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Abstract 

 

In this paper the static, transient and free vibration analysis of a thermo- magneto-electric-elastic solid cylinder is analyzed stochastically 

by using hybrid numerical method (combined finite element and Newmark finite difference method).An infinite solid cylinder made up 

of 6mm class considered. The constitutive equations containing the mechanical, magnetic, electrical and thermal fields and investigated 

by free and forced Vibirational boundary conditions. The transient finite element equations are obtained by assumed shape functions. 

After assembling the Mass, Stiffness and Damping and matrices, the global dynamic equations are in the form of time field. The resulting 

equations are solved by using the finite difference technique with suitable time instants. By using material constants values the 

displacement, velocity and acceleration of vibrations are obtained with various time values and the non dimensional frequencies are also 

obtained by different values of non dimensional wave number. Numerical work is carried out by the electric and magnetic materials Cdse 

and CoFe2o4. The outcomes are tabulated and represented graphically. 
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1. Introduction 

The dynamic behaviour and wave propagation in structures have 

been used to safety evaluation of stress field in engineering 

structures. 

High frequency vibration of Piezoelectric crystal plates has been 

studied by [1]. Wave propagation in Piezo composite plate have 

analysed by [2].The vibration of pyro electric sandwich plate has 

studied by [3].Free vibrations of pyro electric layer hexagonal 

(6mm) class has analysed by [4].Vibration of pyro electric plates 

are discussed by [5]. In [6] dealt with free vibrations of Piezo 

electric layer of Hexagonal (6mm) class. The free vibration 

response of two dimensional magneto-electro-elastic laminated 

plates has been studied by [7]. The Finite Element Modelling of a 

Layered, Multiphase Magneto electro elastic cylinder subjected to 

an ax symmetric temperature Distribution has been studied by 

[8].Galerkin finite element derivation for vibration of a thermo 

piezoelectric structure have been analysed by [9]. Transient 

analysis of thermo elastic waves in thick hollow cylinders using a  

 

stochastic hybrid numerical method, considering Gaussian 

mechanical properties is studied by [10].On calculating dispersion 

curves of waves in a functionally graded elastic plate have been 

analyzed by [11]. Meshless local petrov-Galerkin method for 

coupled thermo elasticity analysis of a functionally graded thick 

hollow cylinder has discussed with [12].Thermoelastic wave 

propagation in functionally graded materials using meshless local 

petrov-Galerkin(MLPG) method has studied by [13]. Exact 

solutions for magneto electro elastic laminates in cylindrical 

bending is studied by [14].Exact solution for simply supported and 

multi latered Magneto-Electro-Elastic plates is analyzed by [14].In 

[15],[16] had given a MATLAB algorithm for finite element 

numerical implementation. 

2. Governing equation 

The equations of linear thermo piezoelectricity were proposed by 

Mindlin [1].The governing equations are, 
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Where kj kjT and S  are the stress and strain tensors, the 

remaining terms ku , kD , kE and kH are mechanical 

displacement, the electric displacement, the electric and magnetic 

fields respectively. llklkjik andmdB ,,,  are magnetic 

induction, piezo magnetic, magneto electric, magnetic 

permeability and pyromagnetic coefficients respectively. T  is the 

temperature change from a reference temperature 0T ,
,i jq  the 

heat flux,   the electric potential,   the entropy,  the mass 
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density and , , , ,kjrs rkj kj kj kC e p  are the elastic, piezoelectric, 

stress coefficient, dielectric, pyroelectric material constants 

respectively and vC  the specific heat. The usual notation is 

displayed, and the comma followed by a lower case denotes 

partial differentiation of that coefficient with respect to 

independent variable.  

The assumed solution for an infinite solid cylinder along with

 , ,0l m direction with cylindrical polar coordinates 

 tzr ,,,  are as, by [7] 
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Where k is the wave number and  is frequency. 

2 2cos , sin , 1 1l m l m and i       . 

