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Abstract 
 

In the field of Bio-informatics, locating the exon fragments in a deoxyribonucleic acid (DNA) sequence is an important and vital 

work. Study of protein coding regions is a wide phenomenon in identification of diseases and design of drugs. The regions of DNA 

that have the protein coding information are termed as exons. Hence identifying the exon segments in a genomic sequence is a crucial 

job in bio-informatics. Three base periodicity (TBP) has been observed in the regions of DNA sequences can be easily determined by 

applying signal processing methods. Adaptive signal processing techniques found to be useful than other available methods. This is 

due to their unique capability to alter weight coefficients based on genomic sequence. We propose efficient adaptive exon predictors 

(AEPs) based on these considerations using Proportionate Normalized LMS (PNLMS) algorithm and Maximum Proportionate Nor-

malized LMS (MPNLMS) algorithm to improve exon locating ability and better convergence. To ease the complexity of computa-

tions in the denominator during filtering process, proposed AEPs using PNLMS and its maximum variants are combined with signa-

ture algorithms. Hybrid variants of proposed AEPs include PNLMS, DCPNLMS, ECPNLMS, SSPNLMS, MPNLMS, MDCPNLMS, 

MECPNLMS and MSSPNLMS algorithms. It was shown that the AEP based on MDCPNLMS is superior in applications of exon 

identification depending on performance measures with Sensitivity 0.7346, Specificity 0.7483 and precision 0.7325 for a genomic 

sequence with accession AF009962 at a threshold of 0.8. Finally the capability of several AEPs in predicting exon locations is veri-

fied using different DNA sequences found in National Center for Biotechnology Information (NCBI) gene database. 

 
Keywords: adaptive exon predictor; bioinformatics; computational complexity; deoxyribonucleic acid; three base periodicity; sensitivity; specificity; 
precision. 

1. Introduction 

A substantial purpose of research in the field of bio-informatics is 

to study the nature of information along with its role in learning 

about a particular job encoded by the gene. An essential step to 

attain this goal is tracing the protein coding areas in a gene se-

quence [1]. Identification of exon sections is an mammoth space 

of exploration in bio-informatics. A division is frmed by crucial 

gene sequences in organisms that are required for the fertility, 

growth, or persistence [2]. As a result, identifying the protein cod-

ing sections is not only interesting, but also has realistic value to 

find out human diseases [3] and determine drug targets in new 

pathogens [4] - [6]. The intragenic and genic sections are available 

in a DNA sequence. In bio-informatics, the subarea which empha-

ses on finding the exon sections in a DNA sequence is acknowl-

edged as exon identification. Learning of principal exon segment 

structure aids in study of the ancillary and tertiary assembly of 

exon segments. All anomalies can be identified, can design drugs 

and treat diseases once the complete structure of protein coding 

sections is evaluated. The learnings help to know the phylogenic 

trees evaluation[7] - [8]. At present, a fast development of raw 

data of genomic sequences needs useful biological elucidations, 

but more cost is implicated to perform biological experiments for 

predicting gene locations and there is still a practical demand for 

efficient and fast tools mainly to identify genes, to study sequenc-

es and know their functions [9] - [10]. Whole bodily entities are 

alienated into two segments, named as eukaryotes plus prokary-

otes based on the fundamental molecular cell structure. The pro-

tein coding segments accountable for coding of protein sectors are 

uninterrupted and elongated in archaea; prokaryotes and bacteria 

are the examples of prokaryotes. The genes are the consolidation 

of exon segments alienated by means of lengthy segments which 

are not involved in coding in eukaryotes [11]. The segments that 

are liable for protein coding are named as exons, whereas the sec-

tions not involved in coding are called as introns. Whole living 

organisms other than archaea and bacteria, all originate beneath 

this category. The exon segments found in eukaryotes of human 

beings are merely 3% of the gene sequence and the residual 97% 

are sections that are not involved in coding of protein. Henceforth 

finding the regions those involved in coding of protein is a precar-

ious job [12] - [13]. The protein coding sections in almost whole 

DNA sequences will exhibit the three base periodicity (TBP). In 

the plot for power spectral density (PSD), a strident peak is ob-

served at a frequency ‘f’ equal to 1/3 [14].  Various prediction 

techniques for exons are prevailing in works built on several tech-

niques of signal processing [15] - [19]. Nevertheless, the size of 

the actual genomic sequence is remarkably long and changes be-

tween sequences. To process such genomic sequences, adaptive 

techniques are found to be vital methods. The property of three 

base periodicity is beneficial to determine the protein coding seg-

ments in a DNA sequence [20]. Adaptive methods are preferred 

for very long sequence processing in numerous repititions that can 

modify coefficients of weight in agreement to the numerical ac-

tions of input gene sequence. Here, we propose to develop an 

Adaptive Exon Predictor (AEP) using adaptive methods by using 

proportionate normalization concept in which the matrix for gain 

http://creativecommons.org/licenses/by/3.0/


International Journal of Engineering & Technology 117 

 
essentially assessment of taps in contrast to the amount during 

normalization. The Least mean squares (LMS) technique is an 
acceptable vital adaptive method. This technique is pervasive 

