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Abstract 
 

In this paper, nonlinear vibration of microbeams based on the nonlinear  elastic  foundation  is  investigated. The  equation  of motion of 

microbeams based on three-layered nonlinear elastic medium (shear, linear and nonlinear layers) is described by the partial differential 

equation by using the modified couple stress theory.  The equation of motion of microbeams is transformed  into the ordinary differential 

equation by using Galerkin method. The high-order Energy Balance  method and the high-order Global Error Minimization method are  

used  to  get  the  frequency –  amplitude relationships  for  the  nonlinear  vibration  of  microbeams  with pinned-pinned  and  clamped-

clamped  end  conditions. Comparisons between the present solutions and the privious solutions  show  the  accuracy  of  the  obtained  

results. 
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1. Introduction 

Micro- and nano-beams have been widely used in nano- and mi-

cro-sized systems and devices such as biosensors, nanowires, 

atomic force microscope, microactuators, nano-probes, microelec-

tromechanical, ultra thin films and nano-electromechanical sys-

tems. In these applications, the size effect has a major role on 

static and dynamic deformation behavior of material and cannot 

be negligible [1, 2]. The classical continuum mechanics is not able 

to take into account the size effect in modeling of the material 

behavior at the nanoscale. Thus, several higher order continuum 

theories, such as the couple stress theory [3, 4, 5] that contains 

four material constants (two classical and two additional), strain 

gradient theory [6], micropolar theory [7], nonlocal elasticity theo-

ry [8], surface elasticity [9], have been developed to account for 

the size effect in the small scale structures. The classical couple 

stress theory is one of the other higher order continuum theories 

which contain two additional material length scale parameters 

besides the classical constants for an isotropic elastic material, 

elaborated by Mindlin and Tiersten [4], Toupin [3]. A modified 

couple stress theory was proposed by Yang et al.  [10] which con-

tain only one additional material length scale parameter in addi-

tion to the classical material constants. Also, the couple stress 

tensor is symmetric in this theory,  this modified couple stress 

theory includes the secondorder displacement gradients. This 

modified couple stress theory is more useful than classical one due 

to these features. 

To date, static, buckling and vibration characteristics of mi-

crobeams using the modified couple stress theory have been theo-

retically investigated in the context of size-dependent beam theo-

ries by the several researchers [11, 12, 13, 14, 15, 16, 17]. 

Recently, nonlinear static and free vibration analysis of mi-

crobeams based on the nonlinear elastic foundation using modified 

couple stress theory are studied by Simsek [18]. In this work, the 

approximate analytical expressions of nonlinear frequency of mi-

crobeams based on the nonlinear foundation are obtained and 

presented for the first time for pinned–pinned (P-P) and clamped–

clamped (C-C) end conditions by means of He’s Variational Ap-

proach (VA). Static analysis is also performed for uniformly dis-

tributed load. 

Due to the limitation of the exact solution of nonlinear oscillation 

problems, new asymptotic methods have been increasingly devel-

oped in order to solve nonlinear differential equations such as 

Energy Balance method  (EBM) [19], Variational Approach (VA) 

[20], Hamiltonian  Approach (HA) [21], Global Error Minimiza-

tion method (GEM) [22]. To improve the approximate solution of 

nonlinear oscillators, the high-order approximate methods are 

introducted such as the high-order Energy Balance method [23], 

the high-order Global Error Minimization method [22].  

In this paper, the high-order Energy Balance method and the high-

order Global Error Minimization method will be appied to analyse 

nonlinear free vibration of microbeams based on nonlinear elastic 

foundation. The obtained solutions are compared with the ones 

achived by Simsek using He’s Variational Approach. Compari-

sons show the accuracy of the present solutions.  

http://creativecommons.org/licenses/by/3.0/
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2. Modelling and formulation 

 
Fig. 1: An isotropic microbeam based on a three-layered nonlinear elastic 
foundation. 

 

An isotropic microbeam of a constant thickness of h with cross-

sectional dimensions L and b is considered and shown in Fig. 1. 

The microbeam is based on a nonlinear elastic foundation with the 

spring constants kL , kP and kNL of the Winkler elastic medium, 

Pasternak elastic medium and nonlinear elastic medium, respec-

tively. 

Using the modified couple theory, the equations of motion in 

terms of the displacements can be achieved as follows [18]: 
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where N is the axial normal force, E  is the elasticity modulus, A is 

the area of the cross-section, I is the inertia moment of the cross-

section, μ=E/2(1+ν) is known as shear modulus where ν is the 

Poisson’s ratio, ρ is density, q is the distributed transverse load.  

