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Abstract 
 

The series of tracking algorithms accelerated from linear state to non-linear state estimations like the Particle filter. Due to its vibrant 

computation, tracking signal gets diverged at peaks. Smoothing makes perfect estimation possible, even at that minute portions by modi-

fying its trace based on all the prior measurement values. So, a Particle smoother is used which uses Monte Carlo approximations for 

smoothing in a non-linear system. Different types of Particle Smoothers can be implemented by using various algorithms. Here, a Backward 

Simulation Particle smoother is used which is relatively less degenerate than other smoothing algorithms. 
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1. Introduction 

The importance of Particle filter came into existence in early 2000 

after overcoming the problems that arise from the primitive model. 

Degeneracy is one which makes the particle filter concepts limited 

to theoretical assumptions [1]. When degeneracy occurs, the zero-

weighted particles stops further processing of tracking because the 

current value depends upon its previous state values. This impli-

cates no signal can be tracked further. The solution to this problem 

is found as resampling. Resampling is the technique by which the 

diverging (less probable) particles are replaced by the high 

weighted particles. Even though many such techniques are availa-

ble, most of the basic resampling techniques add extra variance [2]. 

So, one should be cautious while selecting a resampling technique. 

We have selected an unbiased resampling technique called Strati-

fied resampling and implemented it to particle filter [3]. This tech-

nique will be explained in later units of this paper. 

The RMSE obtained with particle filter is better than many methods 

like EKF and UKF, but to make it still better smoothing is used. 

Smoother smooths the signal trace and gives a minute error. But 

smoothing performs relatively more computations than filtering in 

a result we were obtained with the best estimation. Smoothing is 

certainly different from filtering by means of its computational se-

lection of values. Generally, in filters the calculations are based on 

the prior values and with the current value of measurement we es-

timate the next(future) state equation. Whereas in the Smoothing 

routine, when we are obtained with plenty of output values, hence 

correct estimation is possible. 

2. Particle filter  

Particle filter usually derived from the name Sequential Monte 

Carlo which deals with the terrified nonlinear estimation problems. 

When dynamic systems are considered, the sensor data obtained 

will have lots of perturbations, such irreverent signals can be traced 

out of nonlinear noise by splitting into more particles for correct 

estimation, hence called as Particle filter. 

The probability estimation that starts with the Bayesian equations 

can be categorized into continuous and discrete signals. The contin-

uous signal equations were solved by Gaussian approximation and 

the discrete signals with Monte Carlo approximation. These filter-

ing methods are modeled to solve the problems like estimating the 

internal states of a dynamic system and to eliminate the random 

variance obtained from sensor data. One of the posterior distribu-

tion models that work well with highly non-linear data is Particle 

filter. The tool used to plough a land cannot suit to dig soil in the 

flower pot. Similarly, PF cannot work for linear data, the problem 

arises is sample impoverishment [4,5]. So, particle filters were de-

signed and can be implemented only to nonlinear and partially ob-

tained data from the sensors. Here we implemented Sequential Im-

portance Resampling (SIR) technique and the algorithm is as fol-

lows 

Consider S samples with the probability of their existence at that 

instance as  

 

 𝑣0
(𝑖)  ~ 𝑝(𝑣0) ; i=1,2,…..,S  

 

    ; i=1,2,..,S                                        (1) 

 

Where  

 

- Initial estimated value at ith sample. 

 

-Initial weight of  ith sample. 

 

For each time step d=1,……,T perform the below steps 

1)Get the samples 𝑣0
(𝑖)

 from the importance distribution 

 

http://creativecommons.org/licenses/by/3.0/


International Journal of Engineering & Technology 143 

 

 

𝑣0
(𝑖)

~π (v𝑑−1
(𝑖)

, 𝑢1:𝑆)    i=1,…..N.                        (2) 

 

2)Calculate new weights by   

 

wd
(i)

 α wd-1
(i) p(ud|vd

(i)
)p(vd

(i)
|vd-1

(i)
)

π(v d
(i)

|vd-1
(i)

, u1:d)
                                         (3) 

Where  

 

𝑤𝑑
(𝑖)

- weight of ith particle at dth time step. 

