

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.8) (2018) 640-651

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research Paper

Identity and access management using Boto and JSON

S. Adhirai1, Paramjit Singh1, R.P. Mahapatra2

1Department of Computer Science and Engineering, PDM University, Bahadurgarh -124507 (Delhi NCR), INDIA

2Department of Computer Science and Engineering, SRM University, Modinagar, Ghaziabad -201204 (Delhi NCR), INDIA

Abstract

Cloud computing has emerged as the important data processing tool as it tackles exponential data growth. This, in turn, makes security

something of a moving target. The National Institute of Standards and Technology (NIST), has declared the Identity and Access

Management (IAM) as one of the major threats to the cloud computing. The Top Threats Working Group of Cloud Security Alliance

(CSA) ranks “IAM” as the second topmost threat among twelve biggest threats in cloud computing. IAM allows the cloud server for

managing the web services and herby allowing the users to manage the users and corresponding permissions (user policies). Other

benefits posed by the IAM are central management of users, and maintain several security qualifications. This paper focuses on Managing

IAM Users, and Working with IAM Policies using JavaScript Object Notation (JSON), and Boto. The paper concludes utmost care

should be given to IAM user management and IAM user policies. It is the IAM Policies which play the sole role of ensuring security. If

you don’t set up IAM policies properly, you will create security holes leading to security lapses.

Keywords: Identity, Identity and Access Management, IAM Policy, Boto, JSON

1. Introduction

Cloud computing has captured the interest of researchers as it

finds wide applicability in several fields. Cloud model driven by a

server allows several services such as storage, process, and

retrieve large databases. As defined by the NIST, cloud has a large

pool of resources shared by a closed community. Cloud provides

services to various users on demand with the tools such as servers,

memory, applications, and services to users [18]. Gartner suggests

that by 2020, moral policing defined in Corporate "No-Cloud" will

be difficult to achieve as "No-Internet" Policy as defined today.

Corporate have tried to use the several model policies such as

Cloud-first, and even cloud-only, for the dominant no-cloud stance

policy in recent years [8]. Cloud computing has seen tremendous

growth in recent years as it has lot of open resources. Along with

the growing use of cloud technology, cloud security has become a

major challenge for organizations. The CSA created a list for the

security options for cloud, and has placed IAM to be the highest

security requirement [12].

NIST declares IAM as one of the key security issues in cloud

computing [22]. The Cloud Security Alliance report, released at

2016, declares twelve security threats to cloud, and they are listed

as breaches in data, feeble IAM, anxious interfaces and APIs of

resources, susceptible System and application, Account hijacking,

Malicious insiders, Advanced persistent threats, Data loss,

Insufficient due diligence, mistreatment of cloud services, Service

mishandling, and other technology issues arising due to data

sharing. The CSA, thus, ranks “IAM” as the second topmost threat

among twelve biggest threats in cloud computing [5]. Having said

so, it naturally becomes important to understand the concept of

IAM.

IAM defines a discipline which provides security to the users, and

groups for obtaining the right amount of resources for correct

reason [1, 6, 19, 20, 24, 25]. IAM as the name suggests, aims to

develop identify between the resource provider and the user. It

also allows the cloud to provide correct level of security to the

resources. Security provided by the IAM is more related to

enterprise or business more than the technical expertise. Thus,

IAM can also be defined as the framework for establishing the

suitable policies for the users and the resources. IAM allows

central management of resources.

This paper focuses on Managing IAM Users, and Working with

IAM Policies using JavaScript Object Notation (JSON), and Boto

in AWS environment. The IAM Policies are expressed in JSON.

So it becomes essential to understand JSON syntax. The policy

submitted to the IAM model need to ensure correct JSN syntax,

for making the security model to be valid.

So, accordingly, the Section 2 concentrates on JSON and its

advantages, the Section 3 deals with IAM User Management,

Section 4 focuses on IAM Policies. It is the IAM Policies which

play the sole role of ensuring security. Simulation results achieved

through the IAM policies are discussed in section 5, while section

6 concludes the paper.