because it is easy for execution. Glitches such as amplification of 

gradient noise, drift in the weight and deprived convergence are 

agonized by this algorithm. Also, the speed of convergence is 

sluggish while the Eigen value extent is added; moreover lesser is 

the performance for low SNR. To daze the stability problems, 

innumerable Normalized LMS (NLMS) techniques are recom-

mended. Superior performance of MSE with controlled step size 

and independent of signal power is the advantage of the normal-

ized. Therefore, to further upsurge the performance of AEP, we 

state to use proportionate normalized LMS adaptive algorithm 

with its signed variants. The four resultant algorithms are Propor-

tionate Normalized LMS (PNLMS), Data Clipped Proportionate 

Normalized LMS (DCPNLMS), Error Clipped Proportionate 

Normalized LMS (ECPNLMS) and Sign Sign Proportionate Nor-

malized LMS (SSPNLMS) algorithms. Here, Proportionate Nor-

malized LMS (PNLMS) is used for filtering. Extracting the sparse 

coefficients and weighing suitably is the evident benefit. Among 

the numerous NLMS algorithms, this acts as one of the best tech-

nique as this lessens the spread of eigenvalue that clues to quicker 

convergence. PNLMS is analogous to the proposed NLMS in [16], 

with respect to normalization. With regard to the gain matrix, 

variance is evident and principally taps are weighed based on their 

magnitude. In regards to the analysis offered in [17], this is vibrant 

that the PNLMS enjoys stability as NLMS and it also upsurges the 

rate of convergence thru weighing of the lethargic taps by lower 

weight. Normalized version of Proportionate LMS is called as 

Proportionate Normalized LMS (PNLMS) algorithm. PNLMS 

algorithm and its signed variants overcome the difficulties of LMS 

and mend ability of detecting the exon segments and provide supe-

rior convergence performance. It lessens mean square error (MSE) 

in the progression of exon identification. The complexity in com-

putations for an adaptive technique shows a vivacious role.  

Essentially, while the genomic sequence length is very huge, if the 

signal processing method has added computational complexity, 

the samples join at the AEP input. This causes inter symbol inter-

ference (ISI) and leads to inexactness in the identification of ex-

ons.  Moreover, when the projected AEPs are implemented on 

nano device or VLSI circuit, the added computational complexity 

inclines to bigger size of circuit and additional actions. Hence-

forth, to handle the complexity in computations of proposed 

method in actual solicitations the techniques of adaptive nature are 

associated with techniques of signum function. Signum function is 

applied in sign algoritms and the number of operations for multi-

plication is reduced in the denominator [21]. The three streamlined 

signum methods are signum based regressor algorithm (SRA), 

signum algorithm (SA) and signum signum algorithm (SSA). 

Therefore, in order to lessen the computational complexity we 

conglomerate the three signum algorithms with the normalized 

LMS algorithm. Due to normalization in these algorithms, the 

denominator of the weight update equation has to calculate multi-

plications equal to the numeric value of tap length of the algo-

rithm. When the tap length is higher, which is mutual in real time 

applications the large tap length origins an additional computa-

tional affliction on the AEP. This is minimized to one, regardless 

of extent os the tap expending a method so-called maximum nor-

malization [22].The consequential maximum normalized versions 

of proposed AEPs are Maximum Proportionate Normalized LMS 

(MPNLMS), Maximum Data Clipped Proportionate Normalized 

LMS (MDCPNLMS), Maximum Error Clipped Proportionate 

Normalized LMS (MECPNLMS), and Maximum Sign Sign Pro-

portionate Normalized LMS (MSSPNLMS) algorithms[16] - [19]. 

