

Copyright © 2018 Sanjay Singla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (1.1) (2018) 431-434

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Nature inspired algorithm using particle swarm approach with

variations in inertia weights for automatic test data

generation based on dominance concepts

Sanjay Singla 1 *, Raj Kumar 2, Dharminder Kumar 3

1 Research Scholar, Department of Computer Science & Engineering, University Institute of Engineering and Technology,

Maharishi Dayanand University, Rohtak, Haryana, India
2 Department of Computer Science & Engineering, University Institute of Engineering and Technology,

Maharishi Dayanand University, Rohtak, Haryana, India
3 Department of Computer Science & Engineering, Guru Jambheshwar University, Hisar, Haryana, India

Abstract

In software testing, testing of all program statements is a very crucial issue as it consumes a lot of time, effort and cost. The time, effort

and cost can be reduced by using an efficient technique to reduce the test case and a good optimization algorithm to generate efficient,

reliable and unique test cases. In this paper, the concept of dominance tree is used which covers all edges/statement by using minimum

test case. Nature inspired algorithm - PSO (Particle Swarm Optimization) by applying different inertia weights is used to generate

unique, reliable and efficient test cases to cover the leaf nodes of dominance tree. Inertia weights like fixed inertia weight (FIW), global-

local best (GLbestIW), Time-Dependent weight (TDW), and proposed GLbestRandIW weights are used with PSO to investigate the

effect of inertia weights on the execution of PSO with respect to number of generation required, percentage coverage , total test cases

generated to test the software under consideration.

Keywords: Testing; Particle Swarm Optimization (PSO); Inertia Weight; Dominance Tree.

1. Introduction

In software testing, the complete or exhaustive testing is not pos-

sible. As testing is most difficult and time-consuming process. A

major portion of the cost involved in software development life

cycle is due to testing. Testing of each and every statement of the

program is crucial. Instead of checking each and every statement

is coved or not, a technique called dominance tree that covers

almost each and every statement. Dominance tree covers provide

the leaf nodes that have to be tested, now concentrating only on

these leaf nodes, almost each and every statement can be covered.

Thus instead of generating test cases for each and every statement,

the test case is generated to test leaf nodes of dominance tree.

Thus, these will reduce efforts involved in testing to large extent.

The dominance tree concept is explained is explained in a further

section.

Selection of test data is most difficult/ critical task [17] and it re-

quires very good skill in test data selection/generation method.

Many researchers have proposed their own different techniques on

their own time to create good investigation statistics during soft-

ware testing [5]-[8], [10]-[13], [19]. Effort, cost along with the

time can be minimizing if the process of testing becomes automat-

ic. In last 20 years, there are a lot of optimization techniques were

introduced which proves themselves in the area of software testing

[16], [17] but processing time to explore and exploit the promising

reasons in the solution domain is affected.

Natural selection is also the basis of Genetic algorithm. The con-

cept was given by Darwin in 1960[1]. GA uses the population of

chromosomes and undergoes various operations like mutation,

crossover to produce a new generation [2]. GA proves itself in a

number of engineering and optimization problems [3]. In some

cases, it is unable to deal with the problems of local minima and

local maxima. Furthermore, all this is took a large amount of

execution time. On the other end, PSO in light of the social con-

duct of birds flocking [14]. In the year 1995 Kennedy and Eber-

hart anticipated PSO. The concept of particle best and global best

introduce the memory concept in PSO and make this algorithm

more fast and better as compared to GA [15],[20]. Owing to its

unfussiness, greater convergence characteristics as well as high

precision, PSO proves its effectiveness for complex optimization

problems. This paper manages a productive PSO algorithm for

software testing and examined the effects of weight of inertia vari-

ations. The proposed technique gives the outcomes better percent-

age coverage and less number of generations.

2. Background

This section explains the fundamental concepts, which further will

be used in the considered problem domain.

