Hybrid NLP framework for enhanced sentiment analysis and topic detection on YouTube
DOI:
https://doi.org/10.14419/kft8ae18Keywords:
Sentiment Analysis; Audience Engagement; Viewer Sentiments; Term-Inverse Document Frequency; Social Media Analytics; Bag of WordsAbstract
This paper introduces an advanced hybrid NLP framework designed to enhance sentiment analysis and topic detection in YouTube comments. By combining feature extraction methods like Bag of Words (BoW) and TF-IDF with neural network models like LSTM and Bi-LSTM, the framework effectively uncovers latent topics and sentiment orientations. The study specifically analyzes comments on Oscar-nominated movie trailers, demonstrating the framework's ability to capture both explicit and implicit patterns of sentiment. This study shows that the Bi-LSTM model with BoW features achieves the highest performance, with accuracy, precision, recall, and F1-scores nearing 90%. This hybrid approach delivers practical and theoretical developments in natural language processing applications for content creators and marketers to optimize engagement strategies based on user sentiment and thematic preferences.
References
- Yosafat AR, Kurnia Y. Aplikasi Prediksi Rating Film dengan Perbandingan Metode Naïve Bayes dan KNN Berbasis Website Menggunakan Framework Codeigniter. ALGOR. 2019 Oct 21;1(1):16-27.
- Widayat W. Analisis Sentimen Movie Review menggunakan Word2Vec dan metode LSTM Deep Learning. Journal Media Informa tika Budidar-ma. 2021 Jul 31;5(3):1018-26. https://doi.org/10.30865/mib.v5i3.3111.
- Putri CA. Analisis sentimen review film berbahasa Inggris dengan pendekatan bidirectional encoder representations from transformers. JATISI (Jurnal Teknik Informatika dan Sistem Informasi). 2020 Jan 8;6(2):181-93. https://doi.org/10.35957/jatisi.v6i2.206.
- Shivaprasad TK, Shetty J. Sentiment analysis of product reviews: A review. In2017 International conference on inventive communication and computational technologies (ICICCT) 2017 Mar 10 (pp. 298-301). IEEE. https://doi.org/10.1109/ICICCT.2017.7975207.
- Hamzah MB. Classification of Movie Review Sentiment Analysis Using Chi-Square and Multinomial Naïve Bayes with Adaptive Boosting. Journal of Advances in Information Systems and Technology. 2021 Apr 14;3(1):67-74. https://doi.org/10.15294/jaist.v3i1.49098.
- Putra AE, Wardhani LK. Chi-Square Feature Selection Effect on Naive Bayes Classifier Algorithm Performance For Sentiment Analysis Docu-ment. In2019 7th International Conference on Cyber and IT Service Management (CITSM) 2019 Nov 6 (Vol. 7, pp. 1-7). IEEE. https://doi.org/10.1109/CITSM47753.2019.8965332.
- Putra AE, Wardhani LK. Chi-Square Feature Selection Effect on Naive Bayes Classifier Algorithm Performance for Sentiment Analysis Document. In2019 7th International Conference on Cyber and IT Service Management (CITSM) 2019 Nov 6 (Vol. 7, pp. 1-7). IEEE. https://doi.org/10.1109/CITSM47753.2019.8965332.
- Jelodar H, Wang Y, Rabbani M, Ahmadi SB, Boukela L, Zhao R, Larik RS. A NLP framework based on meaningful latent-topic detection and sentiment analysis via fuzzy lattice reasoning on youtube comments. Multimedia Tools and Applications. 2021 Jan;80:4155-81. https://doi.org/10.1007/s11042-020-09755-z.
- Hamzah MB. Classification of Movie Review Sentiment Analysis Using Chi-Square and Multinomial Naïve Bayes with Adaptive Boosting. Journal of Advances in Information Systems and Technology. 2021 Apr 14;3(1):67-74. https://doi.org/10.15294/jaist.v3i1.49098.
