

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestrict-

ed use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.16) (2018) 57-60

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research Paper

FPGA Prototyping of Micro-Blaze soft-processor based

Multi-core System on Chip

G. Prasad Acharya1*, M. Asha Rani2

1Sreenidhi Institute of Science and Technology, Yamnampet, Hyderabad, Telangana, India

2JNTUH College of Engineering, JNTUH University, Kukatpally, Hyderabad, Telangana, India

*Email: gpacharya@sreenidhi.edu.in

Abstract

The increased demand for processor-level parallelism has many-folded the challenges for SoC designers to design, simulate and veri-

fy/validate today’s Multi-core System-On-Chip (SoC) due to the increased system complexity. There is also a need to reduce the design

cycle time to produce a complex multi-core SOC system thereby the product can be brought into the market within an affordable time.

The Computer-Aided Design (CAD) tools and Field Programmable Gate Arrays (FPGAs) provide a solution for rapidly prototyping and

validating the system. This paper presents an implementation of multi-core SoC consisting of 6 Xilinx Micro-Blaze soft-core processors

integrated to the Zynq Processing System (PS) using IP Integrator and these cores will be communicated through AXI bus. The function-

ality of the system is verified using Micro-Blaze system debugger. The hardware framework for the implemented system is implemented

and verified on FPGA.

Keywords: Multi-core System-on-chip, FPGA, Micro-Blaze, IP integrator

1. Introduction

Today’s demand for high speed, high system integration and low

power consumption in electronic systems are well complemented

by the development of programmable devices like CPLDs and

FPGAs. The computational speed of a processor can be enhanced

in two ways (i) Instruction-Level Parallelism (ILP) and (ii)

Thread-Level Parallelism (TLP). The single processor based sys-

tem utilizes ILP uses instruction pipeline that fetches instruction

while previous instructions are decoded and executed. The pipe-

lining and superscalar architectures are based on ILP. The multi-

processing and/or multitasking processors utilize multiple pro-

cessing elements to perform the given task in parallel. These pro-

cessors use the TLP mechanism to enhance the speed of execution

speedup. The Latest FPGA devices provide a prototyping platform

[2-3] for highly parallel and distributed Multi-core System on

Chip (SoC) that exploits processor-level (hardware) parallelism.

Due to its ability of utilizing multiple processors for parallel exe-

cution of given task, the multi-core SoC may work with lower

frequencies thereby reducing the power consumption without any

degradation on system performance.

The FPGA based multi-core SoCs [1,4,5] are developed using a

new approach called Hardware/Software Co-Design approach that

allows greater design flexibility and scalability, reduced design

cycle time and cost. Due to these advantageous features, the num-

ber of researchers working on this design approach has been in-

creased significantly. These MPSoC architectures are broadly

categorized as heterogeneous and homogenous architectures. The

heterogeneous architecture integrates a number of processors with

different capabilities on a single chip. Each processor is dedicated

for performing a specialized functionality thereby improving the

overall system performance. The homogeneous architecture inte-

grates a number of identical processors onto a single integrated

circuits die that allows execution of various data independent task

in parallel.

This paper is organized as follows: The concept and the architec-

ture of homogenous multiprocessor system are presented in sec-

tion 2. Section 3 describes the implementation details of Micro-

Blaze based multiprocessor system while Section 4 presents the

Hardware/Software Co-design of the proposed multi-core SoC.

Section 5 presents an application that was developed to verify the

functionality in both the platforms: FPGA board and SDK plat-

form. Finally the conclusion and proposed further extension of the

work is presented in Section 6.

2. Multi-core System on Chip Architecture

The performance of a processor has traditionally been enhanced

by increasing the processor’s operating (clock) frequency. This

approach has been stalled over the years as it increases the proces-

sor’s power consumption as well as the core complexity and clock

issues with multiple clock domains because the various compo-

nents of the processor need to operate at different clock frequen-

cies. The other approach for maximizing the performance of a

microprocessor involves Instruction-Level Parallelism (ILP).

2.1 Instruction-Level Parallelism and Thread-Level Parallel-

ism

The ILP facilitates parallel execution of instructions in at soft-

ware-level and hardware-level. The software-level parallelism

utilizes instruction pipeline that fetches instructions from memory

while previous instructions are being decoded and executed by

other units of the processor. This kind of architecture is also re-

ferred as pipelined architecture. The hardware level works upon

dynamic parallelism wherein the CPU decides at run time the

instructions that can be executed in parallel. This kind of architec-

ture is referred as superscalar architecture.

http://creativecommons.org/licenses/by/3.0/

58 International Journal of Engineering & Technology

The increased system complexity and data dependencies issues of

ILP has led to the development of multi-core SoC which integrates

multiple cores/processors onto a single processor die that exploits

Thread (Processor)- Level Parallelism. The TLP architectures

utilizes multi-core/processor CPU architecture which consist of

multiple processing elements, each capable of executing instruc-

tions in parallel, thereby increasing the system performance.