Introduce the non dimensional wave number kh   ( h  is the 

thickness of the cylinder). 

3. Boundary condition 

In traction free boundary conditions, the body force and the 

densities are absence. By using these, the governing equations can 

bewritten as, 
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The equation (1) can be rewritten as, 
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4. Finite element technique 

The assumed shape functions are required to construct the finite 

element formulation, that the corresponding mechanical, 

magnetic, electrical and thermal fields are as follows, 
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Where        eeee andu  ,,  are unknown nodal 

points and         eeee

u NandNNN  ,,  are 

corresponding shape functions and e is the element level degrees 

of freedom.  

In a wave propagation of an infinite solid cylinder, along the 

thickness direction, Power series are most commonly used for 

shape functions. 

The solution of an infinite solid cylinder can be assumed as, 
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Substitute the free boundary condition, shape function, equation 

(5) in (4) and to make integrate over the suitable corresponding 

volume. Obtain a completely coupled system of the following 

Global Stiffness [ ]K , Damping [ ]C  and Mass [ ]M  matrices 

are, 
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The equation (6) contains elasticity in Cartesian coordinates and 

are obtained by using the assumed shape functions solutions of 

equation (5). The four noded element is considered. Every element 

in each matrices contained smaller sub-matrices that are 

multiplied by various type of in-plane functions. 

The nondimensional frequencies and the corresponding shape 

functions are obtained by solving the above Eigen value problem 

without external forces.  

Assemble all element equations, the required frequency equation 

is, 

          

     















































































 K

KKKK

KKKK

KKKK

Kand

CCCC

C

M

Mwhere

uKuCipuMp

u

u

uuuuu

u

uu

000

0000

0000

0000

,

000

000

00

702

by using the method of concatenation, the above equation was 

solved and resulting eigen values are denotes the frequencies. 

Numerical illustrations are obtained by using the material 

constants values of Cadmium selenide and Cobalt ferrite. 

5. Newmark’s finite difference formulation 

In on forced vibration boundary conditions, the electric 

displacement is vanished. By using these conditions, the equations 

of motion can be written in the form, 
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Substitute equation (5) and corresponding shape function values 

are in (8) and to make integration over the corresponding volume. 

Equation (6) can be change over to the following Stiffness[ ]K , 

Damping [ ]C , Mass [ ]M and force [ ]F  matrices. 
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After getting the global Stiffness, Damping, Mass and force 

matrices of each element, consider the following shape functions 

for each element 
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      (11) 

The following dynamic finite element governing equation can be 

obtained for each element by using linear shape function are  

1 1

[ ] { } [ ] { } [ ] { } [ ]

ˆ ˆˆ ˆ{ } { }

e e e e

T T

i i i i

M C K F

Where u T u T 

     

 
     (12) 

" "e is 
the element and" "i stand for 

thi node. After assembling 

of all matrices of each of the elements, the coupled thermos 

electric elastic problem in the form of stochastic frame work can 

be rewritten as, 

[ ]{ } [ ]{ } [ ]{ } [ ]M C K F            (12) 

The above equation is in transient nature. By applying the 

Newmark’s integration method, and to approximate the time 

derivatives and to solve the equations of forced vibration. About  

this method, the functions and its corresponding derivatives are 

approximated by the  following assumptions. 

Initially  to calculate the value of displacements  t tU  , the 

constitute  equation can be  evaluated at time t tt  as, 

[ ]{( ) } [ ]{( ) } [ ]{( ) } {( ) }t t t t t t t tM U C U K U F           (13)
 

Where t =time step, t =step number. Rearranging the above 

equation, 
1{( ) } [ ] *([ ] [ ]*{( ) } [ ]*{( ) })t t tU M F C U K U    

The displacement matrix {( ) }t tU   ,velocity matrix 

{( ) }t tU  and acceleration matrix {( ) }t tU   can be found by  

using following equations, 
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  Once the value of displacements {( ) }t tU   at time t tt  are 

obtained then solving equation (14)  the velocities {( ) }t tU 

and accelerations {( ) }t tU  are obtained  respectively.  