The following dimensionless parameters are introduced: 
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where /r I A   is the radius of gyration of the cross-section, 

and it is noted that l denotes the material length scale parameter 

which is an additional material parameter enabling the theory to 

capture the size-dependency. Considering Eq. (2), Eq. (1) can be 

written in the non-dimensional form as: 
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In order to apply the Galerkin method, displacement function 

( , )w x t   can be expanded into a finite series as follows: 

 

 ( , ) ( ) ( )w x t Q t x  (4) 

 

where ( )Q t is the unknown time-dependent coefficient to be de-

termined and  ( )x  is the basis (test) function which must satisfy 

the kinematic boundary conditions. The following test functions 

can be chosen for PP and CC boundary conditions: 

for Pinned – Pinned (P-P) microbeam: 

 

 ( ) sin( )x x   (5) 

 

for Clamped – Clamped microbeam: 

  
1

( ) 1 cos(2 )
2

x x    (6) 

 

where ( )x  is normalized in such a way that (0.5) 1  . Substi-

tuting the approximate solution in Eq.(4) into Eq.(3), then multi-

plying both sides of the resulting equation with ( )x  and integrat-

ing it over the domain (0, 1) yields: 
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Here the coefficients D1, D2, D3, D4 and F in Eq. (7) can be ex-

pressed as: 
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where (4)   is the fourth derivative of     with respect to the 

axial coordinate x , and the prime notations also denote the differ-

entiations with respect to the axial coordinate. 

3. Analyzing of nonlinear free vibration 

The microbeam is subjected to the following initial conditions: 

 

 (0) , (0) 0Q Q   (9) 

 

where 
max(0.5)/w r    is the dimensionless maximum vibration 

amplitude of the microbeam. 

By omitting the forcing term F for free vibration analysis, Eq. (7) 

can be rewritten in a compact form as follows: 
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where  
1 1 2 Lg D D K    and 

2 3 4g D D  .   

In the next section, the high-order Energy Balance method and the 

high-order Global Error Minimization method will be applied to 

find approximate solutions of Eq. (10) with the initial conditions 

(9). 

3.1. Application of the high-order Energy Balance 

method  

3.1.1. The first-order approximate        

The basic of  the  energy balance method (EBM)  was proposed by 

He [19].The variational of Eq. (10) is given as follows: 
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Here T=2π/ω is the period of the nonlinear oscillator. 

For the first-order approximation, the following approximate solu-

tion of  Eq. (10) can be assumed: 

 

 
1( ) cos( )Q t t   (12) 
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where α and ω are the initial amplitude and natural frequency of 

the nonlinear oscillator, respectively.  

With the approximate solution (12), the Hamiltonian of  Eq. (10) 

is given as follows: 
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Eq. (13) yields the following residual equation: 
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If, by chance, the exact solution of Eq. (10) had been chosen as the 

trial function, then it would be possible to make R1 zero for all 

values of t  by appropriate choice of ω. Since Eq. (12) is only an 

approximation to the exact solution, R1 can not be made zero eve-

rywhere. Collocation at / 4t  , from Eq. (14) we obtain the 

first-order approximate frequency: 
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3.1.2. The high-order approximate        

In order to improve the accuracy of the Energy Balance method, 

let us define ( )Q t  as follows: 
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Eq. (16) must satisfy the initial conditions (9); therefore, we have: 
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Thus, the approximate solution (16) can be rewritten: 

 

 
2 1 1( ) cos( ) ( )cos(3 )Q t t t        (18) 

 

With the approximate solution (18), we have the following residu-

al equation: 
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It requires an system of two equations to find two unknown pa-

rameters A1 and ω. Using Galerkin method as a weighting func-

tion, with cos( )t  and cos(3 )t  are used as weighting functions,  

the following systems can be obtained [23]: 
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By inserting Eq. (19) into Eqs. (20) and (21), after some mathe-

matical amendments, we have: 
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By solving Eqs. (22) and (23) simultaneously, we can obtain the 

second-order approximate amplitude-frequency relationship. 

3.2. Application of the high-order Global Error Minimi-

zation method  

A modified variational approach called Global Error Minimization 

(GEM) method was introduced by Yadollah Farzaneh and Ali 

Akbarzadeh Tootoonchi [22]. In this section, we will apply this 

method to find the approximate solution of Eq. (10). 

