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Abstract 
 

GSM is a wireless network system. GSM mostly uses TDMA and most uses three digital wireless mobile network technologies to com-

presses data, sends by using a channel along with other samples of data, in different time slots. It makes use of 900 to 1800MHz band 

frequency for transmission. Very accurate and exact wireless algorithms are difficult in all environmental conditions. Wireless communi-

cations use various parametric measurements to determine the sensor position. TOA is the time taken by the signal from source to reach 

the receiver’s position. Newton Raphson method is an iterative numerical method uses partial derivatives of a functions or a system of 

equations in a suitable search direction. Newton Raphson consider two fundamental arguments: The first one is considering a good starting 

or initial point which is approximate to the solution and the secondary thing is to consider a distinguishable error which plays important 

role on approximation of the solution. In the present work, the Newton Raphson algorithm is implemented to obtain precise position of the 

receiver. 
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1. Introduction 

Positioning algorithms determine the location of a person or an ob-

ject either with respect to a known position or with respect to a co-

ordinate system. It provides highly accurate results in the imple-

mentation of localization in a wireless sensor network (WSN), i.e. 

to estimate the position of a sensor node, termed as complex chal-

lenge in wireless networks. In the previous decades, multiple posi-

tioning systems have been introduced to develop highly-accurate, 

low-power, low-cost localization schemes due to degradation of 

real world applications, navigational systems, civil, military sur-

veillance and emergency services. In case of any accident if we are 

late by few seconds it leads to the life threatening of injured victim. 

The requirement for accurate and optimal localization schemes 

have been even motivated by demand with the rapid development 

of cost-effective Micro-Electro-Mechanical System (MEMS). Fur-

thermore, to broadcast the signals to longer distances in multiple 

paths with lower signal strength at the receiver, localization algo-

rithms are used. Wireless networks take the help of radio waves 

and/or microwave to take care the communication channels in be-

tween the sensor nodes. 

Each sensor in the mobile network is equipped with sensing the sig-

nal, computation for the required results and obtaining  

the final results. During the last few decades, different methods are 

implemented to define the accurate position of the sensor node. The 

strength of the signal received at the three or more sensor nodes 

determines the unknown position of the source (i.e.)., trilateration 

can be achieved. 

 

 

 

1.1. Arrival angle 

Arrival Angle is important method used to determine the source po-

sition. Time-difference-of-arrival and time-of-arrival are part of 

category of time based localization. Ironically, these methods take 

the time as reference moving from source to receiver to estimate the 

position. RSS and TDOA are more evolving in mobile communica-

tions due to the flexibility of implementation. In case of AOA, ex-

pensive antennas are required to estimate the position if we take the 

consideration of time based localization synchronization between 

receiver and the source is required. 

To increase the performance of localization, we can use a hybrid 

localization method where two methods are combined, for example, 

the mixture of RSS and AOA was determined. Consider the re-

ceiver node is a small and costless device, which is a combination 

of RSS and TDOA can be considered. All these localization 

schemes have one limitation in common, which can be easily de-

stroyed by the non line of sight situations or multipath fading.  

1.2. Source localization 

The localization of a source, i.e. identification of a source node’s 

location in a mobile communication network, is a challenging prob-

lem. The knowledge of this work is to develop the accurate, cost 

effective and valid localization algorithms for localization in mobile 

communications. It describes the overall view of existing localiza-

tion techniques, their limitations and its applications. Newton-

Raphson method with the TOA, RSS, TDOA, RSS schemes along 

with their results. It also describes about the applications of pro-

posed method. Steepest Descent method with the TOA, RSS, 

TDOA, RSS schemes along with their results. It also describes 

about the applications of proposed method.  

http://creativecommons.org/licenses/by/3.0/
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It provides conclusive remarks and feasible future direction of the 

research. Finally, the project ends with appendix which cover how 

to obtain the MATLAB source code of algorithm implementations 

(Appendix A). It provides highly accurate results in the implemen-

tation of localization in a wireless sensor network (WSN), i.e. to 

find the position of a sensor node, termed as complex challenge in 

wireless sensor networks. 

