

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.7) (2018) 710-713

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research Paper

Implementation of asymmetric processing on
multi core processors to implement IOT
applications on GNU/Linux framework

 Poonam Jain. S1, Pooja. S2, Sripath Roy. K3*, Abhilash. K4 and Arvind. B.V5

1,2,4,5Student, Fourth year, Department of ECE, KLEF, Guntur, AP

3Asst Professor, KLEF, Guntur, AP

*Email: koganti_sripathroy@kluniversity.in

Abstract

Internet of Things brought in a bigger computing challenges where there came a need for running tasks in a multi-sensor and large data

processing is involved. In order to implement this requirement multiprocessors are being used for implementation of IoT Gateways.

There comes a need for specific tasks having a resource dedicated for its job. To fulfill this we face a hurdle in choosing dedicated pro-

cessor or shared processor in a Symmetric Processing Architecture. Dedicated processor are the one in which all the tasks are being pro-

cessed on a single core where as in fair share processors specific processes are assigned to specific cores. Symmetric processing makes

use of dedicated processors where as Asymmetric processor makes use of shared processors. Asymmetric Multi Processing can be used

in real time applications in order to solve real time problems, one such platform is IOT. In this paper we have evaluated Asymmetric

processing on GNU/Linux Platform to test multiple threads running on different multi-core processors architectures to realize the same

for running IOT applications having higher computational requirements in the future.

Keywords: Asymmetric Multiprocessing, GNU/Linux, Internet of Things, Scheduling, Symmetric Multiprocessing.

1. Introduction

The primary idea of building a real time kernel with asynchronous

multi processing is to solve real time problems. Here the real time

processes are executed by this real-time kernel and normal Linux

processes are turned down during this lapse. The scheduler of the

real-time kernel treats the normal Linux kernel as an idle work,

which when given a chance to implement, executes its own sched-

uler to program normal Linux tasks. But these normal Linux tasks

can at any time be pre-empted by a real time task.

Symmetric Multi-Processing is a multiprocessor software and

hardware architecture in which two or more identical processors

are connected to a single and shared main memory and are con-

trolled by a single operating system which treats all processors

equally, reserving none for special purposes. In the case of multi-

core processor, the SMP architecture treats them as separate pro-

cessors.

In asymmetric multiprocessing system (AMP), not all CPUs are

treated equally; for example, a system might allow only one CPU

to execute operating system code or might allow only one CPU to

perform I/O operations. Other AMP systems would do something

different so that they were symmetric with respect to processor

roles, but attached some or all peripherals to particular CPUs, so

that they were asymmetric with respect to the peripheral attach-

ment. AMP is used in applications that are dedicated i.e. when

individual processors can be dedicated to specific tasks at design

time.

But in real time there is much need in which kernel executes the

task based on the priorities of the tasks i.e. it chooses it own task.

Here each CPU performs its own task. Such requirement can be

implemented by Asymmetric Multi Processing. Hence this drives

the basic idea of implementing asymmetric multi processing on

different processors used for IOT applications.

Fig 1. Asymmetric Processing

2. Analysis

A thread of execution is the smallest sequence of programmed

instructions that can be managed independently by a scheduler.
Asymmetric Multi Processing involves multiple threads to be

executed on multiple cores depending upon the configuration of

the system. Here tasks are assigned to specific processors unlike in

symmetric processing2.1. The paper should have the following

structure

2.1 Multi threading

Multi Threading is the ability of the processor or CPU to execute

multiple threads or processes. It tries to enhance the utilization of

a single processor by processing both threads and instruction sets

in a parallel way. Multi Threading uses common memory heap

http://creativecommons.org/licenses/by/3.0/
https://en.wikipedia.org/wiki/Main_memory

International Journal of Engineering & Technology 711

for the allocation of the threads. Multi threading provides faster

switching between the threads. Asymmetric multi-processing del-

egates system tasks to be executed by some processors and appli-

cations on others. This is basically not well organized as symmet-

ric processing due to the reality that below specific characteristic

one processor may be completely active while the other is inactive.
At the operating system level, multiprocessing is rarely used to

point out the implementation of various synchronous processes in

a system, with each process executing on a individual CPU or core,

as conflicting to one process at any one instant. Multiprocessing

reflects real parallel running of multiple processes using many

processors. Multiprocessing certainly don’t convey one process or

task uses many processor [19-24].