3.2.1. The first-order approximate        

It is similar to the Energy Balance method, with the first-order 

approximate, we begin the procedure with the simplest trial solu-

tion: 

 

 
1( ) cos( )Q t t   (24) 

Next, we convert Eq. (10) to the minimization problem: 
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By replacing Eq. (24) in Eq. (25) and performing the integration 

we get: 
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Thus, from the condition 
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we get the first-order approximate frequency of the oscillator: 
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3.2.2. The high-order approximate        

Now, to improve our analytical approximation, we will add addi-

tional terms to the trial solution by considering the second-order 

approximation: 
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With the new trial solution in Eq. (28),  Eq. (10) is converted to a 

minimization problem: 
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The solution of Eq. (29) could be found by using the conditions: 
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Substituting Eq. (28) into Eq. (29), and from the conditions (30), 

after some mathematical operations, we get: 
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Eqs. (31) and (32) contain two unknown parameters ω and α1. By 

solving Eqs. (31) and (32) simultaneously, we can obtain the sec-

ond-order approximate amplitude-frequency relationship of the 

oscillator. 

Higher-order approximate solutions of the EBM and GEM can 

be established by the similar manner. However, with higher-order 

approximations, it is required to solve a complex set of algebraic 

equations to achieve the frequency of the oscillator.  

4. Numerical results  

The nonlinear frequencies of P-P and C-C Microbeams obtained 

in this work are compared with the ones achived by Simsek [18]. 

In this work, using He’s Variational Approach (VA), Simsek ob-

tained the nonlinear frequencies as follows: 
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It can be seen that the appriximate frequency 
VA  in Eq. (33) is 

the same as the approximate frequency obtained by the firt-order 

Energy Balance method in Eq. (15). Tables 1 and 2 show compar-

ions the approximate frequencies with the exact frequencies for P-

P and C-C Microbeams, respectivelly. Note that these compari-

sons are calculated with KL=0, KP=0, KNL=0 and length  scale  

parameter l=0. The exact frequency of the oscillator can be seen 

Appendix. From these Tables, the accuaracy of the present solu-

tions can be observed. 

Table 1: Comparion of the approximate frequencies for P-P Microbeam 

α ex  
VA  (error %) 

1GEM (error %) 
2GEM (error %) 

1EBM (error %) 
2EBM (error %) 

0.01 9.86969 9.86969 (0) 9.86969  (0) 9.86969  (0) 9.86969  (0) 9.86969  (0) 
0.1 9.87885 9.87885  (0) 9.87885  (0) 9.87885  (0) 9.87885  (0) 9.87885  (0) 

1 10.74956 10.75515  (0.05200) 10.75887  (0.08661) 10.74964  (0.00074) 10.75515  (0.05200) 10.74791  (0.01535) 

2 13.00593 13.05626  (0.38698) 13.08939  (0.64171) 13.00839  (0.01891) 13.05626  (0.38698) 12.99184  (0.10834) 
3 16.04479 16.17983  (0.84164) 16.26748  (1.38793) 16.05582  (0.06875) 16.17983  (0.84164) 16.00796  (0.22954) 

4 19.50249 19.73921  (1.21379) 19.89107  (1.99246) 19.52739  (0.12768) 19.73921  (1.21379) 19.43864  (0.32739) 

 

 
Table 2: Comparion of the approximate frequencies for C-C Microbeam 

α ex  
VA  (error %) 

1GEM (error %) 
2GEM (error %) 

1EBM (error %) 
2EBM (error %) 

0.01 22.79293 22.79293 (0) 22.79293  (0) 22.79293  (0) 22.79293 (0) 22.79293  (0) 

0.1 22.79822 22.79822 (0) 22.79822 (0) 22.79822 (0) 22.79822 (0) 22.79822 (0) 

1 23.31999 23.32097  (0.00420) 23.32161  (0.00695) 23.31999 (0) 23.32097  (0.00420) 23.31969 (0.00129) 

2 24.82505 24.83796  (0.05200) 24.84655 (0.08661) 24.82524 (0.00077) 24.83796  (0.05200) 24.82124 (0.01535) 
3 27.128750 27.17877  (0.18438) 27.21192 (0.30658) 27.13030 (0.00571) 27.17877  (0.18438) 27.11442 (0.05282) 

4 30.035910 30.15214  (0.38697) 30.22867 (0.64177) 30.04161 (0.01898) 30.15214  (0.38697) 30.00337 (0.10834) 

 

The nonlinear frequency ratios of  P-P and C-C Macrobeams are 

compared with those of Azraret et al. [24] for various values of the 

dimensionless maximum vibration amplitude (α=1, 2, 3, 4), which 

are presented in Tables 3 and 4, respectively. Again, the accuracy 

of the present frequencies can be seen.  