In the normalization version of the PLMS algorithm the connec-

tion amongst the reference input and error is normalized thru a 

factor equivalent to square of the norm. In normalized and maxi-

mum normalized algorithms, the gradient noise application prob-

lem is minimized and they converge more rapidly than the con-

ventional LMS algorithm. Henceforward, PNLMS technique has a 

steady state error and convergence rate improved than LMS meth-

od [23]. Based on proposed proportionate normalized LMS and its 

maximum proportionate normalized variants, many AEPs are 

developed and verified the performance with actual gene sequenc-

es attained commencing thru the databank of National Center for 

Biotechnology Information (NCBI) [24]. We consider conver-

gence characteristics, sensitivity (Sn), specificity (Sp) and preci-

sion (Pr) as metrics to assess the performance of the numerous 

recommended AEP techniques. Techniques with adaptive nature, 

outcomes of proposed methods and debate proceeding the perfor-

mance of a number of proposed techniques is illustracted in sub-

sequent units of the proposed work. Several adaptive signal pro-

cessing techniues are presented in [25]-[50].  

2. Adaptive Algorithms for Exon Prediction 

Here, the DNA sequence input is altered into digital represen-

tation. It acts as a crucial chore in processing of gene sequences 

since such procedures are realistic solitary with discrete or digital 

signals. At present, the numerical mapping is inured of transform-

ing input gene signal into digital data [14]. The method used for 

mapping is accustomed to exemplify an gene input sequence as 

four numerical sequences. By means of binary mapping, the hap-

pening of nucleotide by a location is specified by 1 and nonexist-

ence as 0. Currently the ensuing sequence is proper for an adaptive 

algorithm as a input. Four numerical gene sequences are used as 

adaptive filter input [15]. At present, proposed AEP based tech-

nique is functional for renovating numerical signals. For instance 

I(n) be the input gene signal, mapping digital signal be M(n), T(n) 

be the confirmed gene signal based on TBP behavior, adaptive 

algorithm output be Y(n) and the signal feedback for apprising 

weight coefficients of the algorithm be F(n). Deliberate an adap-

tive LMS technique with a length equal to ‘R’. The succeeding 

coefficient of weight can be forecasted depending on the present 

coefficient of weight, parameter for step size ‘S’, sequence input 

sample I(n) at the moment and the signal for feedback D(n) 

spawned in the loop of feedback in the presented technique. Alge-

braic relation along with the study of LMS technqiue was ex-

plained in [23]. The block characteristic illustration for probable 

AEP based technique is presented in Figure 1.   

 

 
 

Fig. 1: Block diagram for adaptive exon predictor. 
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Owing to the ease and sturdiness, conservative LMS technique 

might be used in applications of exon identification. In lieu of 

stability along with convergence, filter of LMS requires former 

learning of level of power input to choose the parameter of step 

size. As it is typically one of the unknowns statistically, it is usu-

ally probable afore start of process  for adaptation depending on 

data. On the other hand LMS method vacillates two downsides in 

real situations. This is real that the vector for data input is pro-

portional to apprise way for weight unswervingly, thru witness-

ing the recursion of weight updation of LMS technique. Other 

problem is fixed step size. In real, a technqiue is deliberate in a 

way that, it will knob both resilient and feeble signals. Hence-

forth, tap coefficients must adjust accordingly based on the input 

and output variations of filter. As a result, LMS technique under-

goes a amplification problem of gradient noise, while the data 

input vector is big. Normalization has to be applied to dodge this 

problem. Herewith, the attuned filter vector coefficient for 

weight with regard to Euclidian vector input with squared norm 

is normalized at each iteration.  

 

The update equation for weight of adaptive LMS technique is 

given by  

 

u(n + 1) = u(n) + S I(n)D(n)                                                       (1) 

 

Low complexity in computations for technique with adaptive 

nature is extremely required as part of applications related to 

exon identification to develop devices at a nano scale. Decline is 

mostly gettable thru snipping whichever the data for input or 

response sequence or together. Techniques built on error snip-

ping for data is illustrated in [20]. These are signum regressor 

technique (SRA), signum technique (SA) and signum signum 

technique (SSA). Among the adaptive algorithms, the signum 

methods has a rate of merging along with an error with stable 

state which is marginally lower compared to LMS method for the 

same setting of parameters. The function using signum is written 

as follows.  

 

    C{D(n)} = {
1: D(n) > 0
0: D(n) = 0

−1: D(n) < 0
}                                                         (2) 

 

To reduce the complexity in computations compared 

with LMS adaptive algorithms, we use SRA, SA and SA adap-

tive algorithms. The computational complexity of signum algo-

rithms is more lower than the LMS technqiue. The Data Clipped 

LMS (DCLMS) technique is attained from the conventional re-

cursion of LMS by changing the tap vector input I(n) by the vec-

tor C[D(n)], where signum function C is pragmatic to the vector 

D(n) on element basis. This is also called as clipped LMS as we 

are clipping the input signal data.   