Fig 2. Multi threaded Execution

3. Scheduling mechanisms

Scheduling is the strategy by which work indicated by a few

means is appointed to resources for completion of work. The work

might be virtual calculation.

Components, for example, threads, procedures or data flows are in

turn scheduled onto processors, network links or expansion cards

which are hardware resources.

A scheduler carries out scheduling activity. Schedulers are used

table various clients to share framework assets viably, or to ac-

complish an to keep the system resources busy, it allows multiple

users to share resources equally. When used schedulers in imple-

mentation, follows a particular algorithm upon which threads are

assigned to processors of the systems.

FIFO is one simplest scheduling algorithm which means First In

First Out it is also known as First Come First Serve. It simply

queues the items in the order they arrive. In this scheduling the

task which come first gets served and remaining are in waiting. It

is based on queuing and is generally used inside other scheduling

mechanisms.

4. 4. Implementation methodology

In order to implement Asymmetric processing first we need set

few pre-requisites.

• Preferred Platform

• Selection of CPU

• Kinds of tests to be performed

1. Preferred Platform:

We have chosen Linux to be the suitable platform because of its

Free and Open Source Nature having a larger community working

towards solving problems. Support of the community and availa-

bility of API can be used to solve real time problems. Hence we

implemented asymmetric processing on Linux kernel.

2. Selection of CPU:

We have implemented asymmetric multi processing on various

multi core processors like a. x86 i3 processor with Frequency-

1900 MHz. b. AMD II X3 720 Processor, Frequency- 800 MHz

and c. x8 i5 Processor, Frequency- 1400.158 MHz. The system

performance and latency was measure for the same. We chose

general purpose computing platforms as a base to test the compu-

tational power as we are testing the system to work as a IoT

Gateway Server.

3. Performing tests :

At first we have created many threads using POSIX APIs and set

priority the tasks .Later by using scheduler we assigned the tasks

to the specific CPU cores.

For example if there are 10 tasks , and if tasks 2, 7 are assigned to

CPU1 and 1,4,8,9,10 are assigned to CPU3 and tasks 3,5,6 are

assigned to CPU4,Here CPU2 is left idle. Then the CPU 1,3,4

perform only related and internal tasks where as CPU2 performs

only internal tasks, rest of the time it remains idle. Hence in this

way we have implemented asymmetric processing on multi core

and checked for CPU performance and measured the start time,

end time and latency of all the tasks.

Fig 3. Block diagram and explanation

1. Installing Standard Linux Kernel.

The first step is to install standard Linux kernel and configuring

the kernel to perform Asymmetric Multi Processing.

2. Configuring standard Linux kernel for Asymmetric multi pro-

cessing using POSIX API’S.

After installing Standard Linux kernel we implemented multi pro-

cessing with the help of POSIX (portable operating system inter-

face) threads.

We implement multi processing by creating and processing large

number of POSIX threads .As a part of asynchronous multi pro-

cessing, we allocated specific threads to a particular processor.
We defined 4 tasks and tasks were assigned to each processor

3. Testing on various processors

Next we worked on various processors to implement asynchro-

nous process by creating and processing a

number of threads where threads were assigned to process specific

tasks. We implemented multi processing successfully and thread

parameters for each thread are obtained.

4. Calculating Latencies and verifying system performance for

various processors.

After getting the thread related parameters by asynchronous pro-

cessing, we found latency for each thread. It gives timing for each

thread, which is most important for an real time operating system.

We also verified multiprocessing on the system level using system

monitor performance. Later the graphs were plotted for asynchro-

nous processing for various processors.

5. Testing and verification

After the successful building of the kernel, we need to test the

behavior and performance of the kernel to justify the real time

behavior of the kernel. To verify the functional behavior and per-

712 International Journal of Engineering & Technology

formance metrics of the kernel, we need to carry some standard

test benches.

