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Abstract 
 

Image pre-processing task is always the first crucial step in plant species recognition system which is responsible to keep precision of 

feature measurement process. Some of researchers have developed the image pre-processing algorithm to remove petiole section. How-

ever, the algorithm was developed using semi-automatic algorithm which is strongly believed to give an inaccurate feature measurement. 

In this paper, a new technique of automatic petiole section removal is proposed based on repeated perpendicular petiole length scanning 

concept. Four phases of petiole removal technique involved are: i) binary image enhancement, ii) boundary binary image contour tracing, 

iii) petiole section scanning, and iv) optimal image size retaining and cropping. The experiments are conducted using six varieties of 

Ficus deltoidea Jack (Moraceae) leaves. The experimental results indicate that the segmentation results are acceptably good since the 

digital leaf images have less than 1% of segmentation errors on several ground truth images. 
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1. Introduction 

Ficus deltoidea is a large shrub or a small tree up to 3 meters tall 

with aerial roots that often begins its life as an epiphyte plant [1]. 

Figs or Ficus plants originated from Asia Minor and can be found 

throughout Mediterranean, Indian subcontinent, Latin America, 

Texas, Southern California, and until the Far East such as in the 

Malaysian tropical rain forest [2]. According to [3], seven varie-

ties of F. deltoidea can be found in Peninsular Malaysia; namely 

var. deltoidea, var. angustifolia, var. trengganuensis, var. bilo-

bata, var. intermedia, var. kunstleri, and var. motleyana. The de-

coction of the leaves is believed to improve blood circulation, 

stimulate aphrodisiac activity, and possess antioxidant as well as 

antidiabetic properties [4], [5].  

Plant identification based on leaf provides great significance in 

plant taxonomy. These parameters help the taxonomists to distin-

guish between different species. The identification of Ficus del-

toidea varieties is vital to plant collectors and amateur botanists in 

order to correct classification of this plant. The traditional method 

used to identify F. deltoidea plant varieties led the taxonomists to 

observe and examine the morphologies of herbarium or live spec-

imens that was time consuming, less efficient, troublesome task 

for nonprofessional, and sometimes, extremely complex identifi-

cation task.  Hence, the existence of sophisticated technologies, 

such as digital cameras and computers, has led to an increasing 

interest in automating the process of plant species identification. 

Computational in plant species identification can be seen as a part 

of computer vision and pattern recognition area [6], [7]. It is usu-

ally implemented by using digital leaf image due to its simplicity 

to acquire digital image.  

The basic components of pattern recognition system are data pre-

processing, data measurement and representation, as well as data 

classification [8], [9]. In data pre-processing, the input data are 

pre-processed so that the data can be read and analyzed by the 

computer. In the real world, data are often far from perfect. Most 

pattern recognition techniques cannot tolerate some levels of im-

perfection in the image for analysis [10]. Therefore, a good image 

pre-processing algorithm must be modeled properly before the 

feature measurement process is computed from the images and 

further improves the pattern recognition system. The rest of the 

paper is organized as follows: Section 2 describes related work on 

image pre-processing algorithm for plant species recognition. 

Section 3 discusses the detailed of the image pre-processing algo-

rithm for Ficus deltoidea varieties recognition. Experimental re-

sults of the proposed algorithm are presented in Section 4. Finally, 

conclusion is placed in Section 5. 