 

The update equation for weight of adaptive CLMS technique is 

reperesented by 

 

u(n + 1) = u(n) + S I(n)C[D(n)]                                                  (3) 

 

The update equation for weight of adaptive ECLMS technique is 

obtained by replacing I(n) with its signed form and is given by 

 

u(n + 1) = u(n) + S C[I(n)]D(n)                                                (4) 

 

Similarly, the weight update relation of DECLMS al-

gorithm is obtained by replacing I(n), D(n) with its signed forms 

and is given by 

 

u(n + 1) = u(n) + S C[I(n)]C[D(n)]                                         (5) 

 

 To daze the amplification problem of gradient noise 

associated with the filter of conventional LMS, the normalized 

filter of LMS presents a own problem, specifically the small 

input tap vector I(n), hitches may arise numerically which can be 

mitigated by dividing a lesser value using a norm in squared 

form. The above recursion can be modified by totaling a low 

positive constant  ε, to overcome this difficulty. The parameter ε 

is chosen in a way to avoid much smaller value in denominator 

and much bigger value for step size parameter. 

 

Now the step size parameter is written as,  

 

S(n) =
S

ε + ||I(n)||2
                                                                          (6) 

 

where S(n) is a step size of normalized nature using 0 <S< 2. 

Changing S in the update expression of LMS for weight vector of 

S(n) results to the DNLMS, which is given as 

 

u(n + 1) = u(n) +
S

||I(n)||2
I(n). D(n)                                       (7)  

 

The denominator of the equation is made to control the conver-

gence with the squared regressor term. This provides the algo-

rithm stability against the signal power. The term δ is unaccus-

tomed for sidestep the problems of stability when sequence con-

tains the zero valued coefficients. Also, this behaves as the vari-

ant form of LMS due to the scaling of the step size and this im-

proves the convergence. The constant in the denominator is in-

troduced to prevent the algorithm to become unstable when the 

squared term tends to become zero. The above algorithm gives 

the reduced error, but the squared term in the denominator will 

increase the number of MAC operations, this increase the com-

plexity and time to converge will increase. To reduce the number 

of computations in [16] and to feat the sparsity prevailing in data 

thru appropriately choosing the taps and weighing on distinct 

basis is proposed to update only required tap coefficients rather 

than all taps of the filter. Weighing is done through use of gain 

matrix, G. This yields a proportionate normalized LMS 

(PNLMS) algorithm.  

 

Now the tap update equation of PNLMS is mathematically repre-

sented as, 

    

u(n + 1) = u(n) +
 SG

ε+(I(n))
T

G I(n)
I(n)D(n)                               (8)  

 

where G is the Gain matrix. Thus the alteration amid PNLMS 

and NLMS is witnessed in rapports of matrix for gain in the frac-

tion part from the above equation. Pertaining to power of signal 

and a trivial co-efficient called factor of leakage based on nor-

malization, ε that is significant to circumvent the stability glitch 

conditioned with signal power attains insignificant value. The 

above procedure reduces the computations involved but not the 

complexity. To reduce the complexity in this paper the sign algo-

rithms are introduced. These algorithms have less convergence 

compared to DNLMS but the complexity reduces and the error 

will be little high. The signum function is successfully used in 

[17]-[19] for accurate prediction of exon location and better con-

vergence. The sign algorithms are of three types, namely sign 

regressor, sign and sign sign algorithms. Therefore, in order to 

curtail the complexity in computations of PNLMS algorithm, 

PNLMS is combined with sign based techniques. Hybrid ver-

sions are named as MNSRLMS, MNSLMS and MNSSLMS 

algorithms.    

 

The update equations for weight of adaptive DCPNLMS, 

ECPNLMS and SSPNLMS algorithms are written as, 

 

u(n + 1) = u(n) +
 SG

ε+(I(n))
T

G I(n)
C[I(n)] [D(n)]                    (9)  
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 u(n + 1) = u(n) +

 SG

ε+(I(n))
T

G I(n)
[I(n)] C[D(n)]                   (10)  

 

u(n + 1) = u(n) +
 SG

ε+(I(n))
T

G I(n)
C[I(n)] C[D(n)]                 (11)  

 

In the equations (8)-(11) the denominator of the normalization 

function requires “R” multiplications. When the filter length is 

large, the normalization function requires many multiplications. 