2. JSON and its Advantages

JavaScript Object Notation (JSON) has the lightweight format

which can be interchangable, and hence well suited for defining

the IAM policies. JSON is an open standard for exchanging data

on the web. JSON is language independent. JSON supports data

structures such as array and objects. So it is easy to write and read

data from JSON.

JSON file format can be considered as alternate to the XML

language as it has the simpler readable format. Also, JSON can be

enabled for transmission between the server and web application

[2, 7, 9, 10, 11, 13, 14, 15, 23].

JSON uses objects and arrays. In JSON, objects and arrays can be

nested.

The IAM Policies are expressed in JSON. So it becomes essential

to understand JSON syntax. One of the major conditions to be

satisfied before policy submission to IAM module, is checking

http://creativecommons.org/licenses/by/3.0/

International Journal of Engineering & Technology 641

whether the syntax of JSON is correct or not. JSON validator

discussed in section 5 checks the validation of JSON syntax.

An object refers to the collection of key and its corresponding

value as the pair, and it is expressed as key:value. The key

parameter in the object takes the strings format, while the values

takes the JSON data types such as string, number, object, array,

Boolean [13, 14]. The syntax for JSON object is given in Figure 1.

Fig. 1: Syntax of JSON Object

Here are examples of JSON Objects.

Example 1:

{"name":"Madhuri", "age":38, "car":null}

Example 2:

{

"employee": {

"name": "Ravinder",

"salary": 146000,

"married": true

}

}

Example 3:

{

"firstName": "Mohendar",

"lastName": "Uppal",

"age": 16,

"address": {

"streetAddress": "C-105, Rohini",

"city": "New Delhi",

"state": "Delhi",

"pinCode": "110063"

}

}

An array refers to the arranged sequence defined in some order

and it is expressed in above figures. Figure 2 depicts the actual

syntax format for the JSON array.

Fig. 2: Syntax of JSON Array

Here are examples of JSON arrays.

Example 1:

["Honda City", "Merc", "Audi"]

Example 2:

["Banana", "Apple", "Guava "]

Example 3:

 [1, 1, 2, 3, 5, 8, 13, 21]

Example 4:

[true, true, true, false]

Example 5:

It may be noted that in a JSON array it is not necessary that the

values for the array elements are all of the same type as in above

examples of arrays, rather they may be of different types. So we

can have mixed values as in following example:

["Banana", 1, true, null]

Example 6 (nested object and array):

{"employees":[

{"name":"Gita","email":"gita@gmail.com", "age":37},

{"name":"Mohini", "email":"mohini@hotmail.com", "age":57},

{"name":"Seema", "email":"seema@rediff.com", "age":43},

{"name":"Panda", "email":"panda@pdm.ac.in", "age":25}

]

}

JSON is the fat-free alternative to XML. The typical advantages/

benefits of JSON over XML include simplicity, extensibility,

Interoperability, and Openness [2, 15, 23]. A brief description

follows.

Simplicity

The first advantage posed by JSON is that it has simpler file

format than the XML and the SGML. The XML has improved

simplicity than SGML, but the JSON scheme has higher simplicity

than other file formats. Other than the simplicity, JSON require

low grammar, and have comparatively higher mapping than other

file formats. Mapping of data structures in the data programming

shown by JSON seems to be better than SGML.

Extensibility

As JSON does not come under the category of document markup

language, it provides resistance against the extensibility. This

feature makes the JSON to be compactible as it we need not define

new tag for data representation.

Interoperability

Interoperability potential of the JSON and the XML language are

similar.

Openness

JSON provides improved openness than the XML as it is not

placed at the centre of standardization struggles.

In addition, JSON has the following features:

● JSON while compared with the XML, it can be categorized

as smaller, faster and lightweight. Hence, choice between JSON

and XML is easy to make during the data delivery between servers

and browsers. It doesn’t take more time for execution

● For the web based applications, usage of JSON provides

better results, since the JavaScript tool supports JSON language

description. Another reason for the choice of JSON is that, the

overhead provided during parsing of XML nodes comparatively

higher than JSON.