 

It can be seen from Tables 3 and 4 that the frequency ratio in-

creases as the initial amplitude α increases, when α is small the 

linear frequency and the nonlinear frequency of the oscillatior are 

approximately equal. 

 

 
Table 3: Comparion of the approximate frequency ratios for P-P Macrobeam 

α Azrar et al. VA (error %) GEM 1 (error %) GEM 2 (error %) EBM 1 (error %) EBM 2 (error %) 

1 1.0891 1.0897 (0.0573) 1.0901 (0.0919) 1.0891 (0.0060) 1.0897 (0.0573) 1.0889 (0.0100) 

2 1.3177 1.3228 (0.3927) 1.3262 (0.6475) 1.3180 (0.0246) 1.3228 (0.3927) 1.3163 (0.1025) 
3 1.6256 1.6393 (0.8464) 1.6482 (1.3927) 1.6267 (0.0734) 1.6393 (0.8464) 1.6219 (0.2248) 

4 --------- 2.0000 (--------) 2.0153 (---------) 1.9785 (---------) 2.0000 (--------) 1.9695 (----------) 
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Time history and phase trajectory of responses for P-P and C-C 

microbeams, with α=1, l/h=0.25, KP=10, KL=40 and KNL=50, 

using various differential methods are presented in Figs. 2 and 3, 

respectively. High agreement between the approximate solutions 

can be observed.  

 

 
Table 4: Comparion of the approximate frequency ratio for C-C Macrobeam 

α Azrar et al. VA (error %) GEM 1 (error %) GEM 2 (error %) EBM 1 (error %) EBM 2 (error %) 

1 1.0221 1.0231 (0.1045) 1.0231 (0.0027) 1.0231 (0.1003) 1.0231 (0.1045) 1.0231 (0.0991) 

2 1.0856 1.0897 (0.3799) 1.0901 (0.0345) 1.0891 (0.3285) 1.0897 (0.3799) 1.0889 (0.3123) 

3 1.1831 1.1924  (0.7880) 1.1938 (0.1219) 1.1902 (0.6083) 1.1924  (0.7880) 1.1896 (0.5494) 
4 1.3064 1.3228  (1.2611) 1.3262 (0.2538) 1.3180 (0.8899) 1.3228  (1.2611) 1.3163 (0.7615) 

       
Fig. 2: Time history and phase trajectory of response for  P-P microbeam 

 

 

     

Fig. 3: Time history and phase trajectory of response for  C-C microbeam 

 

 

The effects of the initial amplitude α on the nonlinear 

frequency ratio (ωNL/ωL) and the nonlinear frequency ωNL of 

microbeams based on the dimensionless material length scale 

parameter (l/h) are plotted in Figs. 4 and 5. When the 

dimensionless material length scale parameter increases, then the 

frequency ratio decreases but the nonlinear frequency increases. 
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(a)                                                                                                             (b) 

Fig. 4: The effect of the initial amplitude on the frequency ratio of microbeams based on the dimensionless material length scale parameter 

with KP=100, KL=100 and KNL=100; (a) P-P microbeam, (b) C-C microbeam; ( * : VA and EBM1, - : GEM1) 

 

 

            
(a)                                                                                                               (b) 

Fig. 5: The effect of the initial amplitude on the nonlinear frequency of microbeams based on the dimensionless material length scale parameter  

with KP=100, KL=100 and KNL=100; (a) P-P microbeam, (b) C-C microbeam; ( * : VA and EBM1, - : GEM1) 
 

 

The variations of the nonlinear frequency ratio and the nonlin-

ear frequency  with the initial amplitude for various values of the 

dimensionless length scale parameter are investigated and showed 

in Figs. 6 and 7. We see that the frequency ratio and the nonlinear 

frequency of microbeams increase when the dimensionless ampli-

tude increses. 