2. Related work 

In this domain, most researchers are interested in using a single 

leaf condition (data acquisition) for instance in [11], [12] because 

it is easier to obtain an accurate measurement of leaf features. In 

addition, a digital scanner is usually used as a device to acquire 

leaf images digitally for instance implemented in [13], [14]. By 

doing this, the size scale of the image and the lighting environ-

ment are acquired in a controlled environment. 

http://creativecommons.org/licenses/by/3.0/


50 International Journal of Engineering & Technology 

 
2.1. Image pre-processing algorithm without petiole sec-

tion 

Most of single leaf image in the previous image pre-processing 

algorithm is usually acquired without the involvement of petiole 

section. This algorithm used grayscale histogram shape-based 

threshold method [12], [13], [14] to isolate the objects of interest 

(leaf) from other unnecessary objects (background). Therefore, the 

first process involved in this algorithm is to convert the original 

RGB image to grayscale image (process from Fig. 2 (a) to Fig. 2 

(b)). Secondly, peaks and valleys of grayscale histogram are ex-

tracted and analysed. The bottommost (lowest) point (valley) 

which is between two highest peaks in histogram denotes the 

threshold value (process from Fig. 2 (b) to Fig. 2 (c)) as illustrated 

in Fig. 1. The threshold level is calculated by (specific threshold / 

255), where 255 is the maximum value of grey level. Then, the 

output binary image is obtained by replaced all pixels in the input 

image with greater than the threshold level by the value of 1 and 

replaced all other pixels by the value of 0. 

 
Fig. 1: Example of gray level values for all images in the database 

Then, the 3x3 Laplacian filter algorithm is computed from the 

binary image to obtain the outer edge also as in previous section 

(process from Fig. 2 (c) to Fig. 2 (d)). The outer edge is usually 

used in the previous algorithm to calculate vein features [12], [15]. 

Fig. 2 represents the results example of image pre-processing al-

gorithm without petiole section. 

 
Fig. 2: Examples of image pre-processing results for algorithm without 

petiole section, (a) original RGB image, (b) grayscale image, (c) binary 

image, and (d) boundary image [12] 

2.2. Image pre-processing algorithm with petiole section 

Since the collected leaf images have petiole section, this section 

need to be removed in order to keep precision of leaf feature 

measurement. As referred to manual measurements of Ficus del-

toidea varieties identification [2], the leaf length, area and width 

for example are calculated without the leaf petiole. To keep the 

precision of leaf shape features measurement, these leaf petioles 

should be further removed from the obtained binary images. An 

addition function should be inserted to the image pre-processing 

algorithm without petiole section to remove this petiole section. In 

the previous leaf petiole removal algorithms [16] and [17], the 

petiole removal is basically based on semi-automatic mode. How-

ever, it is believed and important to have leaf recognition system 

in fully-automatic mode since the semi-automatic algorithm will 

lead to troublesomeness for amateur botanists to complete the 

recognition task. For instance in [16], by using morphology clos-

ing with disk structuring element, the programmer has to select an 

appropriate radius of disk structuring element in order to remove 

petiole section. In the empirical experiment, bigger radius is need-

ed to proper removed the petiole section and vice versa. Image 

closing is image erosion followed by image dilation. The mathe-

matical definition of erosion, dilation and closing for binary imag-

es can be referred to [16]. 

Besides in [17], the petiole section is removed by scanning the 

petiole thickness from the top to the bottom of image. Rows 

whose thickness fell below a certain threshold (as a ratio of the 

maximum thickness of the leaf) were identified as petiole sections, 

and were removed from the image to obtain the final binary leaf 

image. Fig. 3 (b) shows the binary after petiole removal from Fig. 

3 (a). 

 
Fig. 3: Example of petiole removal results, (a) An image after the previous 

segmentation and (b) the binary image after petiole removal [17] 

3. The image pre-processing algorithm 

Fig. 4 shows the general flow of all phases in the proposed image 

pre-processing algorithm including the four added phases (high-

lighted box). The four phases of petiole removal are:  Binary im-

age enhancement, Boundary binary image contour tracing, Petiole 

section scanning, and Optimal image size retaining and cropping. 