● In the object oriented systems, mapping with JSON can be

done appropriate.

● For the data exchange JSON is more suitable, but XML has

been better for document exchange format.

We now concentrate on each of the following topics to access

AWS Identity and IAM using the AWS for Python [3, 17, 26].

● Managing IAM Users

● Working with IAM Policies

642 International Journal of Engineering & Technology

In the example discussions that follow, Boto is the AWS for

Python, for developing Amazon services like S3 and EC2. Boto is

user friendly, and has object-oriented API thus has high

compatibility [4].

Boto derives its name from the Portuguese name given to types of

dolphins native to the Amazon River. The

Boto allows the consumers to convert the application

programming interface (API) responses into Python classes. Boto3

is the latest version of the SDK, providing support for Python

versions 2.6.5, 2.7 and 3.3. Boto3 includes several service-specific

features to ease development. Boto supports all current AWS

cloud services, including Elastic Compute Cloud, DynamoDB,

AWS Config, CloudWatch and Simple Storage Service. Boto3 can

be used in synchronization with Boto and hence helpful in both

new and old projects.

3. Managing IAM Users

Here we describe how to create and manage users (creating user in

IAM, list the various users, Changing/ updating the user name and

removing the user) in IAM using Python [3, 17]. The code for

managing the users is listed below:

● create_user

● get_paginator('list_users')

● update_user

● delete_user

3.1 Create a User

The example below shows how to create a new IAM user for

AWS account using create_user method of the IAM client class.

The information regarding the limitations on the number of IAM

users can be visible while you create, and see Limitations on IAM

Entities as mentioned in IAM User Guide [16].

Example: Create a new IAM user

import boto3

Create IAM client

iam = boto3.client('iam')

Create user

response = iam.create_user(

 UserName='SPECIFIED_IAM_USER'

)

print(response)

3.2 List IAM Users
The example for listing the IAM users in your Account using the

API get_paginator('list_users') is given below:

Example: List IAM users

import boto3

Create IAM client

iam = boto3.client('iam')

List users with the pagination interface

paginator = iam.get_paginator('list_users')

for response in paginator.paginate():

 print(response)

3.3 Update a User's Name

Options such as AWS CLI, Tools for Windows PowerShell, or

AWS API allows for renaming the users name. It provides no

option for renaming the user.

The example for updating the IAM user name using API

update_user is mentioned as follows,

Example: Update a User's Name

import boto3

Create IAM client

iam = boto3.client('iam')

Update a user name

iam.update_user(

 UserName='SPECIFIED_IAM_USER',

 NewUserName='NEW_SPECIFIED_IAM_USER'

)

3.4 Delete a User

The example for deleting a specified IAM user using delete_user is

given below. The user can be deleted from the group unless the

conditions such as 1) User doesn’t exist in other group, and 2) Do

not have any sort of access key, certificates or policies must be

satisfied. The user must not belong to any groups or have any

Example: Delete a User

import boto3

Create IAM client

iam = boto3.client('iam')

Delete a user

iam.delete_user(

 UserName='SPECIFIED_IAM_USER'

)

4. Working with IAM Policies

IAM policies refer to permission provided to the user, and the

policy can also be referred as document with the list of several

actions. The actions may be list of users accessing the action, and

the resources affecting the action. Thus, the policy can be referred

as the document for stating the permission provided to the user.

The actions or resources not listed in the document can be treated

as invalid or denied by default. IAM policies can be created to the

single user, or group of user along with their individual roles and

the resources for policy [3, 17, 21].

An IAM Policy can be generally defined as the set of statements in

JSON scrip, providing the information regarding the allowing or

denying permissions of the object present in the AWS environment.