 

      
(a)                                                                                                             (b) 

Fig. 6: The variation of the frequency ratio of microbeams with the dimensionless amplitude for various values of  the dimensionless material length scale 

parameter with KP=10, KL=100 and KNL=10; (a) P-P microbeam, (b) C-C microbeam; ( * : VA and EBM1, - : GEM1) 
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(a)                                                                                                             (b) 

Fig. 7: The variation of the nonlinear frequency of microbeams with the dimensionless amplitude for various values of  the dimensionless material length 

scale parameter with KP=10, KL=100 and KNL=10; (a) P-P microbeam, (b) C-C microbeam; ( * : VA and EBM1, - : GEM1) 
 

 

Comparisons of the effect of the coefficients of the nonlinear 

foundation on the vibration behavior of the microbeams using 

various methods are also investigated. First, the variations of the 

nonlinear frequency ratio and the nonlinear frequency with the 

Winkler parameter for various values of the dimensionless length 

scale parameter are showed in Figs. 8 and 9. We see that when the 

dimensionless amplitude increases, then the frequency ratio of 

microbeams decreases but the nonlinear frequency of microbeams 

increases. 

 

       
(a)                                                                                                             (b) 

Fig. 8: The variation of the frequency ratio of microbeams with the Winkler parameter for various values of  the dimensionless material length scale 

parameter with KP=10, KNL=100 and α=1; (a) P-P microbeam, (b) C-C microbeam; ( * : VA and EBM1, - : GEM1) 
 

 

      
(a)                                                                                                             (b) 

Fig. 9: The variation of the nonlinear frequency of microbeams with the Winkler parameter for various values of  the dimensionless material length scale 

parameter with KP=10, KNL=100 and α=1; (a) P-P microbeam, (b) C-C microbeam; ( * : VA and EBM1, - : GEM1) 
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Second, the variations of the nonlinear frequency ratio and the 

nonlinear frequency with the Pasternak parameter for various val-

ues of the dimensionless length scale parameter are presented in 

Figs. 10 and 11. As the same as the effect of the Winkler parame-

ter on the vibration behavior of the microbeams, when the dimen-

sionless amplitude increases, then the frequency ratio of mi-

crobeams decreases but the nonlinear frequency of microbeams 

increases. 
 
 

    
(a)                                                                                                             (b) 

Fig. 10: The variation of the frequency ratio of microbeams with the Paternak parameter for various values of  the dimensionless material length scale 

parameter with KL=100, KNL=100 and α=1; (a) P-P microbeam, (b) C-C microbeam; ( * : VA and EBM1, - : GEM1) 

 
 

       
(a)                                                                                                             (b) 

Fig. 11: The variation of the nonlinear frequency of microbeams with the Paternak parameter for various values of  the dimensionless material length scale 

parameter with KL=100, KNL=100 and α=1; (a) P-P microbeam, (b) C-C microbeam; ( * : VA and EBM1, - : GEM1) 
 

 

And last, the variations of the nonlinear frequency ratio and 

the nonlinear frequency with the nonlinear foundation parameter 

for various values of the dimensionless length scale parameter are 

investigated and presented in Figs. 12 and 13. It is not the same as  

the effect of the Winkler parameter and the Pasternak parameter  

on the vibration behavior of the microbeams, when the dimension-

less amplitude increases, then all of the frequency ratio of mi-

crobeams and the nonlinear frequency of microbeams increase. 
 



International Journal of Engineering & Technology 55 

 

   
(a)                                                                                                             (b) 

Fig. 12: The variation of the frequency ratio of microbeams with nonlinear foundation parameter for various values of  the dimensionless material length 
scale parameter with KP=100, KL=100 and α=1; (a) P-P microbeam, (b) C-C microbeam; ( * : VA and EBM1, - : GEM1) 

 

 

      
(a)                                                                                                             (b) 

Fig. 13: The variation of the nonlinear frequency of microbeams with nonlinear foundation parameter for various values of  the dimensionless material 
length scale parameter with KP=100, KL=100 and α=1; (a) P-P microbeam, (b) C-C microbeam; ( * : VA and EBM1, - : GEM1) 

5. Conclusion  

In this work, nonlinear free vibration of microbeams based on 

nonliear elastic foundation with three layers is intestigated using 

the high-order Energy Balance method and the high-order Global 

Error Minimization method. The accuracy of approximate solu-

tions has been improved by using the second-order approximation. 

The frequency-amplitude relationships of  microbeams with P-P 

and C-C end conditions are obtained in closed-forms. The present 

solutions are compared with the previous published  ones. Com-

parisons show the accuracy of the obtained solutions. The effects 

of the initial amplitude, the dimensionless material length scale 

parameter and the coefficients of the nonlinear foundation on the 

vibration behavior of the microbeams are investigated.  
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Appendix 

For the osccillator given in the form: 

3

1 2 0,, (0) , (0) 0X a X a X X A X      

The exact frequency is: 

/ 2

2 2 2
0 2 2 1

2

4 2
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dt
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