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Abstract 
 

In this paper, a novel approach is proposed to solve the non-convex and discontinuous economic dispatch (ED) problem of power system 

with thermal power plants. All the practical constraints (loss constraint, generators ramp rate constraints and network constraints) are 

considered for solving the ED problem. Here, the proposed ED problem is solved by considering the generators with valve point loading 

(VPL) effects and prohibited operating zones (POZs) effects. In this paper, to solve this practical ED problem, an evolutionary based 

Artificial Fish Swarm Optimization Algorithm (AFSOA) is utilized. The AFSOA is a global search algorithm based on the characteris-

tics of fish swarm and its autonomous model. The detailed algorithm with its flow chart is presented in this paper. To show the effective-

ness of the proposed ED approach, 3 test systems (3, 6 and 20 generating unit systems) are considered. The obtained results are com-

pared with other algorithms reported in the literature. 

 
Keywords: Economic Dispatch; Fuel Cost; Network Constraints; Valve Point Loading; Prohibited Zones; Evolutionary Algorithm. 

 

Nomenclature 

ai, bi, ci Fuel cost coefficients of thermal generators. 

FT Total cost/operating cost of generation ($/hr). 

NG Total number of generators. 

PGi Active power generation from ith thermal generator.  

Ci Fuel cost function of ith thermal generator. 

di, ei Factors for the valve point loading (VPL) effects on ith gen-

erator. 

PGi,j
l , PGi,j

u  Lower and upper limits of jth prohibited zone for ith gen-

erator. 

zi Number of prohibited operating zones (POZs) of ith generator. 

PGi
min, PGi

max Minimum and maximum limits of power output from 

ith generator. 

PD Total power demand in the system. 

Ploss Transmission losses in the system. 

Bij, Bi0, B00 Transmission loss coefficients/ B coefficients. 

PGi
0  Power output from ith generator in previous hour. 

Ri
down, Ri

up
 Ramp down and ramp up limits of ith generator. 

SLi Power flow through ith transmission line.  

SLi
max Thermal/maximum power flow limit of ith trans- mission line. 

step Step range/ maximum step size of an artificial fish. 

δ Congestion factor of artificial fish. 

Xi Position within the scope of the vision of the fish. 

Xopt Optimal position. 

nf Number of artificial fish. 

Xc Center of the swarm. 

dvisual Perceiving range of an artificial fish. 

1. Introduction 

The use of electricity is indispensable and the demand for electric-

ity is increasing day-by-day. The quality of electricity is stated in 

terms of constant voltage, frequency and uninterrupted power 

supply at minimum cost. The quantity of coal and the cost of coal 

used in the generation of power in a thermal plant is directly de-

pendant on the power output produced. Hence, to deliver the pow-

er at minimum cost, there is a requirement to reduce the amount of 

fuel used. This simple solution for this is the use of more efficient 

generating units. But, there is a certain maximum limit for the 

efficiency of the generating units. Therefore, for a particular pow-

er output, the operating schedule with the distribution of load de-

mand among various generating units, which results in optimum 

generating cost is required. Obtaining such appropriate schedule is 

the economic dispatch (ED) problem. The purpose of the tradi-

tional ED problem is to find the most economical schedule of the 

generating units while satisfying load demand and operational 

constraints. This involves the allocation of active power between 

the generating units, as the operating cost is insensitive to the reac-

tive loading of a generator [1]. 