In the examples that follow in this section, we show how to create

and get IAM policies, and along with attaching and detaching IAM

policies from roles with the help of Python code. The code uses

the AWS for Python using following policies,

● create_policy

● get_policy

● attach_role_policy

● detach_role_policy

4.1 Create an IAM Policy

The example below shows the procedure for creation of the IAM

policy using the syntax create_policy. Using the create_policy

creates the policy along with the identifier with the version v1.

The version v1 was declared to be the policy's default version.

Example: Create an IAM Policy

import json

import boto3

http://searchexchange.techtarget.com/definition/application-program-interface
http://searchaws.techtarget.com/definition/Amazon-Elastic-Compute-Cloud-Amazon-EC2
http://searchaws.techtarget.com/definition/Amazon-Dynamo-Database-DDB
http://searchaws.techtarget.com/definition/AWS-Config-Amazon-Web-Services-Config
http://searchaws.techtarget.com/definition/CloudWatch
http://searchaws.techtarget.com/definition/Amazon-Simple-Storage-Service-Amazon-S3
https://github.com/boto/boto3
https://boto3.readthedocs.io/en/latest/reference/services/iam.html#IAM.Client.create_policy

International Journal of Engineering & Technology 643

Create IAM client

iam = boto3.client('iam')

Create a policy

my_managed_policy = {

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": "logs:CreateLogGroup",

 "Resource": "RESOURCE_ARN"

 },

 {

 "Effect": "Allow",

 "Action": [

 "dynamodb:DeleteItem",

 "dynamodb:GetItem",

 "dynamodb:PutItem",

 "dynamodb:Scan",

 "dynamodb:UpdateItem"

],

 "Resource": "RESOURCE_ARN"

 }

]

}

response = iam.create_policy(

 PolicyName='myDynamoDBPolicy',

 PolicyDocument=json.dumps(my_managed_policy)

)

print(response)

Various components present in the permission (policy) statement

is given below:

● Effect: Specifies the decision provided to the

component. It can be Either: “Allow” or “Deny”

● Action or NotAction: Clearly specifies the presence of

service-specific and case-sensitive commands. For example:

“ec2:RunInstances”

● Resource or NotResource: Refers to the selected

resources under the category of Amazon resource name (ARN). It

can be expressed as: “arn:aws:s3:::acme_bucket/blob”

● Condition: Other additional constraints for policy

making are specified here. One of the example is:

"DateGreaterThan"

4.2 Get an IAM Policy

The procedure for obtaining the IAM policy is depicted here. IAM

policy has the managed policy along with its default version. Other

information such as total number of IAM users, groups, and policy

attached roles are specified in IAM policy. The command

list_entities_for_policy API allows the user to obtain the IAM

policy and it provides the information about the list of the specific

users, groups, and roles. Also, the data returned by this API is the

metadata. The actual policy document can be obtained with the

API get_policy_version API.

The above mentioned API returns the managed policy. Other API

such as get_group_policy, get_user_policy, and get_role_policy

API provides the inline policy. Example for obtaining the IAM

policy with get_policy is given as,

Example: Get an IAM Policy

import boto3

Create IAM client

iam = boto3.client('iam')

Get a policy

response = iam.get_policy(

 PolicyArn='arn:aws:iam::aws:policy/AWSLambdaExecute'

)

print(response['Policy'])

4.3 Procedure for attaching the Managed Role Policy

The description for the attaching the managed policy with the role

is expressed below: While attaching the managed policy along

with the role, it acts as a part of role’s permission policy. Besides

the attachment, it cannot be used as the role’s trust policy.

Creation of the trust policy of the role is done the same time as the

creation of role and it is done using the create_role. Also, update

can be done with usingupdate_assume_role_policy.

The API allows to attach the managed policy with the role and

also for embedding the inline policy put_role_policy is used.

