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Abstract 
 

This paper proposes the Time of arrival (TOA) measurement model for finding the position of a stationary emitting source for Line-of-

Sight (LOS) scenario. Here Maximum Likelihood Estimation (MLE) is used as the positioning algorithm. For approximation of the roots 

of the solution, which directly corresponds to the source location, the optimization techniques used are Gauss-Newton, Gradient descent 

and Newton-Raphson methods. Two different cases are considered for investigation in this paper. The first case compares the three dif-

ferent optimization techniques in terms of convergence rate. In the second case the error values obtained from two different scenarios are 

compared, one involving a single trial only, while the second scenario uses Monte Carlo method of simulations. Firstly, the error values, 

for both the coordinates (two-dimensional), obtained by getting the difference between the measured source positions and the initially 

guessed source position are obtained for a single trial. Later using Monte Carlo simulation method, the Root-Mean-Square (RMS) error 

values, for both the coordinates (two-dimensional), for the optimization techniques are obtained. To improve the performance of the al-

gorithm, Monte Carlo simulation has been used for multiple trials. 
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1. Introduction 

Source Localization is finding the position of an object. This step 

is performed in the initial stage of any positioning system. Locali-

zation gathers more prominence since identifying the position of 

the source, is the initial step of the positioning system, following 

which, other activities are performed and any errors cropping up at 

this initial stage would lead to large errors at later stages. There 

are numerous measurement models for measuring the distance 

between the emitting source and the receivers. The measurement 

models that are relevant in this context are Time of arrival (TOA), 

Direction of Arrival (DOA) or Angle of Arrival (AOA), Time 

Difference of Arrival (TDOA) and Received Signal Strength Indi-

cator (RSSI) [1]. The line-of-sight (LOS) scenario is considered in 

this paper and that corresponds to the zero-mean Gaussian noise 

[1]. 

2. TOA-based measurement model 

Considering the equation of distance between two points (x, y) 

and (x1, y1), the radius of the circle is obtained, which in this 

context would be the distance between the source and the receiver. 

This is given by the following equation, 

 

2 2

1 1( ) ( )radius x x y y   
                        (1) 

 

The total number of sensors, receivers or base nodes that are con-

sidered are four. The coordinates of the receivers are known 

whereas the source position is unknown, and hence an initial guess 

for the source position estimate is taken in terms of 2-dimensional 

rectangular coordinates.  

The range, which is the distance between each of the receivers and 

the source consists of two components. One being the range com-

ponent without any noise, and is denoted by the symbol d, while 

the other component corresponds to the noise vector, which is 

taken as white Gaussian noise with mean taken as zero. This cor-

responds to the line-of-sight. The reasonable quantity of signal-to-

noise (SNR) ratio is considered. The number of iterations for the 

optimization techniques used, to realize the actual position of the 

source is specified as 40. 

The number of trials which corresponds to the number of samples 

in the Monte Carlo experiment are taken as 100. 

The mathematical expression for source localization of all the 

types of mathematical models is given by, 

 

( )r g x w                                                                             (2) 

The range component, d  without adding noise is given as, 

 

2 2( ) ( )i i id x x y y   
          (3) 

The range component, r  for finding the position that consists of 

both range without noise and the noise component, is given as, 

 

,TOA i i TOAr d w 
 where 

1,2,3,...,i S
        (4) 

2 2

, ,( ) ( )TOA i i i TOA ir x x y y w    
        (5) 

, , ,( )TOA i TOA i TOA ir g x w 
        (6) 
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The range component for finding the position, in the matrix form 

is given as, 

,1 ,2 ,3 , ,  ,  , ,  TOA TOA TOA TOA TOA S

T

r r r r r  
       (7) 

The noise component, w for finding the position, in the matrix 

form is given as, 

,1 ,2 ,3 ,   TOA TOA TOA TOA TOA S

T

w w w w w           (8) 

The distance matrix is given as, 

 

 

2 2

1 1

2 2

2 2

2 2

3 3

2 2

( ) ( )

( ) ( )

( ) ( )

( ) ( )

TOA

s s

x x y y

x x y y

x x y y

x x y y

d g x

   
 
   
 
   
 
 
 

   
  

 

        (9) 

 

The probability density function for the Time of arrival (TOA) 

based measurements is given as, 

11
( ( ) ( ))

2

/2
( )

(2 )

T
TOA TOA TOAr d r d

TOA S

TOA

e
p r



 

  



      (10) 

3. Maximum likelihood estimation algorithm 

The Maximum Likelihood Estimation (MLE) is used to estimate 

non-random parameters. Maximum Likelihood Estimation (MLE) 

is that estimator, for which the measurements are most likely and 

that which maximizes the probability of the measurement. Let X 

be the unknown measurements which are values of a random vari-

able with 
1 2 3,  ,  ,  NX X X X be its N measurement values, 

and the sample values as 
1 2 3,  ,  ,  Nx x x x , then the likeli-

hood function is given as,  

|

1

( ) ( | )
S

Y

s

L g y 



         (11) 

 