𝑢𝑑
(𝑖)

 - measurement value of ith particle at dth time step. 

𝑣𝑑
(𝑖)

 - estimation value of ith particle at dth time step. 

 

And then normalize their sum to unity. 

 

3)If the obtained number of particles is less, then perform 

resampling. 

 

The filtering distribution of SIR resampling technique is approxi-

mated by  

𝑝(𝑣𝑑|𝑢1:𝑑) ~ ∑ 𝑤𝑑
(𝑖)

𝛿 (𝑣𝑑 − 𝑣𝑑
(𝑖)

)
𝑁

𝑖=1
                                        (4) 

The optimal variance can be obtained by the importance distribu-

tion when it is approximated as 

 

𝜋 (𝑣𝑑
(𝑖)

|𝑣𝑑−1
(𝑖)

, 𝑢1:𝑑) = 𝑝(𝑣𝑑|𝑣𝑑−1, 𝑢𝑑)                                          (5) 

 

The importance distribution can be made easy when we approxi-

mate (5) as 𝑝(𝑣𝑑|𝑣𝑑−1) usually called as Bootstrap filter. 

2.1 Stratified resampling: 

The idea involved in this technique is to subdivide the whole parti-

cles into multiple sets(stratum), called as Strata [6]. Hence it is 

called as Stratified resampling. 

The random value generated is based on the uniform distribution 

with range (0,1].This set is again partitioned into disjoint intervals 

as (0,1/S] ,…, (1-1/S,1] and the random variable is obtained by the 

equation 

 

Rd
(i)

 ~ (
i-1

S
,

i

S
] , i =1,2,…S                                                 (6) 

 

Where 𝑅𝑑
(𝑖)

- uniform random number generated. 

Number of random numbers used is equal to the number of samples 

(S). So, the order of computational complexity is O(S). 

The bounded condition that should be satisfied while getting ith se-

lection is  

 

𝐵𝑑
(𝑘−1)

<  𝑅𝑑
(𝑖)

≤ 𝐵𝑑
(𝑘)

                     (7) 

Where  

𝐵𝑑
(𝑘)

= ∑ 𝑤𝑑
(𝑖)

𝑘

𝑖=1

 

 

Since the bounded values are given by the cumulative sum of the 

normalized weights. Therefore, the probability of selecting 𝑢𝑑
(𝑖)

is 

same as that of 𝑅𝑑
(𝑖)

. In this technique the particle gets replicated to 

the minimum limit of  max ([𝑁𝑤𝑑
(𝑘)

] − 1,0) and maximum limit of 

[𝑁𝑤𝑑
(𝑘)

] + 2.The difference between random numbers of present 

and previous states are given by 

 

∆𝑅 = 𝑅𝑑
(𝑖)

− 𝑅𝑑
(𝑖−1)

                           (8) 

 

When ∆𝑅=0 then particles get resampled twice. 

When ∆𝑅 > 2/N the particles that weights between 1/N and ∆𝑅 can 

be discarded. 

3. Backward simulation particle smoother 

This smoother uses less degenerate particles unlike SIR particle 

smoother. The SIR filter simply stores the full histories of the par-

ticles whereas this smoother reuse the filtering results. The Back-

ward Simulation Particle Smoother algorithm starts from the last 

step to the first which implies the backward simulation of the indi-

vidual trajectories.  

The Backward Simulation Algorithm contains the following steps: 

1. Initially, the particles weighted set must be given as the in-

put to determine the distributions of the filtering and this set 

is represented as 

𝒘𝒅
𝒊 , 𝒗𝒅

𝒊 : 𝒊 = 𝟏, 𝟐, … . 𝑺; 𝒅 = 𝟏, … … , 𝑻                         (9) 

2. For d=T-1,…,0   (simulation from last step to first step) 

i. Compute new weights using the equation 

𝒘𝒅|𝒅+𝟏
(𝒊)

∝ 𝒘𝒅
(𝒊)

