

Copyright © 2016 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.6) (2018) 231-235

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research Paper

Effectiveness of the NIZKP Protocol for Authentication

 in IoT Environment

Teyi Yann Cedric Lawson 1*, Senthilnathan T 2

1PG Scholar, Department of Computer Science, CHRIST (Deemed to be University), Bangalore, India

2Associate Professor, Department of Computer Science, CHRIST (Deemed to be University), Bangalore, India

*Corresponding author E-mail: lawson.cedric@cs.christuniversity.in

Abstract

Elliptic Curves when compared to other encryptions scheme such as RSA etc., provides an equivalent security, smaller key sizes, less

power consumption, faster calculations, less bandwidth used and is more suitable for Internet of Things devices. In addition of encrypting

the data, the devices in the network should also be able to authenticate themselves, which can be achieved with the implementation of

“Non-Interactive Zero Knowledge protocol” (NIZKP). This protocol involves two parties: The prover and the Verifier. Prover party

should prove to the Verifier that they have the knowledge of something, without revealing what is it. In this paper, a study of Schnorr

protocol or ∑- protocol over Elliptic Curves is done and the protocol is implemented in Python using the Python Cryptography Toolkit

PyCrypto which is a collection of cryptographic modules implementing various algorithms and protocols. Finally, the results were com-

pared with Elliptic Curve Diffie-Hellmann(ECDH) and present a performance evaluation of the protocols on the Raspberry Pi 3B model,

a credit-card sized computer used for the development of IoT devices hence the perfect platforms to test the protocol.

Keywords: NIZKP, ECC, Internet of Things, Raspberry Pi, Elliptic Curve Diffie-Hellman.

1. Introduction

The Internet of Things is a technology that aims to monitor and

connect billions of information devices that contain sensors, actua-

tors, microprocessors, communication interfaces and power

sources. The need for security is because there is no uniform infra-

structure from one device to another and that these devices com-

municate wirelessly; all this adding up makes them prone to secu-

rity attacks such as eavesdrop, Man-In-The-Middle and so; since

most of the IoT objects have constraints resources in terms of

power, memory and processing capability, it follows that light-

weight algorithms are necessary to obtain an efficient end-to-end

communication because they use minimal power consumption and

less memory than the traditional algorithms such as RSA. [1] Au-

thentication, Integrity, and confidentiality are the pillars of Net-

work Security. In order to be properly secured, each device in the

IoT network should authenticate itself to the rest of the devices

each time that communication is initiated. A suitable protocol for

this is the Zero Knowledge proof, where one entity called the Ver-

ifier seeks to verify that another entity, the Prover, can prove that

he knows something without having to reveal what he knows. In

that way, no information is leaked and the user who is proving a

statement is authenticated if the verifier asses that the proof is

valid. This assessment can be done in an interactive manner

through a series of challenges or in a non-interactive manner

through a one-time challenge. There exists a various type of zero-

knowledge protocol such as graph isomorphism, discrete loga-

rithms, fair coin flips etc. Example of some Internet applications

that use the zero-knowledge proofs is e-Voting, e-Commerce,

access authorization etc. The proposed approach is considering the

non -interactive way, since it will use less computation and

memory, for this end the Sigma protocol and zero-knowledge

proof are combined with the ECC algorithm to provide authentica-

tion and data protection for the Internet of Things.

2. Related Work

In the past years, researchers have proposed many ECC based and

also Zero Knowledge-Proof(ZKP) based security protocols for

resources-constrained devices to overcome the security and priva-

cy challenges present in the IoT. Francisco Martín-Fernández,

Pino Caballero-Gil and Cándido Caballero-Gil [3] have proposed

a method for authenticated exchange of confidential data in an

insecure channel based on the concept of a non-interactive ZKP

which verify the legitimacy of the sender in a single communica-

tion. Ioannis Chatzigiannakis, Apostolos Pyrgelis, Paul G.

Spirakis, Yannis C. Stamatio [2], claim to be the first to use a

well-established Zero Knowledge Interactive Protocol based on

the discrete logarithm problem and optimized by implementing

ECC settings with regards to resources constrained devices. Au-

thors I.-H. et al. [4] have implemented a Multi-Graph Zero-

knowledge-based authentication. A. P. Haripriya and K. Ku-

lothungan [5] proposed an ECC based authentication that imple-

ment Zero Knowledge proof in the context of Internet of Things. T.

