2069. 

[12] Collin JM, Mauvoisin G & Pilvin P (2010), Materials characteri-

zation by instrumented indentation using two different approach-
es. Materials and Desing  31, 636-640. 

[13] Johnson K.L (1985), Contact mechanics. University Press, Cam-

bridge. 
[14] Hernot X, Bartier O, Bekouche Y, El Abdi R & Mauvoisin G 

(2006), Influence of penetration depth and mechanical properties 
on contact radius determination for spherical indentation. Int J of 

Solids and Struct  43,  4136-4153. 

[15] Myshkin NK & Petrokovec MI (2007) Friction, lubrication, wear. 
Physical bases and technical applications of tribology. Fizmatlit, 

Moscow. 

[16] Bolotov AN, Meshkov VV, Sutyagin OV & Vasiliev MV (2013), 
Study of elastoplastic contact of a spherical indenter with metals 

and solid lubricating coatings: Part 1. Critical loads. Friction and 

Wear  34, 1-5. 
[17] Bolotov AN, Meshkov VV, Sutyagin OV & Vasiliev MV (2013) 

Study of elastoplastic contact of a spherical indenter with metals 

and solid lubricating coatings: Part 2. Contact characteristics. 
Friction and Wear  34, 129-133. 

[18] Ogar P & Gorokhov D (2017),  Meyer law application to account 

of material hardening under rigid spherical indentation. In: Proc. 
of 22nd int. conf. «MECHANIKA 2017». KUT, Kaunas, 287-290. 

[19] Ogar P, Gorokhov D & Belokobylsky S (2017), The elastic-

plastic contact of a single asperity of a rough surface. MATEC 
Web of Conferences 129, 06017. doi: 

10.1051/matecconf/201712906017. 

[20] Bulychev SI (2010), The transition from the indentation diagrams 
to the tensile diagrams with allowance for the hardened surface 

layer. Deformation and fracture of materials 2, 43-48. 

[21] Bulychev SI (2011), Hardness and hysteresis at the yield strength. 
Deformation and fracture of materials 1, 41-45. 

[22] Matlin M, Kazankina E, Kazankin V (2009), Mechanics of unitial 

contact. Mechanika  2, 20-23. 
[23] Etision I, Kligerman Y & Kadin Y (2005), Unloading of an elas-

tic–plastic loaded spherical contact. Int J Solids Struct,  42, 

3716–29. 
[24] Kogut L & Etision I (2002), Elastic–plastic contact analysis of a 

sphere and a rigid flat. ASME J Appl Mech , 69, 657–62. 

[25] Zhao JH, Nagao S & Zhang ZI (2012), Loading and anloading of 
a shtrical contact: From elastic to elastic-perfectly plastic materi-

als. Int. J. of Mech. Ssience,s 56, 70-76. 

[26] Ogar PM & Gorokhov DB (2017), Influence of Materials Har-
denability Parameters on the Machine Parts Characteristics after 

Unloading. Key Engineering Materials 723, 369-375. 

 doi: 10.4028/www.scientific.net/KEM.723.369. 
[27] Ogar P, Gorokhov D, Ugryumova E (2017), Mechanics of un-

loading of a rough surfaces pre-loaded joint. MATEC Web of 

Conf, 129, 06016. doi: 10.1051/matecconf/201712906016. 
 

https://www.google.ru/search?hl=ru&tbo=p&tbm=bks&q=inauthor:%22K.+L.+Johnson%22
https://doi.org/10.1051/matecconf/201712906017
https://doi.org/10.1051/matecconf/201712906017