2. Source localization 

Localization method determines the position of a person or a thing 

within the stipulated co-ordinate system and to determine the accu-

rate and exact position. It can also use the error distribution for ex-

act positioning. During many years, several methods have been 

developed  to provide an e x a c t  location of an unknown sensor 

node. 

2.1. Categories of localization methods 

As shown in Figure 2.1, categories of localization algorithm for 

precise positioning:  

 

Range Positioning: 

 

 
Fig. 2.1: 

 

The classification is depended on the information used for source 

localization. Range-based methods used the information from range 

measurements such as direction and angle of measurement. Several 

range-based location technologies exist, with methods that vary 

from low accuracy based on cell identification to high accuracy, but 

costly approaches have been developed to address the sensor local-

ization methods.  

The Range-based techniques have used Received Signal Strength, 

Time of Arrival, Angle of Arrival and Time Difference of Arrival. 

The rest of the chapter will discuss about the range based techniques 

and comparing the techniques with newly proposed techniques in 

terms of ease of implementation, better efficiency and accurate re-

sults of localization techniques. Mathematical methodologies that 

are utilized for solving the localization problem. 

2.2. Importance of wireless sensor networks localization 

They examined the problem of source localization in wireless net-

works using different parameters. They developed direct methods 

for obtaining the source position. They also considered white gauss-

ian noise in determining the source position. The solutions obtained 

from the TOA are very useful when compared to that of the TDOA 

measurements. The proposed method is susceptible to the 3db noise 

measurements and signal transmission chracteristics. 

 

 

 

2.3. Newton-raphson method with noisy function meas-

urements 

The improvement of the suggested ideal calculation is dependent 

upon minimizing a stochastic execution. Those estimation lapse co-

variance grid will be demonstrated to meet on zero to linearized ca-

pacities same time recognizing added substance zero-mean white 

noise. The paper recommended a novel recursive algorithm giving 

ideal iterative-varying addition to linearized works. It was analyti-

cally demonstrated that this proposed approach can provide zero 

convergence of the error covariance matrix for linear function in 

presence of measurement noise.  

3. Proposed methodology 

As we know, several methods are used for the source localization 

we are particularly concentrated on the TOA which is required to 

evaluate the problem of position estimation and in addition to know 

the time of emission. The nonlinear method designed to estimate 

the source location directly includes NLS and ML estimators. In 

NLS estimator the accuracy is generally high, and the noise statis-

tics are not needed. 

Localization problems based on triangulation consist of two meth-

ods: lateration and angulation. Lateration methods defines the loca-

tion estimation by considering distances from multiple reference 

points instead angulation, measure angles relative to several source 

and receiver points. For example, lateration methods can be based 

on noisy received signal strength measurements. Other applications 

include design of composite materials recovery of sparse and com-

pressible signals such as image sampling, color analysis and acous-

tic wave propagation in turbulent fluids. Optimization methods are 

frequently implemented in such noisy-based applications. How-

ever, stochastic optimization techniques provide an effective ap-

proach in the presence of noisy measurements. 

While considering gradient based descent approach, numerous 

techniques have been proposed to enhance the decisions of the step 

size, for example, the ideal adaptation of Robbins-Monro (RM) cal-

culation, a quickened RM calculation and a quickened variant of 

Kesten calculation. Stable constants are used to step size to increase 

the numerical ability. An efficient approach for achieving a second 

order adaptive algorithm is presented where two parallel recursions 

are implemented for estimating the solution using NR algorithm, 

and the other for estimating the Hessian matrix. Stochastic gradient 

algorithm for a calculation of the parameters while the others are 

held fixed is mentioned in an effective approach. The above method 

is not affected by the noise consideration considered. 