In equations 

0 1 2 3 4 5 6 7(14), (15) (16), , , , , , ,and a a a a a a a and a  are 

Newmark parameters and the values are given in Appendix. In 

Newmark difference method the best convergence can be reached 

by choosing 0.25 0.5and    in the above 

parameters. 

6. Static analysis 

In on static vibration boundary conditions, the velocity and 

acceleration are vanished. By using these conditions, the 

governing equilibrium equations can be written in the form,  

    K U F       (17) 

7. Analysis and results 

The values of displacement {( ) }t tU   ,velocity {( ) }t tU  and 

acceleration {( ) }t tU   for the materials  Cdse/CoFe2o4 are 

obtained. The terms for non-dimensional are necessary to solve 

the problem and assumed as follows. The thermo magneto electric 

elastic terms are  assumed by  Ref [2, 3&4] and the additional 

non-dimensional terms were derived based upon the constitute  

equations. The non-dimensional terms for the infinite solid 

cylinder analysis are as follows, 
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The displacement {( ) }t tU   ,velocity {( ) }t tU  and 

acceleration {( ) }t tU    are obtained by using MATLAB 

software. The natural frequencies and static vibrations are 

obtained by various values of dimensionless wave number. The 

displacement, velocity and acceleration values are obtained and 

represented graphically, with different time variants. 

8. Conclusion 

The static, transient and free vibration analysis of an infinite 

thermo- magneto-electric-elastic solid cylinder is solved by using 

hybrid numerical method. The cylinder is of 6mm class with  ℓ =
cos 30°𝑎𝑛𝑑 𝑚 = 𝑠𝑖𝑛30°. Thickness of the cylinder is taken by 

ℎ = 0.05𝑚𝑚. The constitute equations for thermo-magneto- 

electric-elastic materials are derived by using Finite element 

formulations with free/forced vibrations. The coupled mass, 

stiffness and damping and matrices, the global transient equations 

are executed in time domains. In static vibration the acceleration 

and velocity are vanished. The Newmark finite difference method 

with suitable time step is used and the equilibrium equations are 

solved.The values of displacement, velocity, acceleration and the 

natural frequencies are obtained. The numerical illustrations have 

been carried out for Cadmium selenide and Cobalt ferrite. 

Solutions are tabulated and illustrate graphically. The 

nondimensional wave number versus the displacement, velocity 

and acceleration values are calculated with suitable time variants. 

Finally, it is observed that in the case of Free vibration, the natural 

frequencies of thermo magneto-electric-elastic infinite solid 

cylinder made by the material CoFe2o4 is significantly greater 

than that of Cdse material. The damping effect analyzed through 

the imaginary part of complex frequencies. In the case of 

Transient, different values of nondimensionl wave number, if the 

time domain increased when the values of the displacement, 

velocity and acceleration of CoFe2o4 material is significantly 

greater than that of Cdse material. In the case of static,different 

values of nondimensionl wave number, if the time domain 

increased when the values of the displacement of CoFe2o4 

material is significantly greater than that of Cdse material.  

9. Numerical illustration and figures 

In Static State 

 

In Transient State 
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In Free vibration 

 

 
Figure 1: Non dimensionl wave number Vs Displacement with transient state 

 
Figure 2: Non dimensional wave number Vs Velocity with transient state 

 
Figure 3: Non dimensional wave number Vs Acceleration with transient state 

 

 

 



150 International Journal of Engineering & Technology 

 
 

 
Figure 4: Non dimensional wave number Vs natural frequency with free vibration Figure 5: Non dimensional wave number Vs displacement with static                 

                                                              Vibration 
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Appendix 

The strain displacement, electric potential   and heat flux
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The material constants for crystal class 6mm and New mark 
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