Control flow graph (CFG)

CFG is a diagrammatic representation which itself is able to ex-

plain the flow of a program. It is a directional graph. It is repre-

sented as:

G = {V, E}

Where, "G" represents a Graph with directions (CFG). "V" is set,

which represents the vertices or nodes of "G". In actual, "V" re-

flect the Instructions in the programme or unique steps of the pro-

http://creativecommons.org/licenses/by/3.0/

432 International Journal of Engineering & Technology

gramme. "E" represents the edges of the directed graph. This is

again a set. It reflects the movement of the programme pointer

during the execution of the programme. Figure1, demonstrates the

instruction set whose directed graph (CFG) is represented with the

help of Figure2. Figure 4 shows the CFG of greatest of three num-

bers program.

Dominance tree

A dominance tree (DT) is a directed tree of a graph G={V,E}.

This tree must full fill some properties. Firstly, each vertex Vi of

G other than the root of G, must be ahead of a single edge every

time. Another property is the existence of dominance path for each

vertex of Vi from its root. Here the dominance path reflects the

directed path from root node of the graph G to every other vertex

of the graph and follows the criteria that a vertex Vi dominate

other vertex Vj, if and only if the path from root node to Vj always

contains Vi and i ≠ j [17]. Figure3 reflects the dominance path of

the code represented by Figure1 and control flow graph shown in

Figure4. Figure4 and Figure5 show the control flow graph and

dominance tree of Greatest of three number program. The

Path_Dominance (7) = [1, 2, 7] represents the dominance path of

vertex 7 of Figure3.

Fig. 1: Code1.

Fig. 2: CFG of Code1.

Fig. 3: Dominance Tree.

Fig. 4: Control Flow Graph of Greatest Of Three Number.

Fig. 5: Dominance Tree of CFG of Figure 4.

Test cases minimization

The target of the study is the testing of entire group of statements

of the program by using minimum test cases selection. This may

be achieved by the selection of lesser number of nodes/statements

that ensures the scope of every statement resides in the program

[18]. The principle concern is all leaves nodes of the dominance

graph. It is understandable that set of the paths which cover these

leaves must also covers the entire nodes in the tree. Leave vertices

of Figure3 are represented as L= [4, 5, 6 and 7]. The dominance

path can be expressed as:

Path_dominance (4) = [1-2-3-4]

Path_dominance (6) = [1-2-3-6]

Path_dominance (5) = [1-2-3-5]

Path_dominance (7) = [1-2-7]

It is observed that all the vertices of CFG represented by Figure2

are covered by performing dominance path analysis of leave

nodes. This coverage of every vertex of the graph also represents

the coverage of every single statement of the code, which are the

major criteria behind the software testing.

3. Particle swarm optimization (PSO)

Kennedy and Eberhart developed an algorithm called Particle

Swarm Optimization [14] that replicates the natural tendency of

birds or fishes during their food discovery or new appropriate

habitation. Consider a d-dimensional search space in the basic

PSO technique.

1) Every member is considered as a particle. Each particle is

shown by d-dimensional positional vector along with de-

scription as X = [x ,x ,.......,x]
i i1 i2 id

2) A Population is an ordered set of particles in the swarm

which is expressed as pop=[x1, x2,...,xd].

3) pBest is considered as the previously best value of every

particle. This is expressed as PB = [pb ,pb ,.......,pb]
i i1 i2 id

4) gBest is considered as global best for each particle and can

be calculated as. GB = [gb ,gb ,.......,gb]
i i1 i2 id

5) The term Velocity defines the change in the position of each

particle and is expressed as:
V = [v ,v ,.......,v]
i i1 i2 id

When number of iterations is "k" then the velocity of ith particle is

expressed as:

0 1 program test1;

1 1 variable x, y, z: int;
2 1 Start:

3 1 x: = 0;

4 1 y: = 0;
5 1 read (z);

6 2 while (z <> 0)

7 2 Start
8 3 if (z mod 2) = = 0

9 4 then x: = x + 1

10 5 else
11 5 y: = y +1;

12 6 read (z)

13 6 end;

14 7 write(x, y);
 15 7 end.

International Journal of Engineering & Technology 433

  1 1 2 2

1 () (() ()) (() ())
id id id id id id

v k wv k c r pb k x k c r gb k x k      (1)

Where i varies from 1 to n. Here, n is the size of each population,

inertia weight is denoted by w, c1 along with c2 are constants. r1

and r2 represents random variables having scope [0,1].

