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Abstract 
 

The effect of reversible phase exchange between the flowing fluid and wall tissues of arteries in the unsteady dispersion of solute in blood 

flow through a narrow artery is analysed mathematically, modelling the blood as Casson fluid. The resulting convective diffusion equation 

along with the initial and boundary conditions is solved analytically using the derivative series expansion method. The expressions for the 

negative asymptotic phase exchange, negative asymptotic convection, longitudinal diffusion coefficient and mean concentration are ob-

tained. It is noted that when the solute disperses in blood flow through a narrow artery, the negative exchange coefficient, the negative 

convection coefficient increase and the longitudinal diffusion coefficient decreases with the increase of the Damköhler number and partition 

coefficient. 
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1. Introduction 

Taylor [1] was the first researcher who theoretically analysed the 

solute dispersion in a laminar flow through a circular pipe. Several 

researchers [2-5] extended his study by incorporating various phys-

ical parameters. Gill and Sankarasubramanian [5] introduced gen-

eralized dispersion model (GDM) to demonstrate the whole disper-

sion process. Reversible phase exchange is an exchange process be-

tween the fluid and thin tissue layer at the vessel wall which is an 

important physical phenomenon. The studies pertaining to reversi-

ble reactions were taken up by several researchers [6], [7]. It is well 

known that the phenomena of the solute dispersion in a solvent flow 

in the presence of phase exchange between the flowing fluid and 

vessel wall has several physical applications, one such application 

is the dispersion of medicines in blood flow in arteries. The previ-

ous literatures used Newtonian fluid modelling blood when it flows 

through larger arteries at high shear rates [8]. Casson fluid is a non-

Newtonian fluid model which is suitable for representing blood 

when it flows through narrow arteries at low shear rates [9]. Hence, 

in this paper, we mathematically analyze the solute dispersion in 

blood flow through narrow arteries in the presence of phase ex-

change between the flowing fluid (blood miscible with solute) and 

the thin tissue layer at the wall of the artery, treating the blood as 

Casson fluid model.  

2. Mathematical formulation 

Consider the unsteady dispersion of solute in the axi-symmetric, 

steady, laminar and fully developed unidirectional flow of blood 

through a circular pipe (narrow artery), treating the blood as Casson 

fluid. The geometry of fluid flow through a circular pipe is shown 

in Fig. 1. Cylindrical polar coordinate system (r ̅,,̅ z̅) is used to an-

alyze the flow in a circular pipe, where  ̅ is the azimuthal angle, r ̅ 

and z̅ are the coordinates in the radial and axial directions, respec-

tively. 

 

 
Fig. 1: The Geometry of Fluid Flow in A Circular Pipe. 

2.1. Governing equations 

The unsteady convective-diffusion equation for flow in a circular 

pipe is given by [9]  
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where C(r ̅, z̅, t)̅is the concentration of the solute and t̅ is the time 

variable with the non-uniform initial condition [10] 

 

C̅(r ̅, z̅,0) = {
C̅0Y̅1(z̅)Y̅2(r ̅) if |z̅| ≤ z̅s 2,⁄

0 if |z̅| > z̅s 2,⁄
                                     (2) 
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Where C̅0  is the reference concentration, Y̅1(z̅) and Y̅2(z̅) are the 

separable function of z̅ and r ̅ as given by 

 

Y̅1(z̅) =   2 ,a z d                                                                    (3) 
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                                                             (4) 

 

Where δ̅(z̅) is the Dirac delta function and d̅ is the cross-section of 

circle of radius concentric with the pipe. The boundary conditions 

of (1) with the reaction at the wall are  

 

 =
m s s

D C r C t k C C        at ,r a                                 (5) 

 

0C r    at 0,r                                                                        (6) 

 

   , , , , 0,C r t C z r t                                                         (7) 

 

 0, , finite,C z t                                                                            (8) 

 

Where k̅ is the reaction rate and σ̅ = (C̅s C̅⁄ )equilibrium is the equilib-

rium partition coefficient between the blood and wall.  

2.2. Non-dimensional variables 

Let us introduce the following non-dimensional variables: 
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Where r̅p is plug core radius. The non-dimensional form of Eq. (1) 

is 
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The non-dimensional form of Eqs. (2), (5)-(8) are 
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0C r    at 0,r                                                                      (15) 

 

   , , , , 0,
C

C r t r t
z


   


                                                          (16) 

 

 0, , finite.C z t                                                                           (17) 

3. Method of solution 

3.1. Dispersion functions and coefficients 

The solution of (10) subject to the (11) and (14)-(17) is [15] 
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Where fi is the dispersion function, z1 is a new axial coordinate and 

Cm is the mean concentration of solute given by  
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We expand the mean concentration as [6] 
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Where Ki are the dispersion coefficients and are given by 
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With the Kronecker delta ij. Substituting (18) and (20) into (10) 

and grouping the coefficients of 
1
,i i

m
C z   we have 
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Where f-1 = f-2 = 0. In(22), to find Ki, we need fi . Use of Eq. (18) in 

Eqs. (11), (14), (17) and (19), (22) yields the respective initial, 

boundary and solvability conditions 
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Setting 0i   in Eq. (22), we get the differential equation for 
0

f  as 
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With the initial and the solvability conditions 
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Solving Eq. (27) using the variable separable method subject to 