Example for attaching the managed policy with role with the help

of attach_role_policy is stated below:

Example: Attach a Managed Role Policy

import boto3

Create IAM client

iam = boto3.client('iam')

Attach a role policy

iam.attach_role_policy(

PolicyArn='arn:aws:iam::aws:policy/AmazonDynamoDBFullAcce

ss',

 RoleName='AmazonDynamoDBFullAccess'

)

4.4 Procedure for detaching the Managed Role Policy

For detaching the managed policy from the role can be done as

follows: Initially, detach the managed policy and delete the inline

policy in the role with the API delete_role_policy API.

Example: Detach a Managed Role Policy

import boto3

Create IAM client

iam = boto3.client('iam')

Detach a role policy

iam.detach_role_policy(

PolicyArn='arn:aws:iam::aws:policy/AmazonDynamoDBFullAcce

ss',

 RoleName='AmazonDynamoDBFullAccess'

)

5. Experimentation and Results

All the IAM Policies are expressed in JSON. Each policy must be

validated for obtaining JSON with the correct syntax, and it must

be tested to ensure that it meets the desired results.

All the JSON code presented in this paper, representing policies or

permissions, have been validated either by using the validator

entitled “The JSON Validator (JSONLint)” or the validator

available as a part of AWS IAM Console. And all the JSON

policies have been tested by using AWS IAM Simulator.

The JSONLint is a validator and reformatter for JSON code. In

case the JSON code meets the JSON syntax (refer Figure 1,

Section 2), the validator gives the result as “Valid JSON”,

otherwise it shows the appropriate error message.

The results are discussed and shown below.

https://boto3.readthedocs.io/en/latest/reference/services/iam.html#IAM.Client.get_policy
https://boto3.readthedocs.io/en/latest/reference/services/iam.html#IAM.Client.attach_role_policy

644 International Journal of Engineering & Technology

5.1 The initial JSONLint Window

Here is the opening window of JSONLint before we give any

input.

Fig. 5.1: The JSON Validator (JSONLint) before any input (the initial screenshot)

5.2 Testing of a JSON Objects

The screenshot when we give the JSON object to JSONLint looks as follows:

Fig. 5.2: Checking of JSON Object – the input

The results after JSON Validation look as follows:

International Journal of Engineering & Technology 645

Fig. 5.3: Checking of JSON Object – the output

There are two observations: (1) The JSON Validator declares the JSON object to be “Valid”, i.e. it meets with JSON syntax, and (2) it

reformats the initial code as shown.

In case, there is a syntax error (extra “,” at the end of line 4), the results look like:

Fig. 5.4: JSON Object with Syntax Error

Another Valid JSON Object (refer Section 2, Example 3):

646 International Journal of Engineering & Technology

Fig. 5.5: A Valid JSON object

5.3 Testing of a JSON Arrays

The JSON arrays must meet the Syntax of JSON Arrays defined in Figure 2, Section 2.

Here are the experimentation results.

Fig. 5.6: A Valid JSON Array

It may be noted that we can have mixed data type values of array elements, as shown in this example. It may be noted the JSON data

types can be either of string, number, object, array, Boolean or null. The value ‘null’ cannot be written as ‘Null’or ‘NULL’. In this case,

the Validator shows the syntax error as shown below:

International Journal of Engineering & Technology 647

Fig. 5.7: A JSON Array with syntax error.

As discussed in Section 2, we have nested JSON objects and JSON arrays. Here follows an example:

Fig. 5.8: A Nested JSON Object and JSON Array.

5.4 Testing of IAM Policy

Procedure for testing the validity of the IAM policy is given below: Here, the experimentation uses the Amazon Elastic Compute Cloud

(Amazon EC2) as it has high computing capacity. Also, the Amazon EC2 allows the development and deployment of applications in high

speed as you don’t need to investigate the hardware tolls.

Keeping these advantages in view, we write the following test policy that allows a user access to the all actions in the service named say

EC2 during the month of October 2017.