2.2 Homogenous vs Heterogeneous MPSoC

The multi-core processors are classified into Homogenous (sym-

metric) and Heterogeneous processors. The homogeneous multi-

processor architecture provides a much simpler platform on which

to build applications in which all processors are identical. Figure 1

(a) demonstrates the architecture of homogenous multi-processor

system which consists of four identical processor cores that are

interconnected through the Processor Interconnect Fabric. The

major advantages of homogenous multicore processor is that each

core is capable of replicating any other core thus by enabling load

sharing among the cores thereby providing symmetric operation.

The heterogeneous multi-processor architecture as shown in Fig-

ure 1 (b) has multiple processing cores each of which are having

specialized capabilities and hence can provide opportunities to

improve performance and efficiency. Since each processor in

HMA is specialized for a different type of workload, this architec-

ture may hence restrict the sharing the workloads among the avail-

able processors.

(a) Homogenous multi-core architecure

(b) Heterogenous multi-core architecure

Figure 1: Multi-core processor architectures

2.3 Architectural concepts of multi-core SoC

The development of semiconductor technology has allowed the

designers to integrate multiple processor cores onto a Multi-core

SoC [11]. The multi-core SoC technology provides the following

architectural support by which the performance of the processor

can be greatly improved within acceptable power consumption

and chip-area.

Multiple cores

Most of the current general-purpose multi-core SoCsare symmet-

ric in terms of instruction set and performance. A homogeneous

architecture with shared global memory has been undoubtedly

becoming popular and more effective for parallelism. In contrast

to homogenous architecture, a heterogeneous architecture inte-

grates multiple cores into a single Silicon die that may differ in at

least two of the following architectural features: Instruction Set

Architecture (ISA), functionality and performance. The multi-core

SoCs are based on Instruction Level Pipelining (ILP) architectures

wherein instructions are decoded and executed in stages so that the

overall throughput can be enhanced. The effectiveness of ILP

based multi-core SoC is limited by data dependencies among the

instructions and the number of instructions that can be executed in

parallel. These drawbacks of ILP based multi-core SoC shall be

countered by simultaneous multithreading using Thread-Level

Pipelining (TLP) architectures. The TLP architecture that inte-

grates multiple processor cores is capable of executing instructions

in parallel.

Interconnection Networks

Sharing a common bus by all the processors has been a common

and historical way of interconnecting the individual processors in

a shared memory multiprocessor. The shared bus provides a

broadcast medium of communication among the processors and is

responsible for cache coherency. Each processor is provided with

one or two levels of local cache memory between the shared bus

and the processor to keep the record of I/O traffic.

Memory Controllers

The memory controller is a separate IC or integrated with another

IC that controls the transfer of data among the individual proces-

sors, shared memory and I/O devices. Dynamic Random Access

Memories (DRAMs) are used for the storage of user data and the

main purpose of DRAM controller is to increase the throughput of

the shared memory in the TLP environment rather than low laten-

cy.

Shared Memory Support

The shared memory provides a communication platform for the

processor cores among themselves by accessing the necessary data.

These processor cores will be communicating over the intercon-

nection network as discussed earlier. The shared memory space

facilitates the migration from a sequential programming model to

a parallel one. Most of the general-purpose SoCs today support a

shared memory between cores and maintain a cache-coherent

memory system. The cache coherency is the technique that ena-

bles the processors to read data from shared memory and copy it

in its local cache while still maintaining consistency when shared

variables are updated by some other processors.

3. Micro-Blaze Based Multi-Core SOC

This paper is aimed to design and implement a prototype of a

basic Micro-Blaze based Multi-core SoC [8, 12] whose block

diagram layout is as shown in Figure 2. It consists of a Zynq Pro-

cessing System (PS) and six Micro-Blaze soft-core IPs. The Zynq

PS is a feature-rich hard dual-core ARM Cortex-A9 Application

Processor Unit (APU) which can run a variety of Real-Time Oper-

ating Systems and provides a strong processor candidature in to-

day’s latest SoCs for high end embedded applications such as

industrial automation, video surveillance and so on. The Micro-

Blaze processor [7] is an optimized and completely programmable

soft core Intellectual Property (IP) for implementing in Xilinx

Field Programmable Gate Arrays (FPGAs) and is based on Re-

duced Instruction Set Computer (RISC) architecture. This proto-

type model of multi-core SoC has other basic components like

Processor System Reset, Micro-Blaze Debug Module (MDM) and

AXI peripheral Interconnect through which the PS, Micro-Blaze

International Journal of Engineering & Technology 59

cores and other modules will communicate with each other. The

processor cores are optionally provided with associated Local

Memory blocks and these memories are also optionally equipped

with Error Correction Capabilities (ECC).