- Daeli NO, Adiwijaya A. Sentiment analysis on movie reviews using Information gain and K-nearest neighbor. Journal of Data Science and Its Ap-plications. 2020 May 11;3(1):1-7.
- Chauhan GS, Meena YK. YouTube video ranking by aspect-based sentiment analysis on user feedback. InSoft Computing and Signal Processing: Proceedings of ICSCSP 2018, Volume 1 2019 (pp. 63-71). Springer Singapore https://doi.org/10.1007/978-981-13-3600-3_6.
- Pang B, Lee L, Vaithyanathan S. Thumbs up? Sentiment classification using machine learning techniques. arXiv preprint cs/0205070. 2002 May 28.
- Alhujaili RF, Yafooz WM. Sentiment analysis for youtube videos with user comments. In2021 International conference on artificial intelligence and smart systems (ICAIS) 2021 Mar 25 (pp. 814-820). IEEE. https://doi.org/10.1109/ICAIS50930.2021.9396049.
- Alslaity A, Orji R. Machine learning techniques for emotion detection and sentiment analysis: current state, challenges, and future directions. Be-havior & Information Technology. 2024 Jan 2;43(1):139-64. https://doi.org/10.1080/0144929X.2022.2156387.
- Bonifazi G, Cauteruccio F, Corradini E, Marchetti M, Sciarretta L, Ursino D, Virgili L. A space-time framework for sentiment scope analysis in so-cial media. Big Data and Cognitive Computing. 2022 Nov 3;6(4):130. https://doi.org/10.3390/bdcc6040130.
- Almars A, Li X, Zhao X. Modelling user attitudes using hierarchical sentiment-topic model. Data & Knowledge Engineering. 2019 Jan 1; 119:139-49. https://doi.org/10.1016/j.datak.2019.01.005.
- Yin J, Lampert A, Cameron M, Robinson B, Power R. Using social media to enhance emergency situation awareness. IEEE intelligent systems. 2012 Nov 1;27(06):52-9. https://doi.org/10.1109/MIS.2012.6.
- Kencana CG, Sibaroni Y. Klasifikasi Sentiment Analysis pada Review Buku Novel Berbahasa Inggris dengan Menggunakan Metode Support Vec-tor Machine (SVM). eProceedings of Engineering. 2019 Dec 1;6(3).
- Jiawa Z, Wei L, Sili W, Heng Y. Review of methods and applications of text sentiment analysis. Data analysis and knowledge discovery. 2021 Mar 19;5(6):1-3.
- Chen YL, Chang CL, Yeh CS. Emotion classification of YouTube videos. Decision Support Systems. 2017 Sep 1; 101:40-50. https://doi.org/10.1016/j.dss.2017.05.014.
- Alhujaili RF, Yafooz WM. Sentiment analysis for youtube videos with user comments. In2021 International conference on artificial intelligence and smart systems (ICAIS) 2021 Mar 25 (pp. 814-820). IEEE. https://doi.org/10.1109/ICAIS50930.2021.9396049.
- Lee CS, Osop H, Goh DH, Kelni G. Making sense of comments on YouTube educational videos: A self-directed learning perspective. Online in-formation review. 2017 Sep 11;41(5):611-25 https://doi.org/10.1108/OIR-09-2016-0274.
- Nawaz S, Rizwan M, Rafiq M. Recommendation of effectiveness of YouTube video contents by qualitative sentiment analysis of its comments and replies. Pakistan Journal of Science. 2019 Dec 31;71(4):91.
- Zhu Y, Wang SJ. A tangible augmented reality toy kit: Interactive solution for early childhood education. In Interactivity, Game Creation, Design, Learning, and Innovation: 5th International Conference, ArtsIT 2016, and First International Conference, DLI 2016, Esbjerg, Denmark, May 2–3, 2016, Proceedings 5 2017 (pp. 12-19). Springer International Publishing. https://doi.org/10.1007/978-3-319-55834-9_2.