6) The position of particles are expressed with the help of fol-

lowing equation:

(1) () (1)
id id id

x k x k v k    (2)

Figure 6 represents the programme flow of proposed algorithm.

Considerations for inertia weight

Fixed inertia weight (FIW)

The usual PSO algorithm at first utilized a steady or constant iner-

tia weight.

Time dependent weights (TDW)

Keeping in mind the end goal to enhance the existing system, the

time-differing inertia weight was recommended [4]. This inertia

weight directly diminishes regarding time. For the most part, for

starting phases of the pursuit procedure, large inertia weight to

upgrade the global exploration (looking new region) is prescribed

while, for end part, low inertia weight is proposed for local inves-

tigation.

Global-Local best inertia weight (GLbestIW)

The GLbestIW strategy is projected in [9]. It is considered as a

function of local and global estimations of the particles in various

generations. The equation for the same is given as:

GLbestRandIW Wi = (1.1 − (
gbesti

pbesti
))

Proposed global-local best random inertia weight (GLbestRandIW)

The changes in inertia factors may enhance the performance of

this optimization technique (PSO). Here, inertia weight is consid-

ered as a function of pbest and gbest with random factor values of

the particles in each generation.

GLbestRandIW Wi = (1.1 − (
gbesti

pbesti
)) ∗ z(Rand) + 0.5 ∗

(Rand)

Where Z= 4* (Rand) *(1-Rand)

Fig. 6: Flow Chart of PSO.

4. Fitness function

All algorithms in this manuscript utilized a fitness function that

used the dominance relations ideas between nodes of control flow

graph of the program. This fitness function represents the ratio of

the number of covered nodes under dominance path analysis of the

node under consideration to the total number of dominance path

nodes. During the execution of the program, every test case is

applied and results are observed under execPath. The computation

of fitness value ft(Vi) by considering isolated or unique chromo-

some
i

v (i=1… S) In a population of size ‘S’ is performed as:

1) Locate a set of vertices enclosed by a test scenario: find out

execPath

2) verify the dominance path of the node under consideration

PathDominance(n)

3) Identify nodes which are not covered: discover (PathDomi-

nance(n) - execPath)

4) Identify already covered nodes: discover (PathDominance(n) -

execPath)’

5) Count number of covered nodes : count |(PathDominance(n) -

execPath)’|

At that point

ft(vi) =
|(PathDominance(n)−execpath)′|

|Path_Dominance(n)|

Particle or the individual is represented by test case. The fitness

value 1 i.e. ()
i

ft v = 1 for a test case
i

v then this test case is opti-

mal [18]. The solitary method for optimization algorithms using

feedback is fitness value.

5. Experimental results and conclusion

Trials are performed on normally utilized programs as shown in

table 1. PSO with variations in weights of inertia, a fixed inertia

weight (FIW), Time-Dependent weight (TDW) and global-local

best inertia weight (GLbestIW) and global-local best random iner-

tia weight (GLbestRandIW) is used to generate test cases is evalu-

ated using dominance tree concepts. The different methods are

shown in Table 2.

Table 1: Program List

Name of Program

LTV (Largest among Three values)

PNG (Prime Number Generation)
RF (Remainder Function)

ROI (Rate of Interest)

PQE (Program for Quad. Equation)
AFT (Triangle's Area)

HCF (Highest Common Factor)

Table 2: PSO Methods with Different Inertia Weight

PSO method description Method name

FIW M1
TDW M2

GLbestIW M3

GLbestRandIW M4

In table 3, comparison between M1, M2, M3 and M4 is shown in

the terms of number of generation required to cover the test cases.

The M4 takes less number of generations as compare to other

methods. The number of generation required to complete testing

process is directly indicates the time taken by the algorithm to

process. Therefore, M4 is much faster as compare to other three

methods. Hence performance of M4 is best among other three

methods. The graph in Fig 7 shows the comparison of different

methods with respect to number of generation each method re-

quired to complete the testing process.