3.1. Newton raphson algorithm 

The Newton-Raphson method is most known numerical method for 

the outcome of NLS problems. This method requires calculation of 

gradient of objective function ∇JNLS(x) and Hessian matrix 

∇2JNLS(x), the gradient is expressed as follows 

 

∇JNLS(x) = [

𝜕𝐽𝑁𝐿𝑆(𝑥)

𝜕𝑥
𝜕𝐽𝑁𝐿𝑆(𝑥)

𝜕𝑦

] ∈ R2, 

 

= -2

[
 
 
 
 
  ∑

(𝑟𝑇𝑂𝐴−(𝑥−𝑥1)√(𝑥−𝑥1)
2
+(𝑦−𝑦1)2)

[(𝑥−𝑥1)
2
+(𝑦−𝑦1)2]

1
2⁄

𝑘
𝑘=1

∑ 𝑟𝑇𝑂𝐴−(𝑦−𝑦1)√(𝑥−𝑥1)
2
+(𝑦−𝑦1)

2

[(𝑥−𝑥1)
2
+(𝑦−𝑦1)

2
]
1

2⁄

𝑘
𝑘=1

]
 
 
 
 
 

 

 

∇2JNLS(x)=[

𝜕2𝐽𝑁𝐿𝑆(𝑥)

𝜕𝑥2

𝜕2𝐽𝑁𝐿𝑆(𝑥)

𝜕𝑥𝜕𝑦

𝜕2𝐽𝑁𝐿𝑆(𝑥)

𝜕𝑥𝜕𝑦

𝜕2𝐽𝑁𝐿𝑆(𝑥)

𝜕𝑦2

] ∈ 𝑅2𝑥2 

 

Where, 
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𝜕2𝐽𝑁𝐿𝑆(𝑥)

𝜕𝑥𝜕𝑦
=

𝜕2𝐽𝑁𝐿𝑆(𝑥)

𝜕𝑦𝜕𝑥
= ∑

2𝑟𝑇𝑂𝐴(𝑥−𝑥1)(𝑦−𝑦1)

[(𝑥−𝑥1)
2+(𝑦−𝑌1)

2]
3

2⁄
𝐾
𝐾=1   
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2 − 
(𝑟𝑇𝑂𝐴−√(𝑋−𝑋1)
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2)(𝑋−𝑋1)2
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2
+(𝑦−𝑦1)

2]
3
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𝜕2𝐽𝑁𝐿𝑆(𝑥)
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∑ 2 ⌈ (𝑥−𝑥1)
2

(𝑥−𝑥1)
2−(𝑦−𝑦1)2

−
(𝑟𝑇𝑂𝐴−√(𝑥−𝑥1)

2+(𝑦−𝑦1)2)(𝑦−𝑦1)2

[(𝑥−𝑥1)
2+(𝑦−𝑦1)2]
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⌉𝐾
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The objective function JNLS(x+∆x) is given by the expansion of 

Taylor series expansion of the iteration as follows: 

 

JNLS(x+∆x) ≈ 𝜑(𝑥) 

 

Where  

 

𝜑(𝑥) = 𝐽𝑁𝐿𝑆(𝑥) + ∆𝑥𝑇[𝛻𝐽𝑁𝐿𝑆(𝑥)] +
1

2
∆𝑥𝑇𝛻2𝐽𝑁𝐿𝑆(𝑥)∆𝑥 , 

 

Where ∆𝑥 is a small change x∈ R2. The conditions for the function 

𝜑(𝑥) is  

 

𝛻𝜑(𝑥) =  𝛻𝐽𝑁𝐿𝑆(𝑥) + 𝛻2𝐽𝑁𝐿𝑆(𝑥)∆(𝑥) = 0.  
 

The step size is obtained as follow 

 

∆𝑥 =  −[𝛻2𝐽𝑁𝐿𝑆(𝑥)]−1𝛻𝐽𝑁𝐿𝑆(𝑥).  
 

𝑥(𝑇+1) = 𝑥(𝑇) + ∆𝑥(𝑇).  
 

Where 𝑥𝑇  is the Tth iteration. The iterative process i.e Newton-

Raphson method is continued until the gradient of JNLS(x) follows 

the condition 

 

‖𝛻𝐽𝑁𝐿𝑆(𝑥
(𝑇+1))‖  ≤ 𝜀. 