{

 "Version": "2017-01-01",

 "Statement": {

 "Effect": "Allow",

 "Action": "ec2:*",

648 International Journal of Engineering & Technology

 "Resource": "*",

 "Condition": {

 "DateGreaterThan": {"aws:CurrentTime": "2017-10-01T00:00:00Z "},

 "DateLessThan": {"aws:CurrentTime": "2017-10-31T23:59:59Z "}

 }

 }

}

Fig. 5.9: A policy that allows access during a specific range of dates

If we validate this policy using JSONLint, we get the results as:

Valid JSON

meaning by that the policy complies with grammar rules of the policy. However, if we validate the same policy using AWS IAM

Console, we get the result as

Fig. 5.10: The Simulated results from Policy in Figure 5.9

The value for “Version” policy element must be 2012-10-17 only, and it cannot be anything else. Within the AWS IAM Console we

validated this policy with Version value “2012-10-17”. The result is:

International Journal of Engineering & Technology 649

Note, further, that though the AWS documentation mentions the allowed values for Version to be “2012-10-17” and “2008-10-17”, but

experimentally only the current version of the policy language works.

Let us now simulate the results of the policy under consideration.

In the present context, we create a single user named Suman, and attach the above written policy named EC2TestPolicy. The simulation

results look as follows:

Fig. 5.11:Testing of EC2TestPolicy Policy

It may be noticed that all permissions are denied (contrary to our expected results). The reason being that we are yet to assign the Global

Settings. Once we assign the Global Settings value as “2017-10-01T00:00:00Z”, we get the correct results as follows (all the permissions

become Allowed, as desired).

650 International Journal of Engineering & Technology

Fig. 5.12: Results of EC2TestPolicy Policy as expected

In case we change the condition in our policy as follows

 "Condition": {

 "DateGreaterThan": {"aws:CurrentTime": "2017-05-01T00:00:00Z "},

 "DateLessThan": {"aws:CurrentTime": "2017-05-31T23:59:59Z "}

 }

i.e. the time period is already over, we get the following results as desired.

Fig. 5.13: Results of EC2TestPolicy Policy when the “condition” is not satisfied

International Journal of Engineering & Technology 651

6. Conclusion

The organizations are shifting from "No-Cloud" Policy to “Cloud-

First”, and even “Cloud-Only”. The IAM is the biggest cloud

security challenge. Utmost care should be given to IAM user

management and IAM user policies. IAM policies are imperative

when setting up permissions to ensure cloud security.

Understanding how IAM policies work and how to set them up is

crucial. If you don’t set up IAM policies properly, you will create

security holes resulting in security compromise, or you won’t have

the correct permissions for your users. It is the IAM policies which

assume the sole part of guaranteeing security. The IAM policy

must satisfy your application’s actual access needs.

References

[1] “Identity and Access Management (IAM)”, IT Glossary, Gartner,

https://www.gartner.com/it-glossary/identity-and-access-

management-iam/

[2] Advantage and Disadvantage of JSON,

http://candidjava.com/advantage-and-disadvantage-of-json/.
[3] AWS Identity and Access Management Examples,

http://boto3.readthedocs.io/en/latest/guide/iam-examples.html

[4] Boto 3 Documentation, https://boto3.readthedocs.io/en/latest/.
[5] CLOUD SECURITY ALLIANCE, 2016, “The Treacherous 12 -

Cloud Computing Top Threats in 2016”.

[6] Gilchrist, Alasdair, An Executive Guide to Identity Access
Management, Kindle Edition, RG Consulting, 2015.

[7] http://www.tutorialspoint.com/json/, JSON Tutorial.

[8] https://www.gartner.com/newsroom/id/3354117, “Gartner Says
By 2020, a Corporate "No-Cloud" Policy Will Be as Rare as a

"No-Internet" Policy Is Today”, STAMFORD, Conn., June 22,

2016.
[9] https://www.javatpoint.com/json-tutorial, JSON Tutorial.

[10] https://www.json.org/, Introducing JSON.

[11] https://www.w3schools.com/js/js_json_intro.asp, JSON –
Introduction.