To avoid these excess multiplications we propose a normaliza-

tion phenomenon, in which only the maximum value of input 

block is utilized for normalization. Using this maximum normal-

ized approach only one multiplication is needed instead of “R” 

multiplications. Using the algorithms mentioned above, computa-

tional complexity is equivalent to “R” MACs is lowered towards 

single multiply and accumulate operation in the denominator by 

regulating size of step by means of an input data vector having 

maximum value. The version is called as a maximum proportion-

ate normalized LMS (MPNLMS) algorithm.  

The weight update equations of these maximum proportionate 

normalized algorithm is given as, 

 

u(n + 1) = u(n) +
SG 

ε+G(max(I(n)))2
[I(n)] D(n)                       (12)  

 

The hybrid versions of MPNLMS with sign algorithms results in 

MDCPNLMS, MECPNLMS and MSSPNLMS algorithms.  

The weight update equations of these maximum proportionate 

normalized signed algorithms are given as, 

 

u(n + 1) = u(n) +
SG 

ε+G(max(I(n)))2
C[I(n)] D(n)                     (13)  

 

u(n + 1) = u(n) +
SG 

ε+G(max(I(n)))2
 I(n) C[D(n)]                    (14)  

 

(n + 1) = u(n) +
SG 

ε+G(max(I(n)))2
C[I(n)] C[D(n)]                  (15)  

 

The proportionate normalized adaptive algorithms enjoy lower 

complexity in computations due to the presence of signum func-

tion in the algorithm. Finally projected techniques are successful-

ly applied on real DNA sequences attained commencing National 

Center for biotechnological information (NCBI) genomic data-

bank besides proved that they are more accurate for gene predic-

tion.  

3. Computational Complexity and Convergence 

 Issues 
 

In general, to compare and estimate algorithm complexity, num-

ber of multiplications required to complete the operation is taken 

as a measure. However, most of the DSP’s have a built in hard-

ware support for multiplication and accumulation (MAC) opera-

tions. Usually they perform this operation in a single instruction 

cycle as well as addition or subtraction. In this paper, we are not 

trying to provide an exact analysis of a computational complexi-

ty; rather we concentrate on presenting a comparison between 

different adaptive algorithms. The computational complexity 

figures required in computation of various algorithms considered 

are summarized in the Table 1. Furthermore, these algorithms 

provide an elegant means for adaptive exon prediction applica-

tions, for instance the projected signum algorithms are chiefly at 

liberty from operation of multiplication.  For example, LMS 

technique entails R+1 MACs for computation of update relation 

for weight. In case of signed regressor algorithm only one multi-

plication and accumulate operation is required to compute 

‘S.D(n)’. Whereas other two signed LMS algorithms does not 

require multiplication if we choose ‘S’ value a power of 2. In 

these cases multiplication becomes shift operation which is less 

complex in practical realizations. In SSA we Apply signum to 

both data and vector, and then we add ‘S’ to weight vector with 

addition with sign check (ASC) operation. Amongst all the tech-

niques PNLMS algorithm is far complex; as this entails 2R+1 

MACs and a division operation for implementation of update 

expression (8) for weight proceeding a processor based on DSP. 

In case of the maximum data clipped proportionate normalized 

LMS (MDCPNLMS) adaptive algorithm, computational com-

plexity is less compared with other normalized algorithms with 1 

MAC and 1 Division operations. It is evident that the shift and 

ASC operations require a lesser amount of circuitry of logic 

while related to MAC operations. However, by using a maximum 

normalization approach, we can minimize multiplications in the 

denominator from ‘R’ to ‘1’.  

 

Related with further normalized technqiues, the MDCPNLMS 

technqiue needs lesser computations. For computing the variable 

step with low complexity in computations, the value of error 

produced in the principal iteration is adjusted and put in storage. 

Error part in next repetition is added to the previously stored 

value and squared. At that moment, result in order to be used in 

the next repetition is stored, and so on.