3.1.1. Hybrid generic newton raphson implementation 

The algorithm depends on global as well as normal search to in-

crease performance of normal Newton Raphson algorithm. The 

basic thought of implementing hybrid algorithm is to increase the 

advantages over normal algorithm by decreasing the disadvantages 

of normal one and to increase the efficiency. The NR method is 

efficient method, but its convergence is less when compared to the 

starting point. Hence, the search algorithm, is applicable to choos-

ing starting point in the search localization problem for the NR al-

gorithm without trapping, and to achieve a faster output rate. The 

proposed hybrid GA–NR method for the NLS localization problem 

is then applied to estimate the position of the source in the LOS 

environments. 

3.2. Steepest descent algorithm 

Steepest Descent Method is one of the very popular methods of 

Gradient-based descent methods. When we apply the gradient-

based descent methods, it requires the continuous partial deriva-

tives. The partial functions are used to correct the weights after each 

pattern or summer to obtain the overall gradient. Let 𝑔𝐾 as the gra-

dient in error function that is [𝑔𝐾 =  𝛻𝐸(𝑤𝑘)]. The basic idea of the 

proposed method is that can reduce many sub-function in every it-

eration. By removing the several largest sub-functions, a descent 

direction can be obtained. 

 

 𝑤𝐾+1 = 𝑤𝑘 −  𝜖 𝑔𝑘  

 

Where, 

 

𝑤𝑘+1 = 𝑤𝑘 −  𝜖 𝛻𝐸𝑝(𝑤𝐾)  

Where 𝜖 > 0 is a step size of the gradient. After multiple iterations 

of algorithm on the surface, with 𝐸𝑝(𝑤0) ≥ 𝐸𝑝(𝑤1) ≥ ⋯ ≥

𝐸𝑝(𝑤𝑘) the sequence of 𝑤𝑘 converges to local minimum. 

The value of the step size should vary at every iteration of the algo-

rithm. Since the direction of gradient can be calculated as the first 

derivative of the function, the offset in the step size, requires extra 

pre-processing. Various formulation exists for the step size estima-

tion, and here we make use of thee step size 𝜖. 

To obtain the gradient 𝛻𝐸 for steepest descent algorithm, we take 

partial derivative of the error function E wrt x and y coordinates of 

source: 

 

𝜕𝐸

𝜕𝑥
= 2𝑐 

𝛤𝐴𝐵−Ѓ𝐴𝐵(𝑤)

𝜎𝐴𝐵
2 (

𝑥𝐴−𝑥

√(𝑥𝐴−𝑥)2+(𝑦𝐴−𝑦)2
−

𝑥𝐵−𝑥

√(𝑥𝐵−𝑥)2+(𝑦𝐵−𝑦)2
)  

 

𝜕𝐸

𝜕𝑦
= 2𝑐 

𝛤𝐴𝐵−Ѓ𝐴𝐵(𝑤)

𝜎𝐴𝐵
2 (

𝑦𝐴−𝑦

√(𝑥𝐴−𝑥)2−(𝑦𝐴−𝑦)2
−

𝑦𝐵−𝑦

√(𝑥𝐵−𝑥)2−(𝑦𝐵−𝑦)2
)  

 

We can achieve the iterative solution for 𝑤(𝑥, 𝑦) using the steepest 

descent gradient method: 

 

𝑥𝑛+1 = 𝑥𝑛 + ∑ 2 𝑐 𝜀 
𝛤𝑖−Ѓ𝑖(𝑤)

𝜎𝑖
2 [

𝑥0−𝑥𝑛

𝑑𝑤0
−

𝑥𝑖−𝑥𝑛

𝑑𝑤𝑖
]𝑁

𝑖=1   

 

𝑦𝑛+1 = 𝑦𝑛 + ∑ 2 𝑐 𝜀 
𝛤𝑖−Ѓ𝑖(𝑤)

𝜎𝑖
2 [

𝑦0−𝑦𝑛

𝑑𝑤0
−

𝑦𝑖−𝑦𝑛

𝑑𝑤𝑖
]𝑁

𝑖=1   

 

Where, 

 

𝑑𝑤0 = √(𝑥0 − 𝑥𝑛)2
+ (𝑦0 − 𝑦𝑛)2

  

 

And 

 

𝑑𝑤𝑖 = √(𝑥𝑖 − 𝑥𝑛)2
+ (𝑦𝑖 − 𝑦𝑛)2

.  