Four output images are produced from image pre-processing algo-

rithm and used for feature measurement: i) grayscale color of raw 

leaf image for calculating texture features. This image is obtained 

from process number 2; ii) leaf region with elimination of petiole 

section in binary image for computing leaf shape, and vein. The 

image is produced by the process number 4 to number 7; iii) leaf 

apex region, the image is cropped to ~25% on top of image after 

performing process number 7. The image is used for calculating 

apex angle, and; iv) leaf boundary for completing the leaf vein 

features calculation. The image is produced by the process number 

8. 

3.1. General concept of petiole section scanning 

The petiole removal process was basically based on top-down 

perpendicular length scanning concept (Fig. 5). Top-down scan-

ning started with calculating length of perpendicular line pl1 to 

perpendicular line pl12. The perpendicular length of leaf contour 

was calculated by using the found perpendicular left and right 

outline of leaf object for instance in pl1, the distance between left 

point a1[116,562] and to right point a2[116,578] is computed. 

Therefore, in order to get two points for each of perpendicular line, 

the algorithms must have an ability to trace outline of leaf object. 

Hence, the boundary binary image contour tracing was imple-

mented. However, the contour tracing function is sensitive to 

noisy images. By comparing the detected contour points on noisy 

image and smoothed image, it is clearly showed that the found 

contour points in the noisy image were sometimes misclassified. 

The petiole scanning process will be wrongly calculated if the 

false contour points are being used. Thus, in order to reduce mis-

classified of the obtained contour points, binary image enhance-

ment was added before the contour tracing process started. In this 

algorithm, image opening followed by closing operations using 

square 5×5 SE was computed on leaf images 

Then, the collections of contour coordinates were obtained from 

contour tracing and these coordinates are sorted in the array lists 

from smallest y plane (horizontal plane) coordinate (top) to largest 

y plane coordinate (low). The detected petiole area was calculated 

based on specific length threshold and the sum of iterative length 

that appeared in contour coordinates. The calculations of this pro-
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cess will be elaborated in the later subsection. Finally, optimal 

image size retaining and cropping function was implemented for 

locating the base and apex sections of leaf. Normally, the base 

position is located 25% from the bottom of image and the apex 

position is located 25% from the top of image. This is very useful 

in calculating the base and apex angle of leaf which will be used 

in feature measurement phase. 

 
Fig. 4: The proposed image pre-processing algorithm process flow 

 
Fig. 5: The petiole removal based on top-down perpendicular length scan-

ning 

3.2. Automatic petiole section removal 

The petiole section scanning was accomplished using two main 

steps which are as follows: i) Step 1: Calculating perpendicular 

length distance (leaf thickness), and; ii) Step 2: Calculating the 

number of repeatedly perpendicular length distance. Set the num-

ber of repeatedly perpendicular length distance. 

Step 1: After the boundary of leaf was obtained, the collection of 

boundary pixels coordinates need to be sorted to represent top to 

bottom of image. The sorting process was done by compiling col-

umn elements from low number to high number. By doing this 

process, all of boundary pixels coordinates were sorted from top to 

bottom.  Referring to Fig. 6, on the given boundary pixels (starting 

point set in number 1), the sorted pixels were pixel number 10, 11, 

12 (column 2), 9, 8, 13 (column 3), 7, 14 (column 4), and so on. 

Noticed that in some of columns, there was a number of boundary 

pixels that have more than two coordinates (highlighted in red font 

in Fig. 6). In order to find the horizontal perpendicular length, the 

number of boundary pixels must be only in two coordinates which 

are the most left and the most right. Hence, in the second process 

in this step, the distance between two boundary coordinates in 

each of column was implemented by computing only the first and 

the last coordinates. This distance was computed using Euclidean 

distance formula. 

