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Abstract 
 

The  systematic application of Voronetz vector-matrix equations in Routh variables is developed to describe the dynamics of non-

holonomic systems with inhomogeneous constraints. The obtained form of the equations of disturbed motion in problems of stability and 

stabilization makes it possible to analyze the structure of the model for a reasonable choice of the application of control actions. The 

developed technique makes it possible to automate the solution of problems of stabilization of operating modes of complex technical 

devices. 
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1. Introduction 
 

Despite the fact that in recent decades the theory and methods for 

solving stabilization problems have been intensively developed, 

most of the known results pertain to the problem of stabilizing the 

motion under investigation to asymptotic stability with respect to 

all phase variables. 

At the same time, for many practically important systems, there 

is no need for such stabilization, it is sufficient to ensure non-

asymptotic stability of the unperturbed motion. In addition, for 

certain classes of steady-state motions, it is the non-asymptotic 

stability that is most easily achieved. This is the case, in particular, 

in problems of stability and stabilization of equilibrium positions, 

and in many cases - stationary motions of non-holonomic systems. 

Proceeding from this, the formulation of the problem of stabiliza-

tion of steady motions to non-asymptotic stability and the devel-

opment of rigorous methods for their solution with the fullest pos-

sible use of the properties of the stability of proper motions to re-

duce the dimension of the vector of stabilizing control and the vol-

ume of measuring information sufficient for its formation are rele-

vant and important.  

The steady motion of mechanical systems can be divided into 

two categories, for which the stabilization problems have essential-

ly different character. To one of these we classify those motions 

which, in principle, can not be stabilized to asymptotic stability 

with respect to the first approximation in all variables. Such a situa-

tion occurs in problems of stabilizing the equilibrium positions of 

nonholonomic systems with linear homogeneous constraints (and, 

under certain conditions, also stationary motions of non-holonomic 

systems). In problems of this category, the preservation of critical 

variables after stabilization does not depend on our desire. 

For another category of steady motions-stationary motions of 

holonomic systems, as well as equilibrium positions of non-

holonomic systems with inhomogeneous constraints and (in the 

general case) stationary motions of such non-holonomic systems-in 

many cases, in principle, stabilization can be ensured up to asymp-

totic stability with respect to the first approximation with respect to 

all phase variables. But for many applied problems of this category 

it is sufficient to achieve non-asymptotic stability. In this case, it is 

possible to solve the problem with preservation (already at our will) 

after stabilizing some of the critical [1-3] variables. This approach 

makes it possible to reduce both the dimension of the control prob-

lem and the dimension of the estimation system. 

In problems of the first category, the critical variables are the 

coordinates whose velocities are dependent on the strength of the 

constraint equations. Since the non-holonomic constraints in the 

problems considered here are not violated, and their equations, as a 

rule, have a rather simple form, there are no special problems con-

nected with the construction of mathematical models of problems 

of this category. 

When the preservation of critical variables is arbitrary enough, 

there is, generally speaking, the problem of the accuracy of con-

structing the mathematical model of the problem, connected with 

the choice of those variables that are left critical. The isolation of 

critical variables and the very possibility of solving the stabilization 

problem by the method developed here are determined in each 

particular case by the extent to which such a model is acceptable. 

The application of nonlinear vector-matrix Voronetz equations in 

Routh variables [4-5] to the modeling of the dynamics of non-

holonomic systems with inhomogeneous constraints is discussed in 

this paper. This form of the mathematical model allows us to ana-

lyze the structure of the equations of disturbed motion in the study 

of stability and can serve as the basis for the development of vari-

ous methods of stabilizing steady-state motions. The use of meth-

ods of analytical mechanics is proposed to simplify the study of 

stability and stabilization due to the rational choice of the type of 

variables, forms of equations, linear subsystems and, accordingly, 
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linear control actions. In the presence of zero roots, stability for a 

complete nonlinear system closed by the control found follows 

from the Lyapunov-Malkin theorem [2] when the system is reduced 

to a special case. The developed methodology allows the most 

complete use of stability properties with respect to some variables 

of the system itself and automates the solution of stabilization 

problems of steady motions in different software environments 

[6,7] for complex technical devices. The control law, and the coef-

ficients of the estimation system for the systems with incomplete 

information, are found by solving the corresponding linearly quad-

ratic problems by Krasovskii's method [8] for an isolated subsys-

tem that does not include critical variables corresponding to zero 

roots.  