 

The linear stepped-frequency waveform is extremely used in radar 

and communication system, because they provide desirable perfor-

mance improvement by exploring frequency diversity and are eas-

ily generated. The stepped-frequency waveform, by focusing an in-

verse fast Fourier transform (IFFT) to a bunch of narrowband 

pulses, achieves a wide bandwidth without use of excessive system 

complexity and cost. However, the generated pulse of a stepped-

frequency waveform is sinc type; and it has a high first sidelobe, 

which needs to be suppressed by spectral weighting or mismatch 

method at the expense of main lobe width and signal-to-noise ratio. 

Moreover, due to the periodic response of IFFT at a digital fre-

quency of 2π radians per sample, stepped-frequency waveform will 

experience from large grating lobes when the step frequency is 

larger than the bandwidth of a single pulse. As a result, stepped-

frequency waveform can only achieve a limited bandwidth given 

the number of pulses. Unlike the stepped-frequency waveform, 

hopped-frequency waveform uses irregularly or even randomly fre-

quency hopping pattern. 

As a result, periodic grating lobes are converted into sidelobes to 

achieve a wider bandwidth with limited constant pulses number be-

comes possible. Moreover, the incoherent diversity and flexibility 

in frequency domain grant hopped-frequency waveform several ad-

vantages, such as resistance to narrowband interference, low prob-

ability of intercept and sidelobe suppression potential. 

For frequency waveform, an additional component is included to 

the sidelobes due to its irregularly distributed frequencies; and 

achieve a low sidelobe level poses a special frequency. This fre-

quency can be delivered by applying a density tapered design. For 

example, proposed a nonlinear stepped-frequency waveform whose 

frequency density would approximate a window technique. These 

methods above are generally easy for implementation; however, 
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their results are far from optimality in terms of sidelobe level and 

they cannot control the shape of the compressed pulse accurately 

either. 

 

3.3. Measurement of parameters used in both the meth-

ods 

a) Received Signal Strength 

In the absence of measurement errors and noise, the received signal 

strength from the unknown source measured at the ith receiver, can 

be modelled as 

 

𝑃𝑖
𝑟 = 𝑘𝑖  

𝑃𝑖
𝑡

𝑑𝑖
𝑎 , i = 1, 2, …., N 

 

𝑃𝑖
𝑡 is the transmitted power sensor node, and di is the distance from 

source to the ith receiver. Furthermore, Ki accounts for all other 

factors at the received power, including antenna heights and gains, 

and a is the path loss constant. For free space a = 2. Without loss of 

generality, it is expected that 𝑃𝑖
𝑡 , Ki, and are known beforehand.  

Then, considering measurement errors, the log-normal path loss 

model can be expressed as  

 

ln(𝑃𝑖
𝑟) = ln(𝐾𝑖) + ln (𝑃𝑖

𝑡) – a ln ( 𝑑𝑖) + 𝑛𝑟𝑠𝑠,𝑖, i= 1, 2,….,N 

 

 
Fig.3.1: Intesection of Circles to Provide the Exact Position of Source. 

 

 𝑟𝑟𝑠𝑠,𝑖 = ln ( 𝑃𝑖
𝑟) – ln (𝐾𝑖) – ln (𝑃𝑖

𝑡) 

 

The RSS model can be given as 

 

𝑟𝑟𝑠𝑠,𝑖 = -a ln(𝑑𝑖) + 𝑛𝑟𝑠𝑠,𝑖 , i= 1, 2,……,N 

 

The vector form of (3.4) is given as 

 

 𝑟𝑟𝑠𝑠 = 𝑓𝑟𝑠𝑠(x) + 𝑛𝑟𝑠𝑠 

 