𝒑 (𝒗𝒅+𝟏
∗ |𝒗𝒅

(𝒊)
)
                                      (10) 

ii. Again choose 𝒗𝒅
∗ = 𝒗𝒅

(𝒊)
 with probability 𝒘𝒅|𝒅+𝟏

(𝒊)
       

Here, the new weights are computed by assuming a trajec-

tory simulated form a smoothing distribution which is given 

as 

For trajectory  𝑣𝑑+1:𝑇
∗  

𝒑(𝒗𝒅|𝒗𝒅+𝟏
∗ , 𝒖𝟏:𝑻) =

𝒑(𝒗𝒅+𝟏
∗ |𝒗𝒅) 𝒑(𝒗𝒅|𝒖𝟏:𝒅)

𝒑(𝒗𝒅+𝟏
∗ |𝒖𝟏:𝒅)

 

                    = 𝑍 𝑝(𝑣𝑑+1
∗ |𝑣𝑑) 𝑝(𝑣𝑑|𝑢1:𝑑)                      (11) 

Where, Z is a normalisation constant. 

Substitute the above (11) equation in equation (4), we get 

 

𝒑(𝒗𝒅|𝒗𝒅+𝟏
∗ , 𝒖𝟏:𝑻) = 𝒁 ∑ 𝒗𝒅

(𝒊)
 

𝒊
𝒑(𝒗𝒅+𝟏

∗ |𝒗𝒅)𝜹 (𝒗𝒅 − 𝒗𝒅
(𝒊)

)          (12)                                                                                                                                                                                                       

 Now, By getting a sample vd
(i)

from the above distribution having 

the probability 𝛼 𝑤𝑑
(𝑖)

 𝑝(𝑣𝑑+1
∗ |𝑣𝑑).  

By repeating this algorithm S times which implies 𝑣0:𝑇
∗(𝑗)

 𝑗 = 1, … , 𝑁 

and the smoothing distribution is approximated as  

   𝑝(𝑣0:𝑇|𝑢1:𝑇) ≈
1

𝑁
 ∑   

𝑗 𝛿 (𝑣0:𝑇 − 𝑣∗
0:𝑇
(𝑗)

)        (13) 

Where N – number of iterations the smoothing is repeated 

 

The complexity of the smoothing distribution is O (S T N). If the 

complexity is quadratic in number of particles, then the memory 

required is O (N T S2). This particle implementation iterates recur-

sively through the filtered posterior estimates and, without chang-

ing the support of the distribution, modifies the particle weights. 

This smoother modifies the particle weights without disturbing the 

distribution support and uses filtered posterior estimates to iterate 

recursively. 

4. Pendulum basics 

Let us consider a perfect ideal pendulum by neglecting all types of 

losses. The pendulum bob is naturally at the centre when the pen-

dulum is in rest, that position is called as Equilibrium position(B). 

When the pendulum sets into motion, the displacement which is to 
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the right of equilibrium position was considered as positive dis-

placement and left side is negative displacement.  

 

 
 

The accelerating positive peak is obtained when the bob is moving 

from B-C, and the decelerating positive position will be obtained 

when the bob moves from C-B (see position vs time plot above). 

Similarly, it follows negative peak in B-A and A-B path 

The velocity of bob changes continuously, it will be positive for 

right ward motion(A-C) and negative in reverse direction(C-A). As 

the distance from equilibrium position(B) increases velocity goes 

on decreasing and it will be maximum at B. 

The differential equation of this pendulum model is given by 

 
𝑑2𝑎

𝑑𝑡2 = −𝑔 𝑠𝑖𝑛(𝑎) + 𝑤(𝑡)                                        (14) 

 

Where  

 

a-angle that is made by equilibrium axis to the displacement of 

pendulum rod 

g-Gravitational acceleration 

w(t)-random noise 

When the above equations are represented in terms of state space 

model, then  

 
d 

dt
(v1

v2
) = ( v2

-g sin (v1)
) + (0

1
)w(t)                                                (15) 

 

Where 𝑣1= a           𝑣2= 
𝑑𝑎

𝑑𝑡
 

 