In the literature, there are several methods proposed for solving 

the ED problem. A distributed consensus-based approach to solve 

the ED problem with generator constraints and transmission losses 

is proposed in [2]. Reference [3] presents a review on inaccuracy 

issues related to solve the practical formulation of the ED prob-

lem. Reference [4] presents cuckoo search algorithm for solving 

both convex and non-convex ED problems of fossil fuel fired 

generators considering transmission losses, multiple fuels, valve-

point loading (VPL) and prohibited operating zones (POZs) ef-

fects. An exchange market algorithm for solving ED problem is 

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET


2 International Journal of Engineering & Technology 

 
proposed in [5]. An algorithm inspired on the T-Cell model of the 

immune system is proposed in [6] to solve the ED problem. Com-

bined economic/environmental dispatch treats the economic and 

environmental impact as competing objectives and this problem is 

solved in [7]. An improved differential evolution (DE) to the solve 

ED problem of thermal generating units with non-smooth/non-

convex cost functions due to VPL, taking into account the trans-

mission losses and non-linear generator constraints such as POZs 

is proposed in [8]. Reference [9] applies a number of PSO variants 

to the dynamic economic emission dispatch (DEED) problem. 

Reference [10] proposes a modified version of social spider algo-

rithm and its application to solve the non-convex ED problem. 

Chaotic bat algorithm is proposed in [11] and hybrid grey wolf 

optimizer is proposed in [12] are used to solve the non-linear and 

discontinuous ED problem.  

A diffusion particle optimization algorithm is proposed in [13] for 

solving a dispatch model that considers fuel, emissions control 

and wind power cost. A self-adoptive learning with time varying 

acceleration coefficient-gravitational search algorithm is proposed 

in [14] to solve a highly nonlinear, non-convex, non-smooth, non-

differential, and high-dimension ED problem. Reference [15] 

proposes a combined model of multi-objective dynamic economic 

and emission dispatch problem. An orthogonal learning competi-

tive swarm optimizer is proposed in [16] for solving the ED prob-

lem. Reference [17] presents a comprehensive review on the uses 

of different optimization techniques to solve the combined eco-

nomic and emission dispatch problem.  

The aim of this paper is to investigate the applicability of Artifi-

cial Fish Swarm Optimization Algorithm (AFSOA) for solving the 

conventional and practical ED problem with non-convex discon-

tinuous objective function. The AFSOA is tested on three standard 

test systems that are extremely difficult or impossible to solve by 

using the standard techniques due to the non-continuous, non-

convex and highly nonlinear solution space of the problem. 

The remainder of this paper is organized as follows. Section 2 

presents the problem formulation of conventional and practical 

economic dispatch (ED) problem. The description of Artificial 

fish swarm optimization algorithm (AFSOA) is presented in Sec-

tion 3. Simulation results and discussions are presented in Section 

4. Finally, Section 5 presents the contributions with concluding 

remarks.  

2. Economic dispatch (ED): problem formula-

tion 

The objective of ED problem is to determine the optimal combina-

tion of power outputs of all the generating units to minimize the 

total fuel cost while satisfying several equality and inequality 

constraints. Hence, the ED problem is a constrained optimization 

problem and it can be expressed as [18], 

Minimize, 

 

FT = ∑ Ci(PGi)
NG

i=1                                                                           (1) 

 

Subject to a number of power systems network equality and ine-

quality constraints. 

Each generator cost function (Ci(PGi)) establishes the relationship 

between the power injected to the system by the generator and the 

incurred costs to load the machine to that capacity. Generally, the 

fuel cost function is considered as a smooth quadratic functions 

and it is depicted in Figure 1.  

 
Fig. 1: Smooth Quadratic Fuel Cost Curve of Thermal Generator. 

 

Mathematically, the Smooth Quadratic Cost Function of A Gener-

ating Unit Can Be Expressed As [19], 

 

FT = ∑ Ci(PGi)
NG

i=1 = ∑ (ai + biPGi + ciPGi
2 )

NG

i=1                              (2) 

 

2.1. ED considering valve point loading (VPL) effects 

In steam power plants, several steam valves are used in turbine for 

controlling the power output of generators. Opening the valve-

point effects would lead to a sudden increase in loss and causes 

ripples in input-output curve and consequently causes cost func-

tion non-smooth. The generator cost function is obtained from a 

data point taken during the heat run tests when input and output 

data are measured as the unit slowly varies through its operating 

region [20]. The VPL effect of a generator is depicted in Figure 2. 