With the purpose of coping up thru both complexity and issues in 

convergence deprived of restraining tradeoff, the corresponding 

signum based proportionate  normalized and maximum propor-

tionate normalized adaptive algorithms considered using LMS 

are Proportionate Normalized LMS (PNLMS), Data Clipped 

Proportionate Normalized LMS (DCPNLMS), Error Clipped 

Proportionate Normalized LMS (ECPNLMS), Sign Sign Propor-

tionate Normalized LMS (SSPNLMS), Maximum Proportionate 

Normalized LMS (MPNLMS), Maximum Data Clipped Propor-

tionate Normalized LMS (MDCPNLMS), Maximum Error 

Clipped Proportionate Normalized LMS (MECPNLMS), and 

Maximum Sign Sign Proportionate Normalized LMS (MSSP-

NLMS) algorithms. All these proposed algorithms provide lower 

complexity in computations for the reason that the presence of 

signum function in the technique and upright capability of filter-

ing due to normalization term. These proportionate normalized 

and maximum proportionate normalized adaptive algorithms 

offers low computational complexity and good filtering capabil-

ity compared to conventional LMS adaptive algorithm. The less 

complexity in computations of these adaptive algorithms leads to 

streamlined architecture aimed at lab on chip (LOC) or system on 

chip (SOC). 

Curves for convergence for PNLMS with signum alternates are 

shown in Figure 2. Here, DCPNLMS is marginally lesser than 

PNLMS is evident. By reason of normalization in signum func-

tion is sensible to vector of data as well as normalization imple-

mented above size of the step. Most important pro for 

DCPNLMS stands signum regressor job for multiplication opera-

tions are length liberated of the filter. Operations of sign regres-

sor requires lone single multiplication. In this way, DCPNLMS 

performance is very near to PNLMS owing to dual normaliza-

tions made to lessen the multiplications by “R” amount, while, 

performance of SSPNLMS and ECPNLMS is improved com-

pared to traditional LMS technique because of normalization, 

nevertheless lower than PNLMS and DCPNLMS technqiues as a 

result of error clipping that is accountable for updation of weight. 

Likewise, Figure 2 also displays the convergence curves for 

MPNLMS and the sign variants. Henceforth, normalization for 

size of the step accomplished using single portion in concert of 

MPNLMS along with alternates of signum function were poorer 

compared to PNLMS along with alternates of signum function. 

Residual facets for PNLMS seem effective than MPNLMS along 

with its alternates. 
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Fig. 2: Convergence characteristics of proportionate normalized LMS and its maximum proportionate normalized variants. 

4. Results and Discussion 

Here, the performances of several AEPs are presented and com-

pared. The arrangement of proposed AEP is presented in Figure 

1. Proportionate LMS with normalization and maximum propor-

tionate normalized LMS algorithm with signum forms were ac-

customed for development of many AEP techniques. With the 

intent of assessment, an AEP based on LMS technique was pre-

sented in this work.  In lieu of assessment, ten gene sequences 

were retrieved from NCBI gene databank [24]. Intended for uni-

formity of outcomes, performance of several algorithms is evalu-

ated thru consideration of ten gene sequences for analysis. Ex-

planation of databank deliberated was presented in Table 

1.Performance measure is conceded expending factors like sensi-

tivity (Sn), specificity (Sp) and precision (Pr). Expressions along 

with theory intended for the metrics were specified part of [18] 

[23].  Fallouts of locating the exon positions for gene signal 5 are 

presented part of Figure 3. Evaluation metrics Sn, Sp and Pr are 

restrained at threshold values from 0.4 to 0.9 with an interim of 

0.05. At threshold value of 0.8 the exon identification is likely to 

be improved. Therefore, the vaues at threshold 0.8 are presented 

in Table 2. 

 
Table 1: DNA sequences dataset from NCBI databank 

Seq. no. Accession no. Sequence description 

1 E15270.1 Osteoclast genesis inhibitory factor (OCIF) of human gene 

2 X77471.1 Human tyrosine aminotransferase(tat) gene 

3 AB035346.2 T-cell leukaemia/lymphoma 6(TCL6) Homo sapiens gene 

4 AJ225085.1 Fanconi anaemia group A(FAA) Homo sapiens gene 

5 AF009962 CC-chemokine receptor (CCR-5) Homo sapiens gene 

6 X59065.1 Human acidic fibroblast growth factor(FGF) Homo sapiens gene 

7 AJ223321.1 Transcriptional repressor(RP58) Homo sapiens gene 

8 X92412.1 Titin (TTN) Homo sapiens gene 

9 U01317.1 Sequence on chromosome 11 for Human beta globin 

10 X51502.1 Gene for prolactin-inducible protein (GPIPI) for Homo sapiens 

 

The steps for adaptive exon prediction are presented below:  

 

a) DNA input sequences are selected from NCBI genome da-

tabase. Using numerical technique of mapping, convert 

DNA sequence to numerical data. Provide attained digital 

data input given for structure of adaptive exon predictor as 

presented part of Figure 1.  

b) A genomic sequence conforming base three periodicity 

specified to the adaptive exon predictor as a reference sig-

nal. 

c) As depicted in Figure 1, a signal as feedback that is pro-

duced is used to apprise coefficients of filter.  

d) The signal for feedback when turn out to be least, location 

of the exon region sequence is predicted precisely.  

e) With help of power spectral density, location of the antici-

pated exon region is plotted. Performance metrics like Sn, 

Sp and Pr are calculated.  