Once the measurement values are obtained and the likelihood 

function is calculated, the entire parameter space needs to be 

searched over various values of x. Finally, the specific value has 

to be selected, which is maximum, and that is more probable 

which leads to Maximum Likelihood Estimation (MLE) expressed 

mathematically as follows, 

 

arg min ( )
x

TOAx C x
         (12) 

 

The measurements distribution is known and the Maximum Like-

lihood Estimation (MLE) algorithm gives the maximum value of 

the position. The cost function denoted by C in case of TOA-based 

source localization is given as, 

 
1( ) ( ( )) ( ( ))TOA TO

T

TOA TOATÔA TÔAAC x r g x r g x   
       (13) 

2 2 2 2

3 3 ,

1

( ( ) ( ) ) /TOA

S

TOA s

s

r x x y y 


   
       (14) 

 

J is the Jacobian matrix (See Appendix A). 

H is the Hessian matrix (See Appendix A). 

 is the gradient (See Appendix A). 

 

2( ( )) ( ) / T

TOA TOAH C x C x x x   
       (15) 

 

where C is the Maximum Likelihood Estimation (MLE) Cost 

function. 

4. Optimization techniques 

Optimization techniques can be classified in a number of ways. In 

the present context these techniques are divided depending on 

whether they require derivative evaluation. One approach that 

does not require derivatives are direct or non-gradient methods. 

The other gradient methods either ascent or descent ones fall un-

der the other category that require derivatives. Here the gradient 

methods used for optimization are Gradient descent and Newton-

Raphson.  

4.1. Newton-Raphson method 

Newton-Raphson method provides us with a procedure for locat-

ing the roots of a function of a variable. There are two alternate 

ways in which this method can be developed, one being a geomet-

rical approach and the other one is by using Taylors series expan-

sion. In the geometrical approach, firstly an initial guess is taken, 

for the value of the root, such as xi, is taken and a tangent is drawn 

at that point on the function which when extended to the x-axis 

gives the next iteration value. 

Newton-Raphson method can also be developed using Taylors 

series expansion. In this approach apart from locating the roots, it 

provided the rate of convergence of this method. Here Taylors 

series can also be used to estimate the error of the Newton- 

Raphson formula.  

This method has fast local convergence rate, that is, once the 

neighborhood of the roots of the solution is reached, it converges 

to a high accuracy, and that too in very few iterations. The draw-

back of Newton-Raphson method is that, it involves Hessian ma-

trix which is intensive in terms of computation, due to the pres-

ence of second derivatives, and hence is error-prone, burdensome 

and very expensive [3]. 

 

An alternate way of achieving this is,  

 
1 1( )) ( ( ))i i i i

TOAx x H x C x   
       (16) 

 

The error is approximately equal to the square of the previous 

error.  

This procedure uses an iterative approach wherein the conver-

gence on the root is very rapid. Also, the true percent relative error 

during each iteration decreases much faster compared to that of 

other methods [4]. 

The demerits of this method are, firstly, convergence may not 

happen if the initial point is not close to the optimum one. Second-

ly, this method involves intense computation of the second partial 

derivatives of the functions as well as the matrix inversion during 

each iteration [2].  

4.2. Gauss-Newton method 

The Gauss-Newton is an optimization algorithm which iteratively 

finds the value of a variable that minimizes the sum of squares. 

Starting with an initial guess, for attaining the minimum value, 

this algorithm uses the approach of iterations. This is mathemati-

cally expressed as below, 

 
1 1 1( ( ( )) ( ( )))i i T i i

TOA TOA TOAx x J g x J g x   
       (17) 

1( ( )) ( ( ))TOA

T i i

TOA TOA TOAJ g x r g x  
       (18) 

where, J is the Jacobian matrix. 
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4.3. Gradient descent method 

Gradient descent is a method for finding the local minimum value 

of a function. Taking an initial value of the root of a function, the 

value can be changed in many directions but for the getting the 

minimum value of the function, and then the gradient of the func-

tion needs to be taken. This algorithm will finally converge where 

the gradient is zero which is equal to the local minimum. This is 

mathematically expressed as follows,  

 
1 ( ( ))i i i

TOAx x m C x   
   (19) 

 

The parameter m is the step size of the function and is taken as 

0.005 to ensure proper stability.  

5. Simulation results 

In this paper the simulation is performed using MATLAB soft-

ware and the required graphs are plotted. 

Two different cases are considered while simulating the TOA-

based measurement using ML estimate. Firstly, only one trial is 

being considered. In this case, the error value in x-coordinate, 

which is the difference between the x-coordinate value of the ini-

tially guessed position and the x-coordinate value of the measured 

position which is estimated using ML algorithm and approximated 

using the optimization methods is calculated and is plotted against 

the number of iterations. This is illustrated in Fig.1(a). In the simi-

lar fashion, the error value in y-coordinate is also calculated and is 

plotted against the number of iterations for single trial. This is 

illustrated in Fig.1(b). 