 

 
Fig. 2: Fuel Cost Curve of Generators with VPL Effects (with 4 Steam 
Valves). 

 

Mathematically, the VPL effect is expressed as [21], 

 

FT = ∑ Ci(PGi)
NG

i=1 = ∑ [ai + biPGi + ciPGi
2 + |di ×

NG

i=1

sin{ei × (PGi
min − PGi)}|]                                                                (4) 

2.2. ED considering prohibited operating zones (POZs) 

effects 

The POZs are the range of power output of a generator where the 

operation causes undue vibration of the turbine shaft bearing 

caused by closing or opening of the steam valve, and makes the 

cost curve discontinuous in nature. This might cause damage to 

the shaft and bearings. Therefore, in order to achieve best econo-

my, the operation of generators in such regions is avoided [22]. 

The POZs effect of generators is depicted in Figure 3. 
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Fig. 3: Fuel Cost Curve of Generators with POZs Effects. 

 

Mathematically, the POZs constraints are represented by, 

 

PGi ∈ {

PGi
min ≤ PGi ≤ PGi

l

PGi,j−1
u ≤ PGi ≤ PGi,j

l

PGi,zi

u ≤ PGi ≤ PGi
max

 j=2, 3..., zi                                          (4) 

2.3. Equality and inequality constraints 

2.3.1. Equality constraint 

The power balance/equality constraint reduces the system to a 

basic principle of equilibrium between total system generation and 

total system loads. According to this, the total generation must be 

equal to the total system demand plus the transmission losses in 

the system, and it is expressed as, 

 

∑ PGi = PD + Ploss
NG

i=1                                                                     (5) 

 

To calculate Ploss, B coefficients method is used in this paper, and 

it is formulated by, 

 

Ploss = ∑ ∑ PiBijPj + ∑ PGiBi0 + B00
NG

i=1
NG

i=1
NG

i=1                               (6) 

 

2.3.2. Inequality constraints 

a) Power Generation Constraint:  

The operating region of generator is restricted by, 

 

PGi
min ≤ PGi ≤ PGi

max                                                                        (7) 

 

b) Ramp Rate Constraints:  

Generally, the power output from the generator is assumed to be 

adjusted instantaneously. But, in practice, the ramp rate limits 

restrict the operating region of generator. Therefore, by including 

the ramp rate limits, the equation (7) becomes, 

 

max (PGi
min, PGi

0 − Ri
down) ≤ PGi ≤ max (PGi

max, PGi
0 + Ri

up
)          (8) 

 

c) Network/Power Flow Constraint: 

The power flow through the transmission line is limited by the 

thermal capability of the circuit and it is expressed as, 

 

SLi ≤ SLi
max                                                                                     (9) 

 

The presented objective function with constraints is solved by 

using the Artificial Fish Swarm Optimization Algorithm (AFSOA), 

and the description of AFSOA is presented next: 

3. Artificial fish swarm optimization algo-

rithm (AFSOA) 

The AFSOA is a meta-heuristic algorithm, which is a compara-

tively topical accumulation to the pasture of natural computing, 

that has rudiments enthused by the societal behaviors of natural 

swarms, and associates with evolutionary computation. It has an 

extensive application in multifaceted optimization domains, and 

currently a foremost research focus, contribution an unconven-

tional to the more established meta-heuristic techniques that may 

applied in many of the identical domains [23]. 

AFSOA has several characteristics that are similar to genetic algo-

rithm (GA) such as sovereignty from incline in sequence of pur-

pose occupation, the capability to resolve multifaceted nonlinear 

high dimensional exertion [23]. Furthermore, they canister ac-

complish closer convergence swiftness and entail the minority 

parameters to bend. Whereas, the AFSOA does not seize the 

crossover and mutation processes utilize in GA, so it could 

achieve more simply. 