 

Fig. 6: An illustration of petiole scanning 

Step 2: Using an array containing distance of each column, the 

scanning process was then constructed. In this algorithm, two 

parameters were used: sorted repeated perpendicular length and 

length threshold. As example in Fig. 6, the perpendicular distance 

2 was then repeated 4 times, the perpendicular distance number 1 

and 4 repeated 2 times, and so forth. In the observations, the peti-

ole section in Ficus deltoidea leaves was always repeated more 

than 7 times. Therefore, the repeated perpendicular length was 

computed and only the distances with 7 times repeatedly were 

selected as petiole sections. By considering example in Fig. 6, 

let’s say the repeated perpendicular distance is set as ≥ 2, the ob-

tained petiole sections is column number 2, 3, 4, 5, 6, 7, 8, 9, and 

10. Other columns are considered as leaf sections. 

 
Fig. 7: An illustration of leaf without petiole, example from Fig. 6 

In the leaf images without petiole section, for instance in Fig. 7, 

there was none of repeated perpendicular distance that is ≥ 2. The 

petiole removal process using the previous algorithm [16], [17] 

has to be done in semi-automatic fashion. To solve this problem, 

this algorithm proposed the repeated perpendicular length tech-

nique to give an ability to trace petiole section in fully-automatic 

mode. Fig. 8 shows the algorithm for petiole section scanning and 

removal. 

4. Experiments and result analysis 

All of image pre-processing algorithms were coded under 

MATLAB. The experimental objective was to obtain the segmen-

tation performance on the developed image pre-processing algo-

rithm. In this experiment, the proposed algorithm was not com-

pared with other previous works because other works such as [16] 

and [17] are based on semi-automatic petiole removal. In addition, 

although algorithm [12] was built for Ficus deltoidea varieties 

recognition, however, the algorithm used digital leaf images with-

out involvement of petiole section. Therefore, [12] algorithm also 

was not compared in this study. 

3. Histogram shape-based thresh-

olding (bottommost point of two 
highest peaks) 

 

4. Binary image enhancement 

(opening and closing morphology) 

1. Image acquisition 

2. RGB to grayscale conversion 

6. Petiole section scanning (repeat-

ed perpendicular length distance) 

7. Optimal image resizing and 

cropping (minimum bounding box 
technique) 

Proposed 

processes 
for auto-

matic 

petiole 
removal 

function 

5. Boundary binary image contour 

tracing 

8. Laplacian filter 

Added function 

for ease of locat-
ing apex region 
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Fig. 8: Pseudo-code for petiole section scanning algorithm 

4.1. Experiment setup 

In object detection, the term “ground truth image” always refers to 

the actual detected objects in the given image. The ground truth 

image was formulated using the Center for Digital Video Pro-

cessing (CDVP) interactive segmentation tool. In the absence of 

standardized public ground truth database and experts in the area 

of research, researchers use interactive segmentation tool to con-

struct ground truth image (GTI) for further performance evalua-

tion of segmentation methods [18]. The CDVP tool enables users 

to extract objects from images, simply by marking areas of the 

image as “object” or “background” with the mouse. The CDVP 

tool was based on graph cut based segmentation method and it is a 

free software tool that can be operated on various operating sys-

tems.  

One of the simplest though effective methods for estimating errors 

of segmentation is by calculating the average correct and incorrect 

classified pixels occurred in segmented binary image compared to 

GTI (real image) [19]. This method was calculated by counting 

the false positive (FP), false negative (FN), true positive (TP) and, 

true negative (TN) which is the same as supervised classification 

in data mining. However, in the most situations, the number of 

white and black pixels (predicted class) is imbalanced. Therefore, 

the weight or probability can be implemented for efficient errors 

estimation. Two segmented images (SI) were used (Fig. 9 (b) and 

Fig. 9 (c)) to be compared with GTI (Fig. 9 (a)). By using the 

naked eyes, Fig. 9 (c) should has better segmentation result be-

cause only two pixels are misclassified as background pixels 

(white pixels). Table 1 showed the explanations of average seg-

mentation error (Se) calculation. The Se for SI in Fig. 9 (b) is 0.28 

(or 28%), and SI in Fig. 9 (c) is 0.08 (or 8%). Thus, SI in Fig. 9 (c) 

showed that the implemented segmentation algorithm was more 

efficient as compared to SI in Fig. 9 (b). This calculation was used 

in the following experiments. 