Figure 3 illustrates foreseen positions of the exon seg-

ments of sequence 5 applying several adaptive technqiues. 

Commencing these figures, it is vibrant that the LMS AEP has 

not predicted the exon segments correctly. This technique origins 

few uncertainties in exon prediction by detecting few intron 

segments. In Figure 3 (a) few adverse peaks are recognized at 

locations 1200th, 2300th and 3700th values of the sample. In 

unison, authentic position of required exon 4084-4268 was not 

forecasted. Prediction measures such as sensitivity, specificity 

and precision of PNLMS, DCPNLMS, ECPNLMS and SSP-

NLMS algorithms are observed as inferior than LMS adaptive 

algorithm where these are much better in case of maximum pro-

portionate normalized algorithms. In the case of maximum pro-

portionate normalized forms, the MPNLMS, MDCPNLMS, 

MECPNLMS and MSSPNLMS methods unerringly anticipated 

the true position of exon region at 4084-4268 thru decent PSD 

intensity are observed. The PSDs are shown in    Figures 3 (f), 

(g), (h) and (i). Because of the normalization involved in these 

algorithms the tracking capability of these algorithms is better 

than LMS technique. Among these four algorithms MDCPNLMS 

is found to be better in connection with its complexity in compu-

tations along with characteristics of convergence. This algorithm 

needs less number of multiplications. The number of multiplica-

tions involved in this algorithm is independent of tap length of 

AEP. The convergence characteristics of MDCPNLMS are better 

than other normalized algorithms, though its performance 

measures are a bit inferior to PNLMS, MPNLMS, and 

MDCPNLMS algorithms. In the case of all proposed AEPs, the 

exon identification performance is superior to LMS and added 

normal signed variants. Consequently, depending on computa-

tional complexity, convergence characteristics, plots for exon 

identification, Sn, Sp and Pr calculations, it is found that 

MDCPNLMS based AEP is found to be the better candidate in 

practical applications.  
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Fig. 3: Location of exons predicted using various proposed AEPs for genomic sequence with accession AF009962 (a). LMS based AEP, (b). PNLMS 

based AEP, (c).  DCPNLMS based AEP, (d). ECPNLMS based AEP, (e). SSPNLMS based AEP, (f). MPNLMS based AEP (g).MDCPNLMS based AEP, 

(h). MECPNLMS based AEP and (i). MSSPNLMS based AEP

5. Conclusions 

In this paper, the problem of identifying exons in a DNA sequence 

is illustrated. The concept of predicting the exact location of exons 

has several applications in current health care technology. At this 

point, we considered adaptive exon prediction techniques. To 

fulfill this we considered proportionate normalized and maximum 

proportionate normalized adaptive LMS algorithms to minimize 

the number of computations. In an attempt to further condense 

complexity in computations for projected implementations, we 

introduced the concept of proportionate normalization in addition 

to conventional LMS. To further minimize the complexity in 

computations, acclaimed PNLMS technqiue was united by signum 

based and maximum proportionate normalized signed algorithms. 

As a result eight novel algorithms that are amalgam in nature are 

considered and developed for predicting the exon segments in 

gene sequences. The hybrid variants are PNLMS, DCPNLMS, 

ECPNLMS, SSPNLMS, MPNLMS, MDCPNLMS, MECPNLMS 

and MSSPNLMS are considered for the current implementation. 

Different AEPs are developed and tested using these eight algo-

rithms on real DNA sequences obtained from NCBI genome data-

base. This is evident that MDCPNLMS AEP is improved in exon 

prediction applications, based on the convergence characteristics 

shown in Figure 2. This is also clear from the performance metrics 

charted as part of Table 3 along with the PSD for locating the 

exons is illustrated in Figure 3. Proposed AEPs exactly predicted 

the exon locations at 4084-4268 with good intensity as shown in 

PSD plot. The proposed MDCPNLMS based AEP based realiza-

tion provides superior performance in terms of computational 

complexity based on performance measures with Sensitivity 

0.7346, Specificity 0.7483 and precision 0.7325 obtained for a 

genomic sequence 5 with accession AF009962 as shown in Table 

3 at a threshold value of 0.8. Therefore, the proposed normalized 

based AEPs are apt for real-world gene applications in developing 

the Nano devices, LOCs, and SOCs. 
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Table 2. Performance measures of various AEPs with respect to Sn, Sp and Pr calculations. 
 