- Hemmatian F, Sohrabi MK. A survey on classification techniques for opinion mining and sentiment analysis. Artificial intelligence review. 2019 Oct 1;52(3):1495-545. https://doi.org/10.1007/s10462-017-9599-6.
- Krouska A, Troussas C, Virvou M. The effect of preprocessing techniques on Twitter sentiment analysis. In2016 7th international conference on information, intelligence, systems & applications (IISA) 2016 Jul 13 (pp. 1-5). IEEE. https://doi.org/10.1109/IISA.2016.7785373.
- Kaur G, Malik K. A comprehensive overview of sentiment analysis and fake review detection. Mobile Radio Communications and 5G Networks: Proceedings of MRCN 2020. 2020 Sep 29:293-304. https://doi.org/10.1109/IISA.2016.7785373.
- Pal JK. Usefulness and applications of data mining in extracting information from different perspectives. Annals of library and information studies. 2011;58(1):7.
- Tiwari D, Kumar M. Social media data mining techniques: A survey. In Information and Communication Technology for Sustainable Development: Proceedings of ICT4SD 2018 2020 (pp. 183-194). Springer Singapore. https://doi.org/10.1007/978-981-13-7166-0_18.
- Kaplan AM, Haenlein M. Users of the world, unite! The challenges and opportunities of social media. Business horizons. 2010 Jan 1;53(1):59-68 https://doi.org/10.1016/j.bushor.2009.09.003.
- Nandi G, Das A. A survey on using data mining techniques for online social network analysis. International Journal of Computer Science Issues (IJCSI). 2013 Nov 1;10(6):162
- Hamdi E, Rady S, Aref M. A deep learning Architecture with word Embeddings to classify Sentiment in Twitter. InProceedings of the Interna-tional Conference on Advanced Intelligent Systems and Informatics 2020 2021 (pp. 115-125). Springer International Publishing. https://doi.org/10.1007/978-3-030-58669-0_10.
- Kumar PK, Kumar I. Emotion detection and sentiment analysis of text. InProceedings of the International Conference on Innovative Computing & Communication (ICICC) 2021 Jul 12. https://doi.org/10.2139/ssrn.3884914.
- Han H, Zhang Y, Zhang J, Yang J, Wang Y. A Hybrid Sentiment Analysis Method. In The 10th International Conference on Computer Engineer-ing and Networks 2021 (pp. 1138-1146). Springer Singapore. https://doi.org/10.1007/978-981-15-8462-6_130.
- Singh R, Tiwari A. Youtube comments sentiment analysis. Int. J. Sci. Res. Eng. Manag. (IJSREM, no. May, p. 5, 2021,[Online]. Available: https://www. researchgate. net/publication/351351202. 2021.
- Kavitha KM, Shetty A, Abreo B, D’Souza A, Kondana A. Analysis and classification of user comments on YouTube videos. Procedia Computer Science. 2020 Jan 1;177:593-8. https://doi.org/10.1016/j.procs.2020.10.084.
- Lorentz I, Singh G. Sentiment Analysis on Youtube Comments to Predict Youtube Video Like Proportions.
- Pokharel R, Bhatta D. Classifying youtube comments based on sentiment and type of sentence. arXiv preprint arXiv:2111.01908. 2021 Oct 31.
- Nahas N, Swetha P, Nandakumar R. Classifiers for Sentiment Analysis of YouTube Comments: A Comparative Study. In International Conference on Machine Learning,
- Deep Learning and Computational Intelligence for Wireless Communication 2023 Jun 22 (pp. 443-451). Cham: Springer Nature Switzerland.
- Jha A, Jha A, Sindhavad A, Yadav R, Dalvi A, Siddavatam I. Rating YouTube Videos: An Improvised and Effective Approach. In International Conference on Advancements in Smart Computing and Information Security 2022 Nov 25 (pp. 169-179). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-23092-9_14.
- Attewell P, Monaghan D. Data mining for the social sciences: An introduction. Univ of California Press; 2015.