 
Fig. 9: (a) ground truth image, (b) segmented image no. 1, and (c) segmen-

tation image no. 2 

4.1. Result analysis 

The process for creating ground truth information for real images 

is very time consuming since the pixels in the image is label man-

ually. Even though CDVP tool is very helpful (in semi-automatic 

run), however with 420 images in leaf database, it is also time 

consuming efforts. Therefore, only two images of each variety 

were randomly picked in the leaf database and used in the experi-

ment.  In total, 12 leaf images (see Table 2) were selected for the 

image pre-processing algorithm experiments. Using the randomly 

picked leaf images, Se for leaf region is calculated using method-

ology as showed in Table 1. In this case, Se for petiole region was 

assumed similar to Se for leaf region. In other words, lower Se for 

leaf region contributes to lower Se for petiole region and vice 

versa. Therefore, for an easy construction of GTI, only leaf region 

was used to represent the efficiency of the algorithm. In general, 

the lower the Se corresponds to better segmentation method. 

 
Table 1: Segmentation error calculations 

 

 
 

As referred to Table 2; images 3.jpg, 32.jpg, 1.jpg, 23.jpg, 26.jpg, 

57.jpg, 39.jpg, 62.jpg, 10.jpg, 25.jpg, 15.jpg, and 45.jpg have 

segmentation error of 0.12%, 0.22%, 0.12%, 0.00%, 0.18%, 

0.43%, 0.14%, 0.21%, 0.32%, 0.50%, 0.20%, and 0.36%, respec-

tively. On the average, segmentation error for the several selected 

images was 0.23%. The experimental results showed that the pro-

posed algorithm is able to detect the image with normal straight 

petiole section (i.e. 26.jpg), the image with no petiole section (i.e. 

23.jpg), the image with long petiole section (i.e. 25.jpg), the image 

with short petiole section (i.e. 1.jpg), and the image with slanting 

petiole section (i.e. 10.jpg), with a very minimal segmentation 

error (<1%).  

 
Table 2: Segmentation errors for the image pre-processing algorithm 

 

 

Algorithm: Petiole section scanning  

Input: Binary image (leaf and petiole regions) 

Output:  1) Binary image (leaf regions) 

     2) Binary image (petiole regions) 

1. Start 
2. Step through all pixel boundaries P0… Pn+1 

3. Sort pixel boundaries based on ascending column number 

4. For each of sorted image boundaries, IBi = (x, y) 

5. Calculate perpendicular distance, PDi = 
   first

y
last

y
first

x
last

x 
22

 

6. For each of PDi  

7. Find repeated PDi, rPDi  

8. If rPDi >= 7  //repeated perpendicular length with more than seven  
    (7) times 

9. Binary image = Petiole regions 

10. Else 
11. Binary image = Leaf regions 

12. Stop 
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5. Conclusion  

This paper introduces a newly developed image pre-processing 

algorithm which provides an automatic and efficient way to isolate 

petiole and leaf sections. The petiole removal function was devel-

oped by an expansion of the top-down perpendicular length scan-

ning concept. A repeated perpendicular length scanning mecha-

nism was proposed to scan the petiole section. Only the repeated 

perpendicular length with more than 7 times is considered as peti-

ole region. Using the added four phases in petiole removal func-

tion, the algorithm has successfully segmented the petiole and leaf 

regions with average segmentation error of only 0.23%. The result 

indicates that the algorithm can be recognized as highly efficient 

(will accurately measure the leaf features in the next process of 

plant species recognition) since the misclassified leaf section was 

only below than 1%.  The developed image pre-processing algo-

rithm was applicable to be implemented in other plant species 

recognition system that needs isolation of leaf petiole in fully au-

tomatic mode and further select the petiole as feature.  
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