Eqs. (24), (25), (28) and (29), the solution of  0
,f r t  is found as 
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Where 
s

  is the root of the transcendental equation  
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As f0(r, t) is known, K0(t) is obtained from Eq. (21) as below: 
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Since the computations of the higher order f1, f2,… and K1, K2,… 

have difficult integral equations, the asymptotic computation has 

been used to give beneficial physical insight into the nature of the 

problem [6]. At large time, expanding Eq. (30) and ignoring the 

negligibly small terms in Eq. (30) yields 
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Applying Eq. (32) in Eq. (33), K0 at large time is obtained as 
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Where is the first root of Eq. (31). Using Eq. (35) in Eq. (22), we 

obtain the following differential equation at large time for fi(r): 
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And using Eq. (35) in Eqs. (24), (25) and (26), we obtain the fol-

lowing conditions: 
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Note that Kj’s in Eq. (36) are the constant steady-state (t → ∞) val-

ues. Multiplying both sides of Eq. (21) by rJ0(μ0r) and then inte-

grating it with respect to r and applying the orthogonal property of 

Bessel function and using Eqs. (34) and (39), we get Ki as below: 
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In order to get the solution of longitudinal convection coefficient 

K1, we apply i = 1 in (34) and using Eq. (40), we get 
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Thus, Eq. (36) is reduced to 

 

         21

0 1 0 1 0

1 fd
r r f r u r f r K f r

r dr r


 
   

 
                           (42) 

 

And the respective boundary and solvability conditions reduce to 
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Using Eqs. (41), (43)-(45), the solution of Eq. (42) is obtained as 
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Using Bessel properties, we get Bs, as  
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Once f1 is known, the longitudinal diffusion coefficient K2 can be 

obtained as below by setting i = 2 in Eq. (40): 
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3.2. Mean concentration 

Expanding Eq. (20) and then neglecting the terms K3(t), K4(t),… 

(since the magnitude of these terms are negligibly small), one can 

obtain 
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Substituting Eqs. (11) and (16) into (19), we get the following ini-

tial and boundary conditions:  
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The solution for Cm (z, t) is obtained as below by solving Eq. (49) 

subject to the conditions (50) and (51) and using Fourier Transform 

(FT) method: 
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Where 
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4. Results and discussions 

The objective of this paper is to discuss the effects of various pa-

rameters on the negative asymptotic phase exchange, negative as-

ymptotic convection, longitudinal diffusion coefficients and mean 

concentration.  

4.1. Negative exchange coefficient 

The variation of negative asymptotic exchange coefficient (-K0) 

with Damköhler number (Da) for different values of partition coef-

ficient  is shown in Fig. 2. It is noted that (-K0) increases very 
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rapidly with the increase of Da from 0 to 10 and then it increases 

very slowly (almost constant) from 10 to 100. It is also observed 

that (-K0) increases when  increases due to the increasing of the 

molecules reaction at the wall, thus, the solute exchange becomes 

faster. At quite large value of Da and , (-K0) becomes effective 

when a high amount of the solute has been exchanged to the wall 

tissues of blood vessels and less amount of solute at the central re-

gion. 

 

 
Fig. 2: Variation of (-K0) with Da for different values of  

4.2. Negative asymptotic convection coefficient 

The variation of negative asymptotic convection coefficient (-K1) 

with Damköhler number Da for different values of partition coeffi-

cient  and yield stress rp is depicted in Fig. 3. It is noticed that (-

K1) increases when Da and increase and it tends to be a constant 

when the value of Da is large (Da >). It is also clear that (-K1) 

decreases when rp increases because when rp increases, the accu-

mulation of red blood cells at the centre increase and thus, the ve-

locity tends to decrease and it slows down the convection process. 

The plot of (-K1) for Newtonian fluid (rp = 0) without the phase 

exchange ( = 0) is in good agreement with the corresponding plot 

given in Gill and Sankarasubramanain [5]. 

 

 
Fig. 3: Variation Of (-K1) With Da for Various Values of  and Rp. 

4.3 Longitudinal diffusion coefficient 

Fig. 4 shows the variation of the longitudinal diffusion coefficient 

(K2-1/Pe2) x103 with Damköhler number Da for different values of 

partition coefficient . It is seen that the (K2-1/Pe2) x103 decreases 

very rapidly with the increase of Da from 0 to 20 and then it de-

creases slowly from when Da increases from 20 to 100. It is also 

found that the (K2-1/Pe2) x103 decreases with the increase of . It 

is of interest to note that the plot of  (K2-1/Pe2) x103 for Newtonian 

with  = 0 is in good agreement with the corresponding plot in Gill 

and Sankarasubramanian [5]. 

 

 
Fig. 4: Variation of (K2-1/Pe2) 103 with Da for Different Values of  and 

Rp. 

4.4. Mean concentration of solute 

Fig. 5 depicts the variation of Cm×Pe with time t at z = 0.5 for dif-

ferent values of Da, and rp. In an early period of time, Cm×Pe 

increases rapidly and reaches the maximum value at the middle of 

the period and then it falls suddenly. The peaks in the graph show 

an effective Cm×Pe and it helps us to predict the time to achieve 

effective Cm×Pe in Casson fluid as 0.3 and Newtonian fluid as 0.1. 

 

 
Fig. 5: Variation of Cm×Pe with Da for Different Values of  And Rp. 

5. Conclusions 

This study investigates the effects of yield stress and reversible re-

actions at the wall on the phase exchange, convection, longitudinal 

diffusion coefficients and mean concentration of the solute. The 

major findings of this study are summarised below: 

• The negative exchange coefficient, the negative convective 

coefficient increase and the longitudinal diffusion coefficient 

decreases with the increase of the Damköhler number and 

partition coefficient. 

• The negative exchange coefficient, the negative convective 

coefficient and the longitudinal diffusion coefficient decrease 

with the increase of yield stress. 

In view of the results obtained, this study may be considered as an 

improvement in the studies of solutes dispersion in blood flow 

through arteries with reversible reaction at the wall of the artery. 
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