In nature, the fish can find out the more nutritious area by individ-

ual search or following other fish, the area with much more fish is 

commonly most nutritious. The fundamental idea of the AFSOA 

is to reproduce the fish behaviors such as praying, swarming, and 

following with local search of fish individual for attaining the 

global optimum. Fish habitually reside within the place having a 

lot of food. Therefore, the behaviors of fish is imitated based on 

this attribute to come across the global optimum, which is the 

indispensable inspiration of the AFSOA. In this paper, the artifi-

cial fish denotes the decision variables used in the optimization 

problem. The power output from each generating unit forms the 

artificial fishes. Various steps that are involved for the implemen-

tation of AFSOA is described next. 

3.1. Initialization 

The position of each artificial fish denotes a possible potential 

solution. They are the decision variables used in the optimization 

problem. The current position (Xi) can be represented as [24],  

 

Xi = (Xi1, Xi2, Xi3, … . . , Xin)                                                        (10) 

 

Where i is number control variables, Xi denotes an initial solution, 

n is number fishes in the swarm (i.e., swarm length).  

3.2. Fitness function evaluation 

The fitness function (FF) is formulated as a function of current 

position (Xi) and it is expressed as, 

 

FFi = f(Xi)                                                                                   (11) 

 

The position is defined by different behaviors of fish and they are 

described as follows: 

3.3. Preying behaviour 

This fundamental biological behavior tends to the food. Let the 

condition of artificial fish is Xi, choosing a state Xj inside its sens-

ing range arbitrarily. Suppose Xj is superior to Xi, then move to Xj, 

otherwise to the selected arbitrarily condition Xi . Determine 

whether to meet the forward conditions, repeated several times, if 

still not satisfied forward conditions, then move one step random-

ly. The food concentration in this position of fish is stated as the 

objective function value. The distance between the artificial fish is 

[25-26] expressed as, 

 

dij = ‖Xi − Xj‖                                                                            (12) 

 

Xj = Xi + (dvisual. rand())                                                          (13) 
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Where dvisual is the distance through which the artificial fish can 

see (i.e., perceiving range/visual distance) [27], and rand () pro-

duces random numbers between 0 and 1.  

 

Xi
(t+1)

= Xi
t + (

Xj−Xi
t

‖Xi−Xi
t‖

. step. rand())                                         (14) 

 

Where step is the maximum distance that a fish can move in one 

movement.  

3.4. Swarming behaviour  

Let the current position of artificial fish is Xi and (dij < dvisual). 

Then, (nf<δ) indicates that the partners have more food and less 

crowded. Artificial fish has a tendency to move towards the center 

of the swarm, to ensure the presence of swarm around it and to 

avoid any potential danger. Now, the updated position is given by 

[28], 

 

Xi
(t+1)

= Xi
t + (

Xc−Xi
t

‖Xc−Xi
t‖

. step. rand)                                            (15) 

3.5 Following behaviour 

Let the state of artificial fish is Xi exploring its optimal state Xopt 

from the visual neighbors. Suppose, the number of partners of 

Xopt is (nf<δ) indicates that near distance have more food, not too 

crowed and can move further. Otherwise, perform the prey behav-

ior by using the equation (13) [28]. 

 

 

 

Start

No

Yes

Is the termination 
condition satisfied?

Initialize parameters: Swarm size (n), number of control 

variables, step, dvisual, maximum number of iterations

Generate artificial fish to form the 

initial artificial fish swarm

Swarming 

behavior
Following 

behavior

Preying 

behavior

Behavior selecting and state updating

Assess the state of artificial fish and 

select the perform behavior.

Select the optimization artificial state

Stop
 

Fig. 4: Flow Chart of Artificial Fish Swarm Optimization Algorithm 

(AFSOA). 

4. Results and discussion 

To show the effectiveness of the proposed ED approach, 3 test 

systems, i.e., 3, 6 and 20 generating unit systems are considered in 

this paper. Here, the AFSO algorithm is used to solve the pro-

posed non-convex and discontinuous ED problem. The parameters 

considered in this paper are: Population size is 60, step is 1 and the 

maximum number of iterations are 200.  