[12] Jerry Archer, Alan Boehme, Dave Cullinane, Nils Puhlmann,

Paul Kurtz, Jim Reavis. CLOUD SECURITY ALLIANCE
SecaaS DEFINED CATEGORIES OF SERVICE, 2011.

[13] JSON – DataTypes,

https://www.tutorialspoint.com/json/json_data_types.htm.
[14] JSON Data Types,

https://www.w3schools.com/js/js_json_datatypes.asp.
[15] JSON: The Fat-Free Alternative to XML,

http://json.org/xml.html.

[16] Limitations on IAM Entities and Objects,
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_ia

m-limits.html.

[17] Managing IAM Users,
http://boto3.readthedocs.io/en/latest/guide/iam-example-managing-

users.html.

[18] Mell, Peter, and Grance, Timothy, The NIST Definition of Cloud
Computing, Special Publication 800-145, September 2011.

[19] Orondo, Omondi, Identity & Access Management: A Systems

Engineering Approach, Second Edition, IAM Imprints, Boston,
MA, 2016.

[20] Osmanoglu, Ertem , Identity and Access Management: Business

Performance Through Connected Intelligence, First Edition,
Syngress, London, New York, 2014.

[21] Overview of IAM Policies,

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.ht
ml.

[22] Wayne Jansen, Timothy Grance, 2011, Guidelines on Security

and Privacy in Public Cloud Computing, Special Publication
800-144.

[23] What are the advantages of JSON over XML?,

https://www.quora.com/What-are-the-advantages-of-JSON-over-
XML.

[24] Williamson, G., Yip D., Identity Management: A Primer, 1st

Edition, MC Press, Texas, 2009.
[25] Witty R., Allan A., Enck J., Wagner R., Identity and Access

Management Defined, Gartner Research, SPA-21-3430, 4

November 2003, Available online:

http://www.bus.umich.edu/KresgePublic/Journals/Gartner/research/11

8200/118281/118281.pdf

[26] Working with IAM Policies,

http://boto3.readthedocs.io/en/latest/guide/iam-example-policies.html

[27] T. Padmapriya and V. Saminadan, “Improving Throughput for

Downlink Multi user MIMO-LTE Advanced Networks using
SINR approximation and Hierarchical CSI feedback”,

International Journal of Mobile Design Network and Innovation-

Inderscience Publisher, ISSN : 1744-2850 vol. 6, no.1, pp. 14-23,
May 2015.

[28] S.V.Manikanthan and K.srividhya "An Android based secure

access control using ARM and cloud computing", Published in:
Electronics and Communication Systems (ICECS), 2015 2nd

International Conference on 26-27 Feb. 2015,Publisher:

IEEE,DOI: 10.1109/ECS.2015.7124833.

http://candidjava.com/advantage-and-disadvantage-of-json/
http://boto3.readthedocs.io/en/latest/guide/iam-examples.html
https://boto3.readthedocs.io/en/latest/
http://www.tutorialspoint.com/json/
https://www.gartner.com/newsroom/id/3354117
https://www.javatpoint.com/json-tutorial
https://www.json.org/
https://www.w3schools.com/js/js_json_intro.asp
https://www.tutorialspoint.com/json/json_data_types.htm
https://www.w3schools.com/js/js_json_datatypes.asp
http://json.org/xml.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-limits.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-limits.html
http://boto3.readthedocs.io/en/latest/guide/iam-example-managing-users.html
http://boto3.readthedocs.io/en/latest/guide/iam-example-managing-users.html
https://www.amazon.com/Ertem-Osmanoglu/e/B00F5ZD18S/ref=dp_byline_cont_book_1
https://www.quora.com/What-are-the-advantages-of-JSON-over-XML
https://www.quora.com/What-are-the-advantages-of-JSON-over-XML
http://www.bus.umich.edu/KresgePublic/Journals/Gartner/research/118200/118281/118281.pdf
http://www.bus.umich.edu/KresgePublic/Journals/Gartner/research/118200/118281/118281.pdf
http://boto3.readthedocs.io/en/latest/guide/iam-example-policies.html