Yalçin [6], proposed a secure lightweight ECDSA for the IoT.

Pádraig Flood, Michael Schukat [7], have proposed a method

combining ZKP and key exchange mechanism to provide secure

and authenticated communication in M2M networks.

http://creativecommons.org/licenses/by/3.0/
mailto:lawson.cedric@cs.christuniversity.in

232 International Journal of Engineering & Technology

3. Importance of security and its challenge in

the internet of things

There are serious technical reasons why security in IoT is not

trivial. The basic problem is that the proven technologies used to

date to secure traditional interactions with the Internet will not

work properly with the Internet of Things. For example, to use a

public key infrastructure (PKI), each terminal must be able to

store digital keys and execute encryption and decryption algo-

rithms, conduct sophisticated handshakes to establish secure SSL

connections, etc. Many nodes such as passive RFID tags simply

do not have the electrical power, storage, or processing power to

perform even the simplest of PKI.

Second, much of the Internet of Things currently relies on ma-

chine-to-machine (M2M) technologies. In other words, IoT sen-

sors talk to each other instead of talking to a centralized server. If

your smart thermostat tells your dishwasher when to start, that

communication goes over your Wi-Fi or Bluetooth network, even

without going over the Internet, you're taking great risks. It goes

without saying that the Wi-Fi and Bluetooth protocols are easily

hackable, but how do the two communication nodes know that the

information coming from the other is allowed? Any type of M2M

interaction requires a certain level of trust, only we have no way to

predict that confidence a priori, or to be able to revoke it if an

incident occurs. How can your dishwasher know someone has

hacked your thermostat?

A significant amount of sensitive data is shared among the IoT

devices, (medical data recorded by health monitors, location need-

ed to provide a spot in a smart parking application, etc.) and if

those data where to be breached it could cause some serious prob-

lem to the user or compromise the IoT network. Security and pri-

vacy of IoT are hence of prime importance. The author in [1] re-

sumes the challenges faced by the IoTs as follow:

- Passive or non-existent human intervention might lead to phys-

ical and logical attacks.

- Communication done through a wireless channel are prone to

attacks such as man-in-middle, DoS (Denial of Service),

eavesdropping etc.

- Unauthorized access may easily be granted due to the inter-

connection ability of these devices

- Resources constrained devices can’t support intricate security

solutions.

- Power limitation

- Heterogeneous platforms

- Network scalability, bandwidth etc.

 A secure IoT device should have the following abilities [1]:

• Confidentiality: Data should only be accessible to the

sender or receiver whether it is at rest or in transit.

• Integrity: No intruders should be able to modify the

original contents of the data while it is in transit.

• Authentication: The identity of the sender should be ver-

ified so that the receiver can judge the validity of the da-

ta.

• Authorization: Only authorized users should be able to

access and maintain the resources of the IoT.

Most common attacks to which the IoTs are exposed are [8]:

- Interruption: The aim of the attacker is to affect the

availability of the system (example shutting it down)

which usually results in exhaustion of the resources.

- Eavesdropping: The attacker is spying on the communi-

cation between the devices, compromising the confiden-

tiality of the data.

- Alteration: Attacker may alter the data being forwarded

between the sender and the receiver misleading the

communication and threatening the integrity of the data.

- Message replay: Attacker intercepts and resends the data

after modifying it, confusing the targeted node in the

network.

- Man-in-the-middle: Attacker secretly eavesdrops and

possibly altering the data, inducing the two parties that

they are directly communicating with each other.

4. Asymmetric cryptography

 Cryptography is a cryptology discipline that focuses on protect-

ing messages and ensuring confidentiality, authentication, and

integrity by using secrets or keys. Symmetric key cryptography

has long been used for the encryption of confidential messages. Its

use has been progressively reduced since the advent of public key

cryptography (asymmetric cryptography) even though both tech-

niques are still sometimes used together. In symmetric key or

secret key encryption, it is the same key that is used both to en-

crypt and decrypt a message. It's exactly the same principle as a

door key: it's the same thing used to open and close a lock.