Table 3: Comparison in Terms of Number of Generations

Prog No M1 M2 M3 M4

1 15 14 11 9

2 4 3 3 2
3 9 7 5 3

4 5 5 4 2

5 11 9 7 6
6 16 14 10 9

7 6 5 5 4

434 International Journal of Engineering & Technology

Fig. 7: Evaluation Focusing Number of Generations.

Table 4 shows the comparison of percentage coverage ratio of all

four methods. All programs are 100% covered by method M4.

Hence M4 is better than all three method as its percentage cover-

age ratio is high than others in all program, the same is also shown

in fig 8.

Table 4: CRP Comparison

Prog No M1 M2 M3 M4

1 100 100 100 100

2 100 100 100 100
3 100 100 100 100

4 100 100 100 100

5 100 100 100 100
6 94 98 100 100

7 91 97 99 100

Fig. 8: Assessment with Respect to Coverage Ratio Percentage.

By study of fig 9 and table 5, the quantity of test cases produced in

M4 is less in compared to other three PSO methods. M4 shows

entire coverage by using less number of iterations as compared to

others, which represents that, test cases produced by M4 are

unique as compared to other methods. Further, it can be concluded

that M4 performs better as compared to other methods.

Table 5: Effect of Total Test Cases

Prog no M1 M2 M3 M4

1 105 98 77 63

2 40 30 30 20

3 81 63 45 27
4 25 25 20 10

5 88 72 56 48
6 160 140 100 90

7 54 45 45 36

Fig. 9: Evaluation with Respect to Number of Test Cases Gener-

ated.

References

[1] Girgis MR, “Automatic test data generation for data flow testing

using genetic algorithm”, Journal of Universal Computer Science,
Vol.11, No.6, (2005), pp.898–915.

[2] Pargas RP, Harrold MJ & Peck RR, “Test Data Generation using

Genetic Algorithms”, Software Testing Verification and Reliability,
Vol.9, (1999), pp.263-282. https://doi.org/10.1002/(SICI)1099-

1689(199912)9:4<263::AID-STVR190>3.0.CO;2-Y.

[3] Alander JT, Mantere T & Turunen P, “Genetic Algorithm Based
Software Testing”, Proceedings of International Conference,

(1998), pp.325-328. https://doi.org/10.1007/978-3-7091-6492-1_71.
[4] Abido MA, “Multiobjective particle swarm optimization technique

for environmental/economic dispatch problem”, Electric Power

System Research, Vol.79, No.7, (2009), pp.1105–1113.
https://doi.org/10.1016/j.epsr.2009.02.005.

[5] Boyer R, Elspas B & Levitt K, “Select-a formal system for testing

and debugging programs by symbolic execution”, SIGPLAN Otices,
Vol.10, No.6, (1975), pp.234-245.

https://doi.org/10.1145/390016.808445.

[6] Clarke L, “A system to generate test data and symbolically execute
programs”, IEEE Transaction on Software Eng., Vol.SE-2, No.3,

(1976), pp.215- 222. https://doi.org/10.1109/TSE.1976.233817.

[7] Ramamoorthy C, Ho S & Chen W, “On the automated generation
of program test data”, IEEE Trans. Software Eng., Vol.SE-2, No.4.

(1976), pp.293-300. https://doi.org/10.1109/TSE.1976.233835.

[8] Howden W, “Symbolic testing and the DISSECT symbolic evalua-
tion system”, IEEE Trans. Software Eng., Vol.SE-4, No.4, (1977),

pp.266- 278. https://doi.org/10.1109/TSE.1977.231144.

[9] Arumugam MS & Rao MVC, “On the performance of the particle
swarm optimization algorithm with various inertia weight variants

for computing optimal control of a class of hybrid systems”, Dis-

crete Dynamics in Nature and Society, (2006).
https://doi.org/10.1155/DDNS/2006/79295.

[10] Ince D, “The automatic generation of test data”, Computer Journal,

Vol.30, No.1, (1987), pp.63-69.
https://doi.org/10.1093/comjnl/30.1.63.