Where 

 

𝑟𝑟𝑠𝑠 = [ 𝑟𝑟𝑠𝑠,1 𝑟𝑟𝑠𝑠,2……..𝑟𝑟𝑠𝑠,𝑁]T  

 

𝑛𝑟𝑠𝑠 = [𝑛𝑟𝑠𝑠,1 𝑛𝑟𝑠𝑠,2…….𝑛𝑟𝑠𝑠,𝑁]T  

 

And 

 

𝑓𝑟𝑠𝑠(𝑥) =  −𝑎 

[
 
 
 
 
 
 
 𝑙𝑛(√(𝑥 − 𝑥1)

2 + (𝑦 − 𝑦1)
2)

𝑙𝑛(√(𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2)
.
.
.

𝑙𝑛(√(𝑥 − 𝑥𝑁)2 + (𝑦 − 𝑦1)
2)]

 
 
 
 
 
 
 

  

 

The source localization process is to estimate the source position 

that is based on 𝑟𝑟𝑠𝑠 comes from the actual measurements. The 

above description describes estimators that can be used to solve 

equation (3.1.5). While RSS is simple to implement, as it avoids 

over usage of computers which creates problem in the outdoor lo-

cations. 

b) Arrival time (TOA) 

The time of arrival (TOA) is time taken by the signal to reach from 

source to destination. To obtain the TOA measurement at more than 

one receiver, it is required that the source and receivers precisely be 

synchronized. This can be destroyed by round or two-way trip. The 

centralized product of the TOA and speed of propagation denoted 

by c gives the distance between source and destination. In a 2-D 

plane and in the absence of measurement error, each TOA corre-

sponds to a circle centered at a receiver. The intersection of three or 

more circles result in the source sensor location. In a 2-D localiza-

tion setup, two TOA measurements will produce two circles and 

will have two possible estimations. These circles may not intersect 

at the same point in the presence of measurement errors and other 

disturbance. This leads the TOA problem into an optimization prob-

lem before the solution estimation. In the absence of measurement 

errors or disturbances, the TOA measured at the ith receiver, is de-

noted by 𝑡𝑖 and given by 

 

𝑡𝑖 = 
𝑑𝑖

𝑐
 , i= 1, 2, …, N 

 

Where c is the speed of light 

In the presence of disturbance, noise and measurement errors, the 

range measurement based on 𝒕𝒊 is given in terms of 𝒓𝒕𝒐𝒂,𝒊 and is de-

noted as 

 

𝑟𝑡𝑜𝑎,𝑖 = 𝑑𝑖 + 𝑛𝑡𝑜𝑎,𝑖 =  √(𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2 + 𝑛𝑡𝑜𝑎,𝑖 , 𝑖 =
1,2,… . , 𝑁  

 

Where 𝑛𝑡𝑜𝑎,𝑖 is the range error in 𝑟𝑡𝑜𝑎,𝑖.  

𝑛𝑡𝑜𝑎,𝑖 is a Gaussian random variable with zero mean and TOA esti-

mation variance. In vector form, equation (3.2.2) can be expressed 

as 

 

𝑟𝑡𝑜𝑎 = 𝑓𝑡𝑜𝑎 (x) + 𝑛𝑡𝑜𝑎 

 

Where 

𝑟𝑡𝑜𝑎 =  [𝑟𝑡𝑜𝑎,1 𝑟𝑡𝑜𝑎,2  … 𝑟𝑡𝑜𝑎,𝑁]
𝑇

  

 

𝑛𝑡𝑜𝑎 = [𝑛𝑡𝑜𝑎,1 𝑛𝑡𝑜𝑎,2 …𝑛𝑡𝑜𝑎,𝑁]
𝑇
   

 

𝑓𝑡𝑜𝑎(𝑥) =  

[
 
 
 
 
 
 √(𝑥 − 𝑥1)

2 + (𝑦 − 𝑦1)
2

√(𝑥 − 𝑥2)
2 + (𝑦 − 𝑦2)

2

.

.

.