Latency Test:

Latency test is the best marker of your ongoing execution, it

checks the general execution of your framework. On the off

chance that you have effectively introduced an accurately working

constant part this test will tell you quickly. It gauges the distinc-

tion in time between the time when an assignment is really called

by the scheduler and the time between the normal switch time.

This test gives least, normal, and greatest latencies for that period

and also least and most extreme general latencies that happened

over the whole test for each one moment

6. Results

1. Asynchronous process on standard Linux kernel (x86 i3

processor, Frequency- 1900 MHz)

1.1 Asynchronous Processing plot on standard

Linux kernel (x86 i3 processor, Frequency- 1900 MHz)

2. Asynchronous Processing on standard

Linux kernel (AMD II X3 720 Processor, Frequency-

800 MHz)

 2.1 Asynchronous Processing plot on Standard

 Linux Kernel (AMD II X3 720 Processor,

 Frequency-800 MHz)

3. Asynchronous Processing on standard

Linux kernel (x86 i5 Processor, Frequency-

1400.158 MHz)

 3.1 Asynchronous Processing plot on standard

 Linux kernel (x86 i5 processor, Frequency-

 1400.158 MHz).

7. Conclusion

We implemented the asymmetric processing on various processors

like i3, AMD, i5 processors and calculated the latency values and,

and we also verified the multi processing on system level using

system monitor performance, and graphs were plotted for various

asymmetric processing on various processors.

Acknowledgement

This project has been implemented and worked upon by all the

authors mentioned. We are very grateful to Sripath Roy and thank-

ful to Koneru Lakshmaiah Educational Foundation for their guid-

ance and support to this project

References

[1] Nikola Markovic, Daniel Nemirovsky, Osman Unsal, Mateo
Valero and Adrian Cristal “Kernel-to-User-Mode Transition-

Aware Hardware Scheduling” IEEE Micro (Volume: 35, Issue:

4, July-Aug. 2015)pp. 0272-1732.

International Journal of Engineering & Technology 713

[2] M.Aater Suleman,Onur Mutlu, Moinuddin Qureshi, “Accerlating

Critical ection Execution with Asymmetric Multicore Architec-

ture” IEEE Micro (Volume:30, ” , Issue: 1 , Jan.-Feb. 2010).

[3] Junji Sakai, Inoue Hiroaki, Sunao Torii, Masato Edahiro. “Multi-
tasking Parallel Method for High-End Embedded Applianc-

es.“ IEEE Micro (Volume: 28, Issue: 5, Sept.-Oct.

2008) pp: 0272-1732.
[4] H. Roth, A. Chandra “POSIX standards for fault management in

a real-time environment”. IEEE Xplore: 06 August 2002 pp. 0-

8186-7515-2.
[5] Emily Blem, Hadi Esmaeilzadeh, Renee St.Amant, Karthikeya

Sankaralingam, Doug Burger, “ MultiMore Model from Abstract

Single Core Inputs”. IEEE computer Architecture Letters (Vol-
ume: S12,issue 2 dec.2013); pp.1556-6056

[6] Yang Zhou, Qiaodi Zhou. ” The embeded real-time Linux opera-

tion system based on the Xenomai.” Electrical and Control Engi-
neering (ICECE), 2011 International Conference on 16-18 Sept.

2011 Published on 24 October 2011

[7] M.D.Marieska, A.I.Kistijantoro, M.Subair.“ Analysis and
benchmarking performance of Real Time Patch Linux and Xen-

omai in serving a real time application”. Electrical Engineering

and Informatics (ICEEI), 2011 International Conference on 17-
19 July 2011 Published on 19 September 2011.