4.1. Simulation results on 6 bus - 3 generator system 

The data required for performing the ED problem is taken from 

[29]. Here, the ED is performed by considering 3 power demands, 

i.e., PD are 300MW, 850MW and 1150MW. The ED problem is 

solved using the enhanced genetic algorithm (EGA), differential 

evolutionary algorithm (DEA) and AFSOA.  

Table 1 presents the scheduled power outputs and the objective 

function values for the 6 bus - 3 generator system by varying the 

power demands. When PD is 300MW, the obtained total operating 

cost using EGA, DEA and AFSO algorithms is 3353.23$/hr, 

3352.96$/hr and 3351.84$/hr, respectively, and also the total 

transmission losses obtained are 2.14MW, 1.95MW and 1.84MW, 

respectively. From this, it can be observed that the obtained 

transmission losses and the objective function values are optimum 

using the AFSOA. This can also be observed by varying the PD to 

850MW and 1150MW.  

 

 
Table 1: Scheduled Power Outputs and Objective Function Values for 6 Bus System 

PD (MW) Solution Approach 
Scheduled Power Generation Power Loss 

(MW) 
Total Generation 
(MW) 

Operating Cost 
($/hr) PG1 (MW) PG2 (MW) PG3 (MW) 

300 

EGA 150 102.14 50 2.14 302.14 3353.23 

DEA 150 101.95 50 1.95 301.95 3352.96 
AFSOA 150 101.84 50 1.84 301.84 3351.84 

850 

EGA 429.89 303.75 132.53 16.17 866.17 8303.13 

DEA 429.51 302.46 133.42 15.29 865.39 8302.42 
AFSOA 393.04 344.50 121.48 15.05 865.02 8288.86 

1150 

EGA 595.20 400 184.17 29.37 1179.37 11261.96 

DEA 594.82 400 184.25 29.07 1179.07 11260.75 
AFSOA 599.86 400 178.69 28.55 1178.55 11258.24 
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4.2. Simulation results on IEEE 30 bus - 6 generator 

system 

In this case, the required data of IEEE 30 bus - 6 generator system 

is taken from [30] and the B-coefficients are calculated using the 

procedure described in [31]. The obtained B-coefficients are given 

by, 

 

B =

[
 
 
 
 
 
0.0001 0.0 0.0

0.0 0.0004 0.0002
0.0 0.0002 0.0008

0.0 0.0002 0.0001
0.0003 0.0005 0.0004
0.0007 0.0005 0.0006

0.0 0.0003 0.0007
0.0002 0.0005 0.0005
0.0001 0.0004 0.0006

0.0008 0.0007 0.0007
0.0007 0.0018 0.0008
0.0007 0.0008 0.0010]

 
 
 
 
 

  

 

In this case, two load demands 220MW and 283.4MW are consid-

ered, and they are solved using EGA, DEA and AFSO algorithms. 

Table 2 presents the scheduled power outputs and objective func-

tion values for IEEE 30 bus system.  

When the load demand of 220MW is considered, then the ob-

tained optimum operating cost using EGA, DEA and AFSO algo-

rithms are 590.65$/hr, 589.91$/hr and 587.53$/hr, respectively, 

and the optimum system losses are 7.48MW, 7.42MW and 

6.70MW, respectively. From these simulation results, it can be 

observed that the AFSO algorithm has presented the better results 

compared to EGA and DE algorithms. This can also be seen from 

the power demand of 283.4MWs.  