√(𝑥 − 𝑥𝑁)2 + (𝑦 − 𝑦𝑁)2]
 
 
 
 
 
 

  

 

The requirement for synchronization between source and destina-

tion is TOA measurement. The source localization problem based 

on TOA measurements is to then estimate x given that 𝑟𝑡𝑜𝑎 comes 

from the actual measurements. 

c) Time Difference of Arrival (TDOA) 

The time difference of arrival (TDOA) is the difference in TOAs of 

the received signal at a pair of receiver sensors, with respect to an-

other receiver. Like TOA, it also requires synchronization between 

the source node and receiver rather than at the source position. The 

product of propagation speed leads to the range difference between 

the source node and the two receivers. In a noise free environment 

each TDOA produces a hyperbolic pattern on which the source may 

originates like in a 2-D plane. The target location is then produced 

by the intersection of two or more hyperbolic patterns. In the pres-

ence of disturbance and measurement errors, the source location is 

Receiver 1

Receiver 3

Receiver 2
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originated from a set of hyperbolic equations obtained from the 

TDOA measurements. 

In the absence of measurement errors and disturbances, using 1st 

receiver as the reference, it can be easily shown that  

 

r_(tdoa,i)=(d_i- d_1 )+ n_(tdoa,i) 

 

= √(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 − √(𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2 +
 𝑛𝑡𝑑𝑜𝑎,𝑖 , 𝑖 = 2,… , 𝑁  

 

Where 𝑛𝑡𝑑𝑜𝑎,𝑖  is the error range in 𝑟𝑡𝑑𝑜𝑎.𝑖 

If the TDOA measurements are directly obtained from TOA meas-

urements, then it is given by 

 

𝑛𝑡𝑑𝑜𝑎,𝑖 = 𝑛𝑡𝑜𝑎,𝑖 - 𝑛𝑡𝑜𝑎,1 , i= 1, 2, …., N 

 

In vector form it is given by, 

 

𝑟𝑡𝑑𝑜𝑎 = 𝑓𝑡𝑑𝑜𝑎(x) + 𝑛𝑡𝑑𝑜𝑎 

 

Where 

𝑟𝑡𝑑𝑜𝑎 = [𝑟𝑡𝑑𝑜𝑎,2 𝑟𝑡𝑑𝑜𝑎,3 …𝑟𝑡𝑑𝑜𝑎,𝑁]
𝑇

  

 

𝑛𝑡𝑑𝑜𝑎 = [𝑛𝑡𝑑𝑜𝑎,2 𝑛𝑡𝑑𝑜𝑎,3 …𝑛𝑡𝑑𝑜𝑎,𝑁]
𝑇

  

 

𝑓𝑡𝑑𝑜𝑎(𝑥) =

 

[
 
 
 
 
 
 √(𝑥 − 𝑥2)

2 + (𝑦 − 𝑦2)
2  −  √(𝑥 − 𝑥1)

2 + (𝑦 − 𝑦1)
2

√(𝑥 − 𝑥3)
2 + (𝑦 − 𝑦3)

2  −  √(𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2

.

.

.

√(𝑥 − 𝑥𝑁)2 + (𝑦 − 𝑦𝑁)2 − √(𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2]
 
 
 
 
 
 

  

 

 
Fig. 3.2: Intersection of Two or More Lines to Provide the TDOA Estima-

tion. 

 

The source localization problem is to estimate location of position 

x based on 𝑟𝑡𝑑𝑜𝑎. To facilitate the development and analysis of the 

localization scheme, 𝑛𝑡𝑑𝑜𝑎,𝑖 are assumed to be zero-mean and 

Gaussian distribution.  

d) Angle of Arrival (AOA) 

Time of arrival (AOA) is angle of arrival at the source when the 

signal reaches from source to the receiver. From each AOA, a line 

of bearing (LOB) can be assumed from source node to receiver 

node, and coincidence of two LOB provides possible location esti-

mation from source to receiver. Although it does not require any 

synchronization between source and receiver, though it requires 

costly antenna arrays for location estimation using AOA measure-

ment.  