[8] http://ask.xmodulo.com/view-threads-process-Linux.html
[9] http://marc.merlins.org/linux/linux.conf.au2001/Day1/threads.pd

f

[10] http://www.cs.fsu.edu/~baker/realtime/restricted/notes/pthreads.h
tml

[11] https://www.Linux.com/learn/how-install-and-configure-conky

[12] https://www.ibm.com/developerworks/library/l-async/
[13] http://www.cs.kent.edu/~ruttan/sysprog/lectures/multi-

thread/multi-thread.html

[14] https://randu.org/tutorials/threads/#pthreads
[15] http://scitechconnect.elsevier.com/asymmetric-multi-processing-

amp-vs-symmetric-multi-processing-smp/

[16] https://randu.org/tutorials/threads/#pthreads
[17] http://github.com/dankex/tools/tree/master/Linux-

kernel/wake_latency/

[18] http://list.xmodulo.com/logstash.html

[19] ANNABATTULA, J., KOTESWARA RAO, S., SAMPATH

DAKSHINA MURTHY, A., SRIKANTH, K.S. and DAS, R.P.,

2015. Underwater passive target tracking in constrained envi-
ronment. Indian Journal of Science and Technology, 8(35), pp.

1-4.

[20] HUSSAIN, S.N. and KISHORE, K.H., 2016. Computational Op-
timization of Placement and Routing using Genetic Algo-

rithm. Indian Journal of Science and Technology, 9(47),.

[21] Vudatha, C.P., Nalliboena, S., Jammalamadaka,
S.K.R., Duvvuri, B.K.K., Reddy, L.S.S., Automated generation

of test cases from output domain of an embedded system using

Genetic algorithms, ICECT 2011 - 2011 3rd International Con-
ference on Electronics Computer Technology

5,5941989, pp. 216-220

[22] Sastry, J.K.R., Ganesh, J.V., Bhanu, J.S., I2C based networking
for implementing heterogeneous microcontroller based distribut-

ed embedded systems, Indian Journal of Science and Technolo-

gy, Volume 8, Issue 15, 2015

[23] Sastry, J.K.R., Naga Sai Tejasvi, T., Aparna, J., Dynamic sched-

uling of message flow within a distributed embedded system

connected through a RS485 network, ARPN Journal of Engi-
neering and Applied Sciences, Volume 12, Issue 9, 1 May 2017,

Pages 2809-2817

[24] Sastry, J.K.R., Suresh, A., Bhanu, S.J., Building heterogeneous
distributed embedded systems through rs485 communication

protocol, ARPN Journal of Engineering and Applied Sciences,

2015, 10(16), pp. 6793-6803

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=40
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5430728
http://ask.xmodulo.com/view-threads-process-Linux.html
http://marc.merlins.org/linux/linux.conf.au2001/Day1/threads.pdf
http://marc.merlins.org/linux/linux.conf.au2001/Day1/threads.pdf
http://www.cs.fsu.edu/~baker/realtime/restricted/notes/pthreads.html
http://www.cs.fsu.edu/~baker/realtime/restricted/notes/pthreads.html
https://www.google.com/url?q=https://www.linux.com/learn/how-install-and-configure-conky&sa=D&source=hangouts&ust=1519632872489000&usg=AFQjCNGmCTYTDh0-r9kKVkmmSZ_mcdJ2Aw
https://www.google.com/url?q=https://www.ibm.com/developerworks/library/l-async/&sa=D&source=hangouts&ust=1519632872490000&usg=AFQjCNHUMU0AfdRA5TW_YUGztZhfROPt3Q
https://www.google.com/url?q=http://www.cs.kent.edu/~ruttan/sysprog/lectures/multi-thread/multi-thread.html&sa=D&source=hangouts&ust=1519632872491000&usg=AFQjCNE-gT1b_LQvsLKr7io0mIckcbAvYA
https://www.google.com/url?q=http://www.cs.kent.edu/~ruttan/sysprog/lectures/multi-thread/multi-thread.html&sa=D&source=hangouts&ust=1519632872491000&usg=AFQjCNE-gT1b_LQvsLKr7io0mIckcbAvYA
https://randu.org/tutorials/threads/#pthreads
http://scitechconnect.elsevier.com/asymmetric-multi-processing-amp-vs-symmetric-multi-processing-smp/
http://scitechconnect.elsevier.com/asymmetric-multi-processing-amp-vs-symmetric-multi-processing-smp/
https://randu.org/tutorials/threads/#pthreads
http://github.com/dankex/tools/tree/master/linux-kernel/wake_latency/
http://github.com/dankex/tools/tree/master/linux-kernel/wake_latency/
http://list.xmodulo.com/logstash.html