Figure 2: Proposed Xilinx Micro-Blaze soft core based MPSoC

4. Micro-Blaze Based Multi-Core SoC

The multi-core SoC architectures are developed using hard-

ware/software co-design approach [6, 9, 13] that improves the

processing speed, cost and time to market. This approach is based

on the reuse of predesigned and pre-verified commercially availa-

ble third party IPs that helps in improving the overall performance

and system reliability. The hardware part of this approach in this

work include the design of MPSoC in Zynq FPGA that utilizes the

ARM Cortex-A9 MP as a hard core processor, Micro-Blaze soft

core processors [13-14] and other glue logic. A software applica-

tion can be developed for the hardware using any of high level

programming languages C, C++. After Hardware/Software parti-

tioning, Hardware and software parts of the co-design are devel-

oped concurrently and then integrated to meet the design function-

ality and specifications. The design flow for the hard-

ware/software co-design is illustrated in Figure 3.

4.1 FPGA implementation of Multi-core SoC Hardware

The 7000-series Xilinx Zynq FPGA [10, 16] has been selected as

the target device for prototyping the system. The Zynq-7000 as

shown in Figure 4, integrates a powerful dual core ARM Cortex-

A9 Microprocessor as a hardcore Processing System and FPGA

fabric as the Programmable Logic (PL) area [17]. The PS provides

a platform for software developers to develop software applica-

tions as a standalone ARM processor that can run a wide variety

of operating systems. The FPGA fabric can be used to develop and

implement a wide variety of hardware logic ranging from smaller

designs (like adders, counters etc.) to a more complex embedded

processor that may integrate one or more soft core IPs, memory

IPs and I/O peripherals.

The proposed MPSoC shown in Figure 2 integrates six Xilinx

Micro-Blaze soft cores in the FPGA fabric where each Micro-

Blaze core will function as an individual processor. These proces-

sors will communicate with each other along with the PS and oth-

er peripherals via AXI Peripheral Interconnect. A debug module

with six ports is integrated by which each of the Micro-Blaze pro-

cessors can be debugged via the corresponding debug port. The

block level design for the proposed MPSoC system is created

using IP Integrator and validated in Xilinx Vivado environment

15]. HDL wrapper for the block design is then generated and syn-

thesized using Vivado synthesis tool. The synthesized Vivado

checkpoint is implemented in the target device and the bitstream is

generated. The device (7-series Zynq FPGA) utilization summery

for the implemented MPSoC is given in the Table 1.

4.2 SDK environment and Software Application

Xilinx Software Development Kit (XSDK) is available either as

an integral part of Vivado Design Suite or as a separate embedded

software. The XSDK provides an Integrated Design Environment

for software developers to create embedded applications on

MPSoC developed using Xilinx's All Programmable SoCs and

Micro-Blaze soft-core microprocessors. In the present work, we

have developed an embedded software application to implement

an arithmetic and logic unit (ALU). We have run this application

in all the integrated Micro-Blaze cores one after another. The ap-

plication program has been debugged using an integrated Micro-

Blaze Debug Module (MDM) and verified its functionality. All

the ARM CPUs and Micro-Blaze soft-processors can be debugged

in a single debug session using a single JTAG cable.

Figure 5 shows the snapshot of debugging process for the ALU

functionality written as application software that can be run either

on any or all of the Micro-Blaze processors. The figure shows the

debugging of the program on MicroBlaze0 wherein num and

num2 are the inputs for the ALU and the variable are labeled as

alu_output_add, alu_output_sub, alu_output_mult and

alu_output_div are the outputs of the ALU for addition, subtrac-

tion, multiplication and division respectively.