Seq. No. Parameter LMS PNLMS DCPNLMS ECPNLMS SSPNLMS MPNLMS MDCPNLMS MECPNLMS MSSPNLMS 

1 

Sn 0.6286 0.7928 0.7772 0.7595 0.7381 0.7492 0.7407 0.7316 0.7202 

Sp 0.6435 0.7821 0.7636 0.7532 0.7265 0.7484 0.7323 0.7165 0.7112 

Pr 0.5922 0.7937 0.7623 0.7467 0.7388 0.7565 0.7452 0.7356 0.7223 

2 

Sn 0.6384 0.7824 0.7635 0.7569 0.7297 0.7491 0.7456 0.7232 0.7118 

Sp 0.6628 0.7932 0.7741 0.7575 0.7386 0.7485 0.7423 0.7376 0.7211 

Pr 0.5894 0.7836 0.7624 0.7515 0.7226 0.7463 0.7342 0.7157 0.7106 

3 

Sn 0.6457 0.7928 0.7782 0.7593 0.7381 0.7492 0.7417 0.7346 0.7206 

Sp 0.6587 0.7821 0.7636 0.7582 0.7265 0.7382 0.7123 0.7165 0.7112 

Pr 0.5934 0.7834 0.7723 0.7567 0.7388 0.7564 0.7432 0.7356 0.7223 

4 

Sn 0.6273 0.7945 0.7736 0.7535 0.7357 0.7438 0.7357 0.7274 0.7214 

Sp 0.6405 0.7824 0.7635 0.7589 0.7297 0.7591 0.7356 0.7232 0.7118 

Pr 0.5858 0.7937 0.7741 0.7575 0.7386 0.7485 0.7343 0.7276 0.7211 

5 

Sn 0.6481 0.7834 0.7624 0.7515 0.7326 0.7463 0.7346 0.7157 0.7106 

Sp 0.6518 0.7928 0.7712 0.7595 0.7361 0.7592 0.7483 0.7246 0.7202 

Pr 0.5904 0.7821 0.7636 0.7582 0.7365 0.7482 0.7325 0.7165 0.7112 

6 

Sn 0.6162 0.7945 0.7741 0.7536 0.7386 0.7525 0.7353 0.7276 0.7211 

Sp 0.6324 0.7834 0.7624 0.7415 0.7326 0.7563 0.7442 0.7257 0.7206 

Pr 0.5786 0.7928 0.7724 0.7584 0.7331 0.7592 0.7387 0.7146 0.7102 

7 

Sn 0.6193 0.7824 0.7624 0.7487 0.7292 0.7574 0.7476 0.7183 0.7121 

Sp 0.6529 0.7945 0.7736 0.7535 0.7357 0.7538 0.7357 0.7274 0.7214 

Pr 0.5896 0.7843 0.7626 0.7478 0.7262 0.7586 0.7374 0.7152 0.7097 

8 

Sn 0.6241 0.7982 0.7732 0.7582 0.7362 0.7587 0.7252 0.7195 0.7122 

Sp 0.6289 0.7836 0.7645 0.7454 0.7281 0.7564 0.7312 0.7281 0.7215 

Pr 0.5856 0.7954 0.7728 0.7572 0.7325 0.7567 0.7353 0.7257 0.7106 

9 

Sn 0.6268 0.7824 0.7635 0.7489 0.7297 0.7591 0.7356 0.7232 0.7118 

Sp 0.6452 0.7937 0.7741 0.7475 0.7286 0.7485 0.7343 0.7176 0.7101 

Pr 0.5814 0.7834 0.7624 0.7515 0.7226 0.7563 0.7442 0.7257 0.7206 

10 

Sn 0.6202 0.7923 0.7772 0.7527 0.7381 0.7592 0.7387 0.7146 0.7102 

Sp 0.6465 0.7821 0.7636 0.7482 0.7265 0.7482 0.7323 0.7265 0.7212 

Pr 0.5786 0.7934 0.7723 0.7567 0.7388 0.7564 0.7452 0.7256 0.7228 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