Asymmetric cryptography (also known as public-key cryptog-

raphy) is a method used to transmit and exchange messages se-

curely by ensuring that the following principles are respected:

• Issuer Authentication

• Integrity guarantee

• Confidentiality guarantee

This technique is based on the principle of "key pair" (or two-key)

consisting of a so-called "private key" kept completely secret and

must not be communicated to anyone and a key called "public"

which, like its name may be transmitted to all without any re-

striction. The so-called asymmetric keys are encryption keys. En-

cryption is the general name given to mathematical coding or de-

coding techniques.

The general principles of public key cryptography are:

• A message encoded with a private key can only be decoded by

the associated public key.

• A message encoded with a public key can only be decoded by

the associated private key.

• A given public key can only be associated with one private key.

• Several different private keys cannot have the same public key

as a complementary key.

• A given private key can only be associated with one public key.

• Several different public keys cannot have the same private key

as a complementary key.

Symmetric key uses less number of keys and less key size but it

doesn’t provide authentication. Popular symmetric key algorithms

are AES, DES, 3DES, BLOWFISH, RC5, PRESENT etc.

Asymmetric key meets all the security requirements but is not

suitable for resources-constrained devices due to the large size of

the key generated. RSA, DIFFIE-HELLMAN KEY EXCHANGE,

ECC are popular Asymmetric Key Algorithms.

Due to the reasons cited above lightweight algorithms are hence-

forth more fit to implement security and privacy in IoT.

5. Elliptic curve Diffie-Hellman

Elliptic Curve Diffie-Hellman (ECDH) is an exchange of keys

based on the Diffie-Hellman algorithm. Two parties let say Yann

and Cedric want to securely exchange information in such a way

that even if a third-party intercept them, he won’t be able to de-

code them.

Parameters of the domain

This algorithm work in a cyclic subgroup of an elliptic curve over

a finite field. The parameters of the algorithm are:

• A prime p that specifies the size of the finite field.

• The coefficients a and b for the elliptic curve equation

• The base point G from which the subgroup is generated

• The order n of the subgroup

• The cofactor h of the subgroup

Step 1: The two parties generate their own private and public

keys.

International Journal of Engineering & Technology 233

- A random number d picked from {1, …, n-1} constitute

the private key

- The point H = d.G constitute the public key.

Step 2: Public keys exchange

- Yann and Cedric proceed to the exchange of their public

keys HY and HC through a channel which is insecure.

Step 3: Calculate the shared secret key using their own private

key and the received public key.

- Yann calculates S = dYHC

- Cedric calculates S = dCHB

The resulting key S = dYHC = dY(dCG) = dC(dYG) = dCHY.

The fact that the private key d is randomly generated makes it

hard for a given third-party performing a Man-In-The-Middle

attack to find d even if he knows H and G because, in order to do

so, he or she would have to solve the discrete logarithm problem.

At the end even if he won’t be able to discover the Shared Secret

Key S without knowing either dY or dC.

6. An overview of zero-knowledge proof

A zero-knowledge proof is a method by which one party, the

prover can prove to another party the verifier that a given state-

ment is true without conveying any information apart from the fact

that the statement is true. We do that in case we have a secret that

we don’t want to tell anyone but we want to prove that we know

the secret.

Zero-Knowledge requirements

• Completeness: If Prover is honest and does have a secret

that he wants to prove to the verifier who is also honest

then everything will work as long as both prover and

verifier follow the protocol, Zero-Knowledge Proof will

follow.

• Soundness: The prover cannot convince the verifier that

he/she know the secret when they actually don’t.

• Zero-Knowledge: Verifier knows that Prover has a se-

cret without knowing the actual secret. Anyone spying

on the communication between the Prover and Verifier

has no way of knowing if it is scripted or genuine, Prov-

er can prove that he/she knows the secret to Verifier and

only to him.

Classical Example for Zero Knowledge Proof

Fig. 1: Zero Knowledge Proof – Alibaba Cave Problem

As depicted in the Fig.1, the Verifier and the Prover enter a cave

and there is a door at one end of the cave, which opens only when

told the proper secret. So, the Prover wants to prove that she/he

knows that secret. Protocol starts, Verifier wait outside the cave

and Prover enters it choosing randomly entry A or B. Then Verifi-

er enter the cave and calls out which exit he wants Prover to ap-

pear at. Prover appears at the correct exit and Verifier is convinced.