- Wawre SV, Deshmukh SN. Sentiment classification using machine learning techniques. International Journal of Science and Research (IJSR). 2016 Apr;5(4):819-21. https://doi.org/10.21275/v5i4.NOV162724.
- Bhavitha BK, Rodrigues AP, Chiplunkar NN. Comparative study of machine learning techniques in sentimental analysis. In2017 International con-ference on inventive communication and computational technologies (ICICCT) 2017 Mar 10 (pp. 216-221). IEEE. https://doi.org/10.1109/ICICCT.2017.7975191.
- Gao K, Xu H, Wang J. A rule-based approach to emotion cause detection for Chinese micro-blogs. Expert Systems with Applications. 2015 Jun 1;42(9):4517-28. https://doi.org/10.1016/j.eswa.2015.01.064.
- Kaur G, Malik K. A comprehensive overview of sentiment analysis and fake review detection. Mobile Radio Communications and 5G Networks: Proceedings of MRCN 2020. 2020 Sep 29:293-304. https://doi.org/10.1007/978-981-15-7130-5_22.
- Hamdi E, Rady S, Aref M. A deep learning Architecture with word Embeddings to classify Sentiment in Twitter. InProceedings of the Interna-tional Conference on Advanced Intelligent Systems and Informatics 2020 2021 (pp. 115-125). Springer International Publishing. https://doi.org/10.1007/978-3-030-58669-0_10.
- Han H, Zhang Y, Zhang J, Yang J, Wang Y. A Hybrid Sentiment Analysis Method. InThe 10th International Conference on Computer Engineering and Networks 2021 (pp. 1138-1146). Springer Singapore. https://doi.org/10.1007/978-981-15-8462-6_130.
- Rabeya T, Ferdous S, Ali HS, Chakraborty NR. A survey on emotion detection: A lexicon based backtracking approach for detecting emotion from Bengali text. In2017 20th international conference of computer and information technology (ICCIT) 2017 Dec 22 (pp. 1-7). IEEE. https://doi.org/10.1109/ICCITECHN.2017.8281855.
- Jelodar H, Wang Y, Rabbani M, Ahmadi SB, Boukela L, Zhao R, Larik RS. A NLP framework based on meaningful latent-topic detection and sentiment analysis via fuzzy lattice reasoning on youtube comments. Multimedia Tools and Applications. 2021 Jan; 80:4155-81. https://doi.org/10.1007/s11042-020-09755-z.
- Almanie T, Aldayel A, Alkanhal G, Alesmail L, Almutlaq M, Althunayan R. Saudi mood: a real-time informative tool for visualizing emotions in Saudi Arabia using twitter. In2018 21st Saudi computer society national computer conference (NCC) 2018 Apr 25 (pp. 1-6). IEEE. https://doi.org/10.1109/NCG.2018.8593165.
- Dave A, Bharti S, Patel S, Mishra SK. A real-time sentiments analysis system using Twitter data. In Intelligent and Cloud Computing: Proceedings of ICICC 2019, Volume 2 2021 (pp. 251-258). Springer Singapore. https://doi.org/10.1007/978-981-15-6202-0_25.
- Balakrishnan V, Lok PY, Abdul Rahim H. A semi-supervised approach in detecting sentiment and emotion based on digital payment reviews. The Journal of Supercomputing. 2021 Apr;77(4):3795-810. https://doi.org/10.1007/s11227-020-03412-w.
- Kumar PK, Kumar I. Emotion detection and sentiment analysis of text. InProceedings of the International Conference on Innovative Computing & Communication (ICICC) 2021 Jul 12. https://doi.org/10.2139/ssrn.3884914.
- Shah B, Shah M. A survey on machine learning and deep learning based approaches for sarcasm identification in social media. InData Science and Intelligent Applications: Proceedings of ICDSIA 2020 2021 (pp. 247-259). Springer Singapore. https://doi.org/10.1007/978-981-15-4474-3_29
Downloads
How to Cite
Received date: April 1, 2025
Accepted date: May 6, 2025
Published date: May 14, 2025