[11] Miller W & Spooner D, “Automatic generation of floating-point

test data”, IEEE Trans. Software Eng., Vol.SE-2, No.3, (1976),
pp.223-226. https://doi.org/10.1109/TSE.1976.233818.

[12] Offutt J, Jin Z & Pan J, “The Dynamic domain reduction procedure

for test data generation”, Software Practice and Experience,
Vol.29, No.2, (1997), pp.167–193.

https://doi.org/10.1002/(SICI)1097-024X(199902)29:2<167::AID-

SPE225>3.0.CO;2-V.
[13] Gupta N, Mathur AP & Soffa ML, “Automat geneticed test data

generation using an iterative relaxation method”, ACM SIGSOFT

Sixth International Symposium on Foundations of Software Engi-
neering, (1998), pp.231–244.

[14] Kennedy J & Eberhart R, “Particle swarm optimization”, IEEE In-

ternational Conference on Neural Networks, (1995), pp.1942–1948.
https://doi.org/10.1109/ICNN.1995.488968.

[15] Narmada N & Mohapatra DP, “Automatic Test Data Generation for

data flow testing using Particle Swarm Optimization”, Communica-
tions in Computer and Information Science, Vol.95, No.1, (2010),

pp.1-12.

[16] Michael CC, McGraw GE & Schatz MA, “Generating software test
data by evolution”, IEEE Transactions on Software Engineering,

Vol.27, No.12, (2001), pp.1085-1110.

https://doi.org/10.1109/32.988709.
[17] Ghiduk AS, Harrold MJ & Girgis MR, “Using Genetic Algorithms

to Aid Test-Data Generation for Data-Flow Coverage”, 14th Asia-
Pacific Software Engineering Conference, (2007).

https://doi.org/10.1109/ASPEC.2007.73.

[18] Ghiduk AS & Girgis MR, “Using Genetic Algorithms and domi-
nance concepts for generating reduced test data”, Informatics,

Vol.34, (2010), pp.377-385.

[19] Chang KH, Cross JH, Carlisle WH & Brown DB, “A framework
for intelligent test data generation”, Journal of Intelligent and Ro-

botic Systems-Theory and Application, Vo.5, No.2, (1992), pp.147-

165. https://doi.org/10.1007/BF00444293.
[20] Biswas A, Mishra KK, Tiwari S & Misra AK, “Physics-inspired

optimization algorithms: a survey”, Journal of Optimization,

(2013).

0

10

20

1 2 3 4 5 6 7

N
o

 o
f

G
e

n
e

ra
ti

o
n

No of Generation

M1

M2

M3

M4

85

90

95

100

105

1 2 3 4 5 6 7

C
o

ve
ra

ge
 R

at
io

 P
e

rc
en

ta
ge

Coverage Ratio Percentage

M1

M2

M3

M4

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7

To
ta

l T
e

st
 C

as
e

s

Total Test Cases

M1

M2

M3

M4

https://doi.org/10.1002/(SICI)1099-1689(199912)9:4%3c263::AID-STVR190%3e3.0.CO;2-Y
https://doi.org/10.1002/(SICI)1099-1689(199912)9:4%3c263::AID-STVR190%3e3.0.CO;2-Y
https://doi.org/10.1007/978-3-7091-6492-1_71
https://doi.org/10.1016/j.epsr.2009.02.005
https://doi.org/10.1145/390016.808445
https://doi.org/10.1109/TSE.1976.233817
https://doi.org/10.1109/TSE.1976.233835
https://doi.org/10.1109/TSE.1977.231144
https://doi.org/10.1155/DDNS/2006/79295
https://doi.org/10.1093/comjnl/30.1.63
https://doi.org/10.1109/TSE.1976.233818
https://doi.org/10.1002/(SICI)1097-024X(199902)29:2%3c167::AID-SPE225%3e3.0.CO;2-V
https://doi.org/10.1002/(SICI)1097-024X(199902)29:2%3c167::AID-SPE225%3e3.0.CO;2-V
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/32.988709
https://doi.org/10.1109/ASPEC.2007.73
https://doi.org/10.1007/BF00444293