 

Table 2: Scheduled Power Outputs and Objective Function Values for IEEE 30 Bus System 

Scheduled Generation and Objective 

function value 

Power Demand (PD)=220MW Power Demand (PD)=283.4MW 

EGA DEA AFSOA EGA DEA AFSOA 

PG1 (MW) 138.02 137.49 137.26 189.55 189.31 189.24 

PG2 (MW) 36.17 36.68 36.19 47.43 47.55 47.31 

PG3 (MW) 15.00 15.00 15.00 15.00 15.00 15.00 

PG4 (MW) 16.29 16.25 16.20 19.56 19.41 19.40 

PG5 (MW) 10.00 10.00 10.00 10.11 10.09 10.00 

PG6 (MW) 12.00 12.00 12.00 12.00 12.00 12.00 

Power Loss (MW) 7.48 7.42 6.70 10.25 9.96 9.55 

Total Generation (MW) 227.48 227.42 226.70 293.65 293.36 292.95 

Operating Cost ($/hr) 590.65 589.91 587.53 806.14 803.44 801.16 

 

4.3. Simulation results on 20 generating units system  

The data required for performing the ED problem on 20 generat-

ing units is taken from [32]. Here, the ED is performed by consid-

ering 2 power demands, i.e., PD is 1200MW and 3600MW. The 

ED problem is solved using the enhanced genetic algorithm 

(EGA), differential evolutionary algorithm (DEA) and AFSO 

algorithms.  

Table 3 presents the scheduled power outputs and the objective 

function values for the 20 generating unit system by varying the 

power demands. When PD is 1200MW, the obtained total operat-

ing cost using EGA, DEA and AFSO algorithms is 36134.6$/hr, 

36059.3$/hr and 35971.8$/hr, respectively, and also the total 

transmission losses obtained are 29.29MW, 28.04MW and 

22.30MW, respectively. From this, it can be observed that the 

obtained transmission losses and the objective function values are 

optimum using the AFSO algorithm. This can also be observed by 

varying the PD to 3600MW. 

 

 
Table 3: Scheduled Power Outputs and Objective Function Values for 20 Generating Unit System 

Scheduled Generation and Objective func-
tion value 

Power Demand (PD)=1200 MW Power Demand (PD)=3600MW 
EGA DEA AFSOA EGA DEA AFSOA 

PG1 (MW)  150  150  150  600 600 600 

PG2 (MW) 50 50 50 200 200 200 

PG3 (MW) 50 50 50 161.45 164.45 166.20 
PG4 (MW) 50 50 50 200 200 100 

PG5 (MW) 50 50 50 160 160 160 

PG6 (MW) 20 20 20 100 100 100 
PG7 (MW) 86.96  84.90  74.11 125 125 125 

PG8 (MW) 50 50 50 150 150 150 

PG9 (MW) 50 50 50 200 200 200 
PG10 (MW) 30 30 30 150 150 150 

PG11 (MW) 152.24  153.29  155.62 300 300 300 

PG12 (MW) 217.64 217.64 227.42 500 500 500 
PG13 (MW) 66.45 66.45 61.29 160 160 160 

PG14 (MW) 20 20 20 130 130 130 
PG15 (MW) 25 25 25 185 185 185 

PG16 (MW) 31.00 30.76 27.89 65.29 57.29 49.07 

PG17 (MW) 30 30 30 85 85 85 
PG18 (MW) 30 30 30 120 120 120 

PG19 (MW) 40 40 40 120 120 120 

PG20 (MW) 30 30 30 100 100 100 
Power Loss (MW) 29.29  28.04 22.30 211.72 206.4 200.28 

Total Generation (MW) 1229.30 1228.05 1222.3 3811.7 3811.7 3800.3 

Operating Cost ($/hr) 36134.6 36059.3 35971.8 86612.2 86580.9 86430.8 
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5. Conclusion 

In this paper, a practical economic dispatch (ED) problem is 

solved considering the valve point loading (VPL) and prohibited 

operating zones (POZs) effects. From the literature, it can be ob-

served that it is impossible to handle all the types of non-

convexities that arise in practical power systems using the conven-

tional optimization techniques. Hence, the Artificial Fish Swarm 

Optimization Algorithm (AFSOA) is used in this paper to solve 

the proposed ED problem. All the constraints, i.e., loss constraint, 

generators ramp rate constraints and network constraints are con-

sidered in this paper. The simulation results are performed on 

standard 3, 6 and 20 generating unit systems, and the obtained 

results show the effectiveness of the proposed approach. 
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