When the view point of measurement is horizontal, then there is 

no offence in considering the above equations as non-linear. Now 

the measurement equation is  

 

ud = sin(v1(d)) + rd                        (16) 

 

To model expressions to discretize the above equations are 

 

vd = F(md-1, qd-1) 

 

ud = H(ud, vd)                                                       (17) 

 

Where 𝑞𝑑−1~ 𝑁 and 𝑟𝑑~𝑁(0, 𝑅)  are noise vectors to be 

considered.𝑢𝑑 is the measurement vector and 𝑣𝑑 is the esti-

mation vector 

By discretizing the above continuous non-linear equation, we get  

 

(
𝑣1,𝑑

𝑣2,𝑑
) = (

𝑣1(𝑑 − 1) + 𝑣2(𝑑 − 1) ∗ ∆𝑇
𝑣2(𝑑 − 1) − 𝑔 ∗ 𝑠𝑖𝑛(𝑥1(𝑘 − 1)) ∗ ∆𝑇

) + 𝑞𝑑−1 

            (18) 

Jacobian matrices for f and h are in the form  

 

                                                    (19) 

 

Where qc is the spectral density of continuous time process noise 

Now the weights of pendulum is computed as 

𝑊 ~ 𝑒

−1

2𝑅(𝑢(𝑑)−𝑠𝑖𝑛(𝑣(𝑑,𝑖)))
2
                       (20) 

 

Where d-State       ;         i-1,2,…S       ;          R=variance 

 

Normalize the weight by 

 

𝑤𝑖 =
𝑤𝑖

∑ 𝑤𝑗

𝑆

𝑗=0

                        ( 21) 

 

Then apply resampling step mentioned in section 2 of this paper. 

5. Results 

The below results depict the simulation outcomes of 10,000 samples 
obtained from pendulum data. True and measured values were ob-
tained by simulating the pendulum wave equations mentioned in sec-
tion-4. The steps considered was 500.The smoother runs for 100 
times. The obtained results were plotted below. 

 

Fig. 1: Simulation result of pendulum wave equation with true and meas-
ured values. Red line represents true signal (to be tracked) and the green 

dots represents measured data points. The horizontal axis is considered as 

time axis and the vertical axis is referred as pendulum angle.  

 

Fig. 2: Tracking based on particle filter estimation. The dots (.) indicates the 

true angle whereas the red line represents the measurement values and the 
blue lines states the estimated values of pendulum signal. Pendulum angle 

is taken along vertical axis and the horizontal axis is time axis in seconds. 
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Fig. 3: Applying smoothing on filtered data for 40 times gives the smoothed 

better curve. The red line shows the true signal of pendulum and the blue 

dotted line indicates the dynamic trace that estimates the true signal. 

 

 

Fig. 4: Applying smoothing on filtered data for 80 times gives the smoothed 

better curve. The red line shows the true signal of pendulum and the blue 

dotted line indicates the dynamic trace that estimates the true signal. 

 
Fig. 5: Smoothing result of pendulum signal. By successive smoothing for 

100 times the original signal is tracked correctly. Original signal is denoted 
by red line and the blue stripes represents the tracking signal. Horizontal 

axis is a time reference and the vertical axis as pendulum angle. 

 

Fig. 6: Tracking signal simulation result. The red line indicates the target 

signal and the broken blue lines indicates the tracking signal.The time infor-

mation is given by the horizontal axis and the pendulum angle is given by 

the vertical axis. 

 

Fig. 7:  Monte Carlo simulation for RMSE. Blue colored line indicates 

Measurement RMSE and the orange colored line indicates pendulum angle 
estimate. 

 

6. Conclusion  
 

The desired optimal estimation of position can be measured in terms 

of root mean square error(RMSE) of obtained values. The RMSE 

of measurement values is 0.919669 and the RMSE of the particle 

filter is 0.136697 whereas the RMSE value of smoother is 

0.039995. From the obtained results, it is clear that the RMSE value 

obtained from the plot clearly elucidates that the Particle smoother 

gives the smoothed version of tracking. Hence the Particle smoother 

gives an optimal estimation of position than a filter. 
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