Figure 3: Hardware/software co-design flow

Figure 4: Zynq® 7000 All Programmable SoC Architecture (Courtesy:
www.xilinx.com)

http://www.xilinx.com/

60 International Journal of Engineering & Technology

Table 1: Device Utilization Summery

S. No Resource type Available Used % of

utilization

1 LUT as Logic 53200 15678 25.14

2 LUT as memory 17400 2301 13.22

3 Slice registers 106400 17391 13.22

4 Multiplexers 26600 683 2.57

5 Block RAMs 140 54 38.57

6 DSPs 220 6 2.73

7 Bonded IOBs 200 21 10.5

4. Conclusion and further work

The work presented in this paper has demonstrated the use of Xil-

inx’s Vivado Tool as Computer Aided Design (CAD) tool for

Hardware/Software Co-design of MPSoC. The hardware part of

the proposed multi-core SoC is implemented on Zynq FPGA by

integrating Zynq (Dual Core Cortex-A9) hard-core processor and

six Micro-Blaze soft-core processors into a single platform. The

software application for the target device is also developed con-

currently. Both the hardware and the software parts are then inte-

grated and debugged using Xilinx SDK tool. The work also

demonstrates that the Hardware/Software Co-design approach not

only improves the performance of the system but also the design

cycle time and the cost can be reduced to a greater extent.

The work is further being carried out to implement a Thread-Level

Parallelism (TLP) to enhance the execution speed of a program by

splitting a task into multiple threads and to run them concurrently

on different processors, which is the primary objective of any

MPSoC. The work will further be extended to develop a self-

testable Multi-core SoC using self-checking checkers so that the

processor will have the self-checking ability. The self-testable

multi-core SoC when equipped with redundant processors and

self-testing capability can be deployed in critical applications like

avionics, defense and satellites so that it can self-check and –

repair in case of any faults.

Figure 5: MDM debug window snapshot

References

[1] VasanthAsokan , “Designing Multiprocessor Systems in Plat-

form Studio”, Xilinx, WP262(v2.0), 21 November 2007.
[2] J. O. Hamblen, T. S. Hall, and M. D. Furman, Rapid Prototyping

of Digital Systems, SOPC edition, Springer, 2008.

[3] ZainalabedinNavabi, Digital Design and Implementation with
Field Programmable Devices, Springer, 2005.

[4] TahoDorta, Jaime Jimenez, Jose Luis Martin and Armando

Astarloa, “Reconfigurable Multiprocessor Systems: A review”,
International Journal of Reconfigurable Computing 2010, article

ID: 570279.
[5] M. Hübner, J. Becker, Multiprocessor System-on-Chip, Springer,

2011

[6] Iulian NIŢĂ, Gabriel ZDRU, "HW-SW Co-Design of MPSoC
Using FGPA IP Cores",U.P.B. Scientiffic Bulletin, Series C, Vol.

75, Iss. 1, 2013, ISSN 1454-234x, pages 135-150,

[7] Xilinx company, MicroBlaze Processor Reference Guide (v5.1)
2005

[8] P. Huerta, J. Castillo, J. I. Mártinez, and V. López, “A micro-

blaze based multiprocessor SoC,” WSEAS Transactions on Cir-
cuits and Systems, vol. 4, no. 5, Grece, 423-430.

[9] J. Teich, “Hardware/Software codesign: the past, the present, and

predicting the Future,” in Proceedings of the IEEE, Vol. 100,
May, 2012.

[10] http://digilentinc.com/

[11] LazányiJánosGyula, FehérBéla, “Distributed Embedded System
Using Single FPGA,” in sborníkvedeckychpraci vy3soké skoly b

[12] El Hassan El Mimouni, Mohammed Karim, AMicroBlaze-Based

Multiprocessor System on Chip for Real-Time Cardiac Monitor-
ing, International Conference on Multimedia Computing and

Systems (ICMCS), © IEEE, 2014.

[13] Pierre G. Paulin, et al, “A Multi-Processor SoC Platform and
Tools for Communications Applications”, In Embedded Systems

Handbook, CRC Press 2004.

[14] Susan Xu and Hugh Pollitt-Smith, A Multi-MicroBlaze Based
SOC System: From SystemC Modeling to FPGA Prototyping,

19th IEEE/IFIP International Symposium on Rapid System Pro-

totyping, ©IEEE, 2008.
[15] Vivado Design Suite Tutorial- Embedded Processor Hardware

Design, user guide, www.xilinx.com, 2017.

[16] Chang, Chen, Wawrzynek, John and Brodersen, ”A High-End
Reconfigurable Computing System” IEEE Computer Society, in

IEEE Design and Test of Computers, Vol. 22, March 2005,pp.

114-125.
[17] David Pellerin and Milan Saini, “FPGAs Provide Acceleration

for Software Algorithms”, FPGA Journal, 2004

http://www.xilinx.com/