But if this is performed only once the Verifier should not be con-

vinced. Let say that Verifier calls out the B exit, and that initially

Prover chooses this exit and got stuck at the door because he/she

doesn’t know the secret to open it, and got lucky when Verifier

called her to appear at exit B. It should only be convincing to the

Verifier only if this process is repeated several number of times,

thus reducing the chances of Peggy lying about knowing the secret

to open the door.

So, in this example, Completeness is assured by Prover and Veri-

fier following the protocol. Soundness is assured by repetition of

the protocol and Zero-Knowledge is assured because Verifier

never learn the secret to open the door, and nobody observing the

process outside of Verifier and Prover have no way of knowing

whether it was orchestrated or not.

The other application of ZKP is discussed here with Sudoku prob-

lem. The objective of the sudoku is to fill the 9x9 grid so that each

row, column and block contain exactly 1 of each digit (1-9) as

shown in Fig.2. So, let says that Prover P has the solution to a

sudoku problem but wants to prove it to the Verifier V. In order to

do so the Prover upload the solution to a computer program and

this program is verifiably honest since it is open source and any-

one can look at the code and verify that it encrypts the given solu-

tion by using a simple substitution cipher key where each transmu-

tation has an equal chance of appearing, in other word digit 1 has

as much chance to be transmuted into a 3 or an 8 etc.

 Next the program displays the following options to V:

• Reveal a row

• Reveal a column

• Reveal a block

• Reveal original problem

• Every time V makes a new choice, the program re-

encodes the solution with a brand-new key. In the above

picture, the first image shows an unmasked row, there is

only one of the digit in the row, likewise with the col-

umn and the block, and it can be easily mapped to his

encoded original puzzle, thus knowing that it is a solu-

tion to its puzzle.

• The computer program is verifiably honest and P and V

are following the protocol so Completeness is assured.

• The chances of P, cheating V are 27/28 if the protocol is

performed only once. But if performed multiple times

with random choices let say 100 times, the chances are

less than 0 .05%.

• Since every permutation of the cell rows column or

block are equally likely, V learns nothing from the solu-

tion other than it is valid. And any outside observer

wouldn’t be able to separate legitimate transcript from

any false one.

Fig. 2: Zero Knowledge Proof Sudoku Problem

7. Schnorr zero-knowledge protocol over ellip-

tic curves

The first introduction of this scheme was made in 1989 by C.P

Schnorr [9], he created a new scheme and a matching authentica-

tion all based on the discrete logarithms in a subgroup Zp with p

234 International Journal of Engineering & Technology

being a large prime. The protocol implemented in this paper, the

Non-Interactive Zero-Knowledge Proof (NIZKP) version of the

Schnorr Protocol over Elliptic Curve is a modified version of the

one introduced in [9] and include the usage of Elliptic Curves.

Protocol steps:

- The Prover and the verifier both agree on an elliptic

curve.

- Prover chooses a private key from a = r where r such

that r ∈ {0, ..., Q – 1}

- Prover calculates the public key v = −a.G(modP) (a

point in the elliptic curve) and sends it to the verifier.

- Prover generates a number R to use in x=r.G(modP) to

calculate a point on the elliptic curve and sends it to the

Verifier.

- Verifier choses a random number e such that e ∈ {1,2,

…, 2t} and sends it to prover.

- Prover verifies that the value [e] is in the appropriate in-

terval and calculate y = a*e + r and sends it to receiver.

- Verifier computes:

 z = y.G(modP)

v = e.G(modP)

z = z+v

And checks that z.x = x.x and z.y = x.y. if true he ac-

cepts else he rejects it.