Secondly, Monte Carlo method of simulation is implemented for 

what has been done as part of the first case. Here the calculation of 

the Root-Mean-Square (RMS) error values is repeated for N num-

ber of trials. This is illustrated in Fig.2(a), for the x-coordinate 

plotted against the number of iterations and in Fig.2(b), for the y-

coordinate plotted against the number of iterations. Since this case 

(Monte Carlo) involves large sets of data, it is stored in flat files 

and were later retrieved when necessary. This is performed for the 

sake of programming convenience. 

The data for all the three optimization methods are included in the 

graphs for both single trial as well as the Monte Carlo method (N 

trials). Monte Carlo experiments in the present context gives a 

better performance in estimating the source position. 

It has been observed that the trajectory of the estimated position of 

the source for Gauss-Newton and Newton-Raphson methods con-

verges much faster than that of the Gradient descent method. This 

has been demonstration in the both (Fig. 1 and Fig. 2). 

 

 
1 (a) 

 
1 (b) 

Fig. 1: (a) Error in X-coordinate for Single Trial (b) Error in Y 

coordinate for Single Trial. 

 
2 (a) 

 
2 (b) 

Fig. 2: (a) RMS error in X-coordinate for Monte Carlo method (b) RMS 

error in Y-coordinate for Monte Carlo method.  

6. Conclusion  

This paper proposes TOA-based mathematical model and Maxi-

mum Likelihood Estimation for determining the position of the 

emitting source. For approximating the real position of the source 

from the initial guess ML estimator is used in association with 

three different optimization techniques. Multiple optimization 

techniques are investigated in order to analyze find out the best 

optimization approach for source localization.  

The numerical methods proposed in this paper for approximating 

the real position of the source are Newton-Raphson, Gradient 

descent, and Gauss-Newton method. In our investigation the error 

in the measured and the initially guessed positions are compared 

and hence, it has been identified that the Newton-Raphson and the 

http://www.onmyphd.com/?p=gradient.descent
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Gauss-Newton methods converge more rapidly to the roots (corre-

sponding to the coordinates of the position) of the equation, com-

pare to the Gradient descent method.  

This paper also proposes the Monte Carlo method of simulations 

for estimating the source. The relative convergence rates, of all the 

above-mentioned optimization methods stay the same for both the 

single trail and the Monte Carlo method scenarios.  

It has been observed and concluded that Monte Carlo method 

provides better performance of the algorithm, in estimation of the 

source position. 

There are some disadvantages of using Time of arrival (TOA) for 

Source Localization. Firstly, it requires both the receivers and the 

source to be precisely synchronized. Secondly, Time of arrival 

(TOA) requires the emitted signal from the source to include a 

time stamp, so that the receivers can determine the exact time at 

which the receiver has transmitted the signal. This increases the 

complexity of this method, with increased chances of error in 

finding the position of the source [1]. 

Appendix A 

A.1. Gradient 

A gradient is a vector field of a scalar function 

 1 2 3,  ,  , nx xg x x and is mathematically represented with 

the symbol g , where the   represents a vector differential 

operator, and is pronounce as “del”. A gradient is a multivariable 

generalization of derivative. The difference between a derivative 

and a gradient is that, the derivative is defined on functions of 

single variable, whereas the gradient is defined on functions of 

multiple variables. A derivative is a scalar-valued function, 

whereas the gradient is a vector-valued function. 

The gradient of a function g is given by the following expression, 

 

    grad g or g x
         (20) 

 

In the 3-dimentional cartesian coordinate system the gradient is 

given by: 

 

)  (( , , ) [( / ]/ ) ( / ) Tg x y z g x i g x j g x k       
       (21) 

 

where i, j, and k are the unit vectors in the directions x, y and z 

directions.  

The generalized vector notation of the gradient in m dimensions is 

given as below [2] 

 

1 2 ( ) [ / ]/   / T

mx g x gg xg x    
       (22) 

 

Gradient provides best local trajectories for multidimensional 

problems [2]. 

It also represents the directional derivative of the function, say g, 

and hence g  represents the maximum rate of change of the 

function g [4]. 

A.2. Jacobian 

Jacobian matrix is a matrix of first order partial derivatives of a 

vector-valued function g. If the Jacobian matrix is a square matrix, 

then the matrix and its determinant are called the Jacobian. 

The Jacobian matrix is represented by the symbol J and is mathe-

matically represented by the following expression[5-6], 

 

2

1 1 1

1

/ /

/ /

n

m n n

g x g x

J

g x x g x

    
 

  
              (23) 

 

The Jacobian matrix is the generalization of the gradient. 

A.3. Hessian 

The Hessian matrix is a square matrix which consists of the sec-

ond partial derivatives of multivariable scalar-valued functions. 

This is used to describe the local curvature of a function consisting 

of multiple variables. It is denoted by the symbol H and is mathe-

matically represented in terms of the function g by the following 

expression. 

 

2 2 2

1 1

2 2 2

1

/ /

/ /

n

n n

g x g x x

H

g x x g x

     
 

  
             (24) 

  

It is denoted by the symbol 
2 2( )g x  [3]. The determinant of 

the Hessian matrix is denoted by the symbol | H | and is referred to 

as Hessian. One of the uses of Hessian is in optimization, in which 

it performs searches in order to include second order curvature to 

attain better results [2]. 
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