2. Vector-matrix Equations of Motion in the 

general case. 

We consider a nonholonomic system whose position is determined 

by the generalized coordinates ,,,1 nqq   and the generalized 

velocities are connected by m non-integrable nonhomogeneous (in 

contrast to [9,10]) constraints 

)()()( qBqqBqqBq rr   
       (1) 

Here and below, summation is carried out over repeated indices; 
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Suppose that the system is under the action of potential forces with 

energy П(q) and nonpotential generalized forces 
),(

~
qqQw


(This 

may include control forces) related to the coordinates. Let us as-

sume that in some open region of the phase space the potential 

energy,  the coefficients in the expression for the kinetic energy and  

in the constraints equations are at least twice continuously differen-

tiable with respect to q, and the nonpotential generalized forces are 

continuously differentiable with respect to ii qq ,
 and the quadrat-

ic part of the kinetic energy Is a positive definite function of the 

velocities. 

Suppose that the kinetic energy, the potential energy П(q) and the 

constraints coefficients Bμi(q), Bμ(q) do not depend explicitly on 

time. Let the kinetic energy have the most general form (compare 

[9,10]) 
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In accordance with the different nature of the dependence of the 

kinetic and potential energies, the coefficients of the constraint 

equations, the nonpotential generalized forces, and also the type of 

connections (Chaplygin [11, 12] or not), the vector of generalized 

coordinates is divided into 4 vectors. It is possible to subdivide this 

vector into 5 vectors. The need to introduce the fifth vector compo-

nent is due to the fact that the introduction of pulses along all the 

cyclic coordinates turned out to be not always beneficial [13]. 

 q'=(q1,…,qn);  α'=(q1,…,qk); β'=(qk+1,…,qn-m);   s'=(qn-m+1,…,qn);      

δ'=(qn-m+1,…,qn-m+l);  h'=(qn-m+l+1,…,qn);     q’=  (α', β', δ',h’); 

In the matrices of the kinetic energy coefficients and the coeffi-

cients of the coupling equations, submatrices of the corresponding 

dimensions are distinguished, using which, using the known tech-

nique, after excluding the dependent velocities, one can introduce 

impulses and the Routh function  
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Introducing standard expressions 
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We obtain the Voronets equations in the Routh variables 
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 (2)                 

Analytic difficulties in the construction of equations of perturbed 

motion, the cumbersome nature of these equations and the compli-

cations of their transformation and analysis of their structure for 

non-holonomic systems, as compared with analogous problems for 

holonomic systems, increase substantially. To a large extent, these 

complications are associated with the need to include the so-called 

non-holonomic terms in the equations of motion [11,12,14]:  
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Carrying out this one of the most laborious procedures in the com-

pilation of the equations of motion of non-holonomic systems, 

introducing some notation [13,15,16] and carrying out the neces-

sary transformations (provided that the last m-l constraints are of 

the Chaplygin type), we can obtain vector-matrix Voronets equa-

tions: 
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Equations (3) are the equations of motion of nonholonomic systems 

with inhomogeneous constraints in the Voronetz form in the Routh 

variables. These equations are deduced in the general case without 

assumptions about the presence of cyclic coordinates for systems 

with the most general form of kinetic energy under the action of 

potential forces with energy П(q) and arbitrary nonpotential gener-

alized forces that do not violate the conditions of existence and 

uniqueness theorems for solutions of differential equations. 

 

3. Vector-matrix equations of perturbed mo-

tion in a neighborhood of equilibrium. 

From equations (3)  it is possible to obtain relations  
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for the determination of equilibrium positions States of equilibrium 
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According to this, the equilibrium positions of non-holonomic sys-

tems with inhomogeneous bonds can be isolated. Consequently, in 

the problem of stability of the point (4) with respect to all coordi-

nates and independent velocities (unlike systems with homogene-

ous constraints), asymptotic stability with respect to the first ap-

proximation is possible. Introducing perturbations,  
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one can obtain the equations of perturbed motion with the first 

approximation selected in the neighborhood of equilibrium (4): 
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Here, the coefficient matrices for linear terms can be expressed in a 

known manner [5,13,15] in terms of the parameters of the system. 

Thus, in the absence of external non-potential generalized forces, 

the first approximation of the equations of the perturbed motion of 

nonholonomic systems with inhomogeneous constraints in a neigh-

borhood of the equilibrium position can contain terms that have the 

character of linear non-potential positional, dissipative accelerating, 

and gyroscopic forces. In the equations for perturbations of coordi-

nates whose velocities are dependent, linear terms over all phase 

variables can be present. 