The non-interactive aspect of this protocol makes it more suitable

for the resource constrained devices as it only needs one round of

execution. Given that the two parties follow the protocol, com-

pleteness is assured. The prover may be able to cheat the verifier if

he can guess the challenge e sent by the prover. He can then pre-

pare a message accordingly, and if the sender indeed sends the

guessed e as challenge, the prover would have the correct response

to the challenge. In this scenario the prover has a 1 / 2 probability

to succeeds, however it is applicable only if the interval of the

challenge e is restricted to a small space. That scenario fails when

e is selected from a broader interval. In our protocol the interval is

defined at:

{1,2, …, 2t}, which ensure the soundness of it. A third party ob-

serving the transaction would be able to assert that z.x = x.x and

z.y = x.y but will not be able to learn anything apart from that

hence Zero Knowledge is proved.

8. Evaluation of the protocol

8.1. Pycrypto

The implementation of the algorithms is done on Python using

Pycrypto which is a bundle of various encryption algorithms such

as AES, DES, RSA, ECC etc., as well as hash function such as

SHA256, SHA512, MD5 etc., it provides secure administrative

tools. Clients and servers can encrypt the data being exchanged

and also authenticate each other. With the help of its arbitrary-

length integers, public key algorithms can easily be implemented.

8.2. Hardware

The hardware used for this implementation is the Raspberry Pi 3 B

which is a credit sized computer, on which IoT project can easily

be set up on. It consists of a Broadcom BCM2837, a CPU running

at 1.2 GHZ quad-core ARM Cortex A53(ARMv8 Instruction Set),

GPU (Broadcom VideoCore IV @ 400 MHz, a memory of 1GB

LPDDR2-900 SDRAM, 4 USP ports and is equipped with a

10/100 MBPS Ethernet, 802.11n Wireless LAN, Bluetooth 4.0. It

runs on Raspbian Jessi a Debian-based operating system which

has been specially conceived for the Raspberry Pi.

8.3. Results

All operations of the Elliptic Curve Cryptography have been done

on Python using PyCrypto. The implementation of the ECDH uses

the curve secp256k1 (which is also used by Bitcoin in digital sig-

natures.) with the equation:

 y2=x3+ax2+b. (1)

The parameters of the curve are:

-Field characteristic:

p=0xfffefffffc2f

- Curve coefficients:

a=0, b=7

- Base Point G with:

X=0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f

2815b16f81798,

Y=0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c4

7d08ffb10d4b8

- Subgroup order:

n=0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364

141,

- Subgroup cofactor:

h=1

For the Schnorr protocol over Elliptic Curves, Brainpool curve

over a 192-bit prime field has been used. The parameters of the

curve are:

P=C302F41D932A36CDA7A3463093D18DB78FCE476DE1A86

297

a=6A91174076B1E0E19C39C031FE8685C1CAE040E5C69A28

EF

b=469A28EF7C28CCA3DC721D044F4496BCCA7EF4146FBF2

5C9

Base point G with coordinates:

x=C0A0647EAAB6A48753B033C56CB0F0900A2F5C4853375F

D6

y=14B690866ABD5BB88B5F4828C1490002E6773FA2FA299B

8F

n=C302F41D932A36CDA7A3462F9E9E916B5BE8F1029AC4A

CC1

h = 1

Both the protocols are implemented between client and server

using Secure Shell and socket programming.

In Table 1 we can observe the execution time taken to perform the

fundamentals Elliptic Curves operations by both the algorithms on

the Raspberry Pi.

Table 1: Execution Time in second of Fundamentals ECC Operations in

NIZKP Schnorr Protocol over Elliptic curves and Elliptic Curves Diffie-

Hellman on Raspberry Pi 3 B.

Operations

Execution Time in seconds

NIZKP Schnorr Proto-

col over Elliptic curves

Elliptic Curves Diffie-

Hellman

The point

addition on
the curve

0.344830036163 0.975810050964

The scalar

multiplication
0.457688808441 0.976742982864

The keys
generation

0.03047490119934 0.423557043076

The interpretation of the above table shows that the NIZKP

Schnorr Protocol over Elliptic curves performs faster than the

Elliptic Curves Diffie-Hellman algorithm. For both the algorithms,

the scalar multiplication is the most exhaustive operation, but in

the NIZKP Schnorr Protocol it takes almost half the time needed

by the ECDH to perform. When under heavy CPU loads the cur-

rent consumption of the Raspberry Pi 3 B model when none of the

International Journal of Engineering & Technology 235

USB ports is used is: 400mA and input Voltage is 5V [10]. Taking

into consideration the following formula:

E = V ·I ·t. (1)

A Corresponding Theoretical Energy Consumption for the two

algorithms is also proposed in Table 2.