The AOA of the transmitted signal from the source at the ith re-

ceiver denoted by 

 

𝑟𝑎𝑜𝑎,𝑖 =  𝛼𝑖 + 𝑛𝑎𝑜𝑎,𝑖 =  𝑡𝑎𝑛−1 (
𝑦−𝑦𝑖

𝑥−𝑥𝑖
) + 𝑛𝑎𝑜𝑎,𝑖  , 𝑖 = 1,2, … , 𝑁  

Where 𝑛𝑎𝑜𝑎,𝑖 is noise in 𝑟𝑎𝑜𝑎,𝑖 and are defined as zero-mean gauss-

ian distribution. 

In vector form, it is represented as 

 

𝑟𝑎𝑜𝑎 = 𝑓𝑎𝑜𝑎(x) + 𝑛𝑎𝑜𝑎 

 

Where 

𝑟𝑎𝑜𝑎 = [𝑟𝑎𝑜𝑎,1 𝑟𝑎𝑜𝑎,2 …𝑟𝑎𝑜𝑎,𝑁]
𝑇

  

 

n_aoa= [n_(aoa,1) n_(aoa,2)…n_(aoa,N) ]^T 

 

𝑓𝑎𝑜𝑎(𝑥) =  

[
 
 
 
 
 
 
 𝑡𝑎𝑛−1 (

𝑦−𝑦1

𝑥−𝑥1
)

𝑡𝑎𝑛−1 (
𝑦−𝑦2

𝑥−𝑥2
)

.

.

.

𝑡𝑎𝑛−1(
𝑦−𝑦𝑁

𝑥−𝑥𝑁
)]
 
 
 
 
 
 
 

  

 

Then the source location estimation problem using AOA is to esti-

mate x using 𝑟𝑎𝑜𝑎. For the development and analysis of the locali-

zation scheme, 𝑛𝑎𝑜𝑎,𝑖 is assumed to be zero-mean and Gaussian dis-

tributed. 

4. Result analysis 

To evaluate the fixed of the proposed scheme in real world environ-

ment, a simulation experiment was carried out. To extract the train-

ing data set, a wireless sensor network of size 1500 m x 1500 m was 

considered. The area was partitioned into sub areas of 200m x 

200m, and each sub-area was assumed to represent a "county", able 

to provide 60 readings for each feature at different random loca-

tions. The area was divided into separate layers, where junctions in 

a single layer act as a cluster. In each layer, the nodes were assumed 

to be served by two systems. At each monitor, the 

RSS,AOA,TDOA,TOA measurements were obtained for each node 

and operating condition as mentioned. Two sets of 300 nodes (3 

nodes per each county) were chosen for training and testing.The re-

sults obtained from various scenarios at which different combina-

tions of features were considered. For each scenario the training and 

testing accuracy were calculated utilizing the following equation 

 

Accuracy = 
𝐸

𝑁
 * 100 

 

Where E is the total number of correct location estimations. 

N is the total number of samples 
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5. Conclusion 

A new low-cost data accumulation technique for localization in 

WSNs was proposed. The proposed data accumulation scheme can 

extract different types of measurements. The process starts with 

known sensor node locations and sensor node readings and esti-

mates a set of weights. These weights are used to locate unknown 

sensor node. In addition to low cost equipment these techniques 

leads to high data rates. The receiver obtained a maximum accuracy 

after several attempts at improvement, with roughly double the 

amounts of any initial accuracy readings. Furthermore, this receiver 

provides a proof of concept for using the proposed scheme in local-

ization of wireless sensor networks. The proposed receiver can be 

best utilized in an application where an area of interest needs to ob-

tain rather than an exact location estimation. Consider, for example, 

in a large corn or vegetable farm a farmer would like to locate a 

malfunctioning water pump. In this condition the receiver can be 

used to locate the area of interest (the area near the water pump). A 

human intervening (e.g., a farmer) then be able to use that located 

area of interest to determine the exact location of the pump. In such 

a scenario, a low cost solution to estimate an area of interest is pref-

erable to a high cost solution that provides an exact location.  
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