Hence it is obvious that in the case of instability of equilibrium (4) 

there are sufficiently broad possibilities for its stabilization. Control 

actions can be applied both in coordinates    and in  .  In sys-

tems with differential constrains there is the possibility of stabiliz-

ing unstable motions by means of controls acting on coordinates 

h, , corresponding to the dependent velocities. The corresponding 

sufficient conditions for the solvability of stabilization problems 

can be obtained starting from the structure of equations (5), similar-

ly to the statements of the papers [17-19], where a large set of theo-

rems on the stabilization of unperturbed motion is proved, includ-

ing with incomplete information on the state. 

For example, we consider the case of the action of controls on a 

part of the coordinates corresponding to independent velocities. We 

rewrite the first approximation of the system of equations of the 

perturbed motion (5) in the form 
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A sufficient condition for the stabilizability of the equilibrium (4) 

of a non-holonomic system with inhomogeneous constraints to 

asymptotic stability with respect to the first approximation with 

respect to all phase variables, according to the structure of system 

(5) is the condition 

       mnQQQrank mn 2
~~~~~ 32  

if  the controls  

zmymxmxmxmU 5423121   

are applied over the whole vector  . 
In the case of stabilization of the equilibrium (4) of a non-

holonomic system with inhomogeneous constraints (1) by applying 

linear equations with respect to coordinates whose velocities are 

dependent on general relations by a sufficient condition for stabi-

lizability to asymptotic stability in the first approximation with 

respect to all the phase variables according to and the structure of 

the system (5) is the condition 
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The matrices of the stabilizing соntrol 
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an be determined unambiguously by setting a quadratic quality 

criterion and solving a problem optimal in the sense of a minimum 

of this stabilization criterion.  

Let us discuss the question of the amount of measurement infor-

mation sufficient for the formation of stabilizing influences in the 

form of feedback on the estimates of the state vectors (or their parts) 

of the corresponding systems. 

After the replacement of Aizerman-Gantmakher, the first approx-

imation of the system of equations of the perturbed motion will take 

the form (we retain the previous notation for the components of the 

matrices of the coefficients of linear terms different from zero): 
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If for a nonholonomic system with inhomogeneous constraints (1) 

in a neighborhood of the equilibrium position (4) satisfy conditions 
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The equilibrium position (4) is stabilized to asymptotic stability in 

terms of velocities and stability with respect to the remaining vari-

able applications with respect to the coordinates  of the linear 

control
1̂u  , where the matrix is determined by solving the 

problem of optimal stabilization of the zero solution of the subsys-

tem 

uQ2
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The estimate 
1̂ obtained for the state vector of the subsystem 

from the estimation system 
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by measuring the perturbation of coordinates  . 

4. Vector-matrix eqution in a neighborhood of 

steady motion. 

 We give some results on the stabilization of stationary motions 

otthe class of systems under consideration. Suppose that for a system 

with constraints (1) the conditions 
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and this nonholonomic system has steady motions 

constcpconstconst  ,, 00                    (6) 

Which are defined by equations 
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We obtain mn equations for the determination of 

mn constants. Consequently, in the general case, the motion 

(6) may turn out to be isolated (in contrast to stationary motions of 

systems with homogeneous constraints). Introducing perturbations 

ycpzx  ,, 00  . 

We compose the equations of perturbed motion in the neighbor-

hood of the motion (6): 
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The differences of the matrices of the coefficients of the linear 

terms in these equations from the corresponding matrices in equa-

tions (5) the icon 
 dp below shows that the corresponding 

expression is calculated on the motion (6). 

In the problem of stabilizing unstable steady motion, in the same 

way as in the problem of stabilizing equilibrium, various variants 

of applying control actions are possible. The resulting general 

equations give the possibility of choosing a particular method 

based on the structure of the system. In general, it is possible to 

include in the model the description of the dynamics of the actuator. 

 

5. Conclusion 

In the article, a systematic application of Voronetz vector-matrix 

equations in Routh variables is developed to describe the dynamics 

of non-holonomic systems with inhomogeneous constraints. Non-

linear equations of perturbed motion are obtained in stability and 

stabilization problems in a form that allows one to analyze the 

structure of nonlinear terms. The possibilities of various ways of 

applying control actions are discussed. The developed technique 

makes it possible to automate the consideration of problems of 

stabilization of complex technical devices. 
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