Table 2: Energy consumption in mJ of Fundamentals Elliptic Curve Oper-

ations Raspberry Pi 3 B.

Operations

Execution Time in seconds

NIZKP Schnorr Protocol

over Elliptic curves

Elliptic Curves Diffie-

Hellman

The point

addition on

the curve

689.660072326 1951.620101928

The scalar

multiplication
915.377616882 1953.485965728

The keys

generation
60.94980239868 847.114086152

Fig. 3: Execution Time in second of Fundamentals Elliptic Curve Opera-

tions on Raspberry Pi 3 B.

Fig. 4: Energy consumption in mJ of Fundamentals Elliptic Curve Opera-

tions Raspberry Pi 3 B.

On the basis of the comparison made and from observing Fig. 3

and Fig. 4 it is safe to say that the NIZKP consumes less in term of

power and takes less execution time, hence fitting well into the

context of resource-constrained devices.

9. Conclusion

In this paper, A non-interactive Zero Knowledge Proof, more

specifically, the Schnorr Protocol Over Elliptic Curves on Rasp-

berry Pi was implemented. Then the results were contrasted with

another ECC based algorithm the ECDH and analyzed. It is found

that the NIZKP performs faster and have a lesser energy consump-

tion than the ECDH. Using this protocol, devices can authenticate

themselves without leaking any important information which re-

duces the chances for any third-party to have access to them. This

is a lightweight protocol which can be incorporated comfortably

into any resource-constrained device.

Future Work

As future work, the authors are planning on improving the NIZKP

protocol on Autonomous vehicle as a mean of authentication.

Acknowledgement

The authors gratefully acknowledge the financial support from the

Department of Computer Science, Christ University, Bangalore,

India.

References

[1] Isha and A. Luhach, "Analysis of Lightweight Cryptographic

Solutions for Internet of Things", Indian Journal of Science and

Technology, vol. 9, no. 28, p. 7, 2016.
[2] Chatzigiannakis, A. Pyrgelis, P. G. Spirakis, and Y. C.

Stamatiou, “Elliptic Curve Based Zero Knowledge Proofs and

their Applicability on Resource Constrained Devices,” 2011
IEEE Eighth International Conference on Mobile Ad-Hoc and

Sensor Systems, pp. 715–720, Jul. 2011.

[3] F. Martín-Fernández, P. Caballero-Gil, and C. Caballero-Gil,
“Authentication Based on Non-Interactive Zero-Knowledge

Proofs for the Internet of Things,” Sensors, vol. 16, no. 1, p. 75,

Jul. 2016.
[4] I.-H. Chuang, B.-J. Guo, J.-S. Tsai, and Y.-H. Kuo, “Multi-graph

Zero-knowledge-based authentication system in Internet of

Things,” 2017 IEEE International Conference on
Communications (ICC), May 2017.

[5] A. P. Haripriya and K. Kulothungan, "ECC based self-certified

key management scheme for mutual authentication in Internet of
Things," 2016 International Conference on Emerging

Technological Trends (ICETT), Kollam, 2016, pp. 1-6.

[6] T. Yalçin, "Compact ECDSA engine for IoT applications," in
Electronics Letters, vol. 52, no. 15, pp. 1310-1312, 7 21 2016.

[7] P. Flood and M. Schukat, "Peer to peer authentication for small

embedded systems: A zero-knowledge-based approach to
security for the Internet of Things," The 10th International

Conference on Digital Technologies 2014, Zilina, 2014, pp. 68-

72.
[8] M. Nawir, A. Amir, N. Yaakob and O. B. Lynn, "Internet of

Things (IoT): Taxonomy of security attacks" 2016 3rd

International Conference on Electronic Design (ICED), Phuket,
2016, pp. 321-326.

[9] Schnorr, C.P., “Efficient signature generation by smart cards”,

Journal of cryptology, vol. 4, no. 3,1991, pp.161-174.
[10] Raspberry Pi. (2017). Raspberry Pi FAQs – Frequently Asked

Questions.[online] Available at:

https://www.raspberrypi.org/help/faqs/

