Advanced skin lesion diagnosis with efficientnet-b7 feature extraction and SVM classification
DOI:
https://doi.org/10.14419/hgnb5045Keywords:
Efficientnet-B7; Skin Lesion; International Skin Imaging Collaboration (ISIC) 2020; Support Vector MachineAbstract
Skin cancer is the most common form of cancer globally. Timely detection is crucial, since failure to identify it in the first stage may result in grave consequences. Notwithstanding its apparent visibility, significant intra-class heterogeneity and inter-class homogeneity complicate its identification. Current AI methodologies for detecting skin cancer are hindered by their reliance on convolutional neural networks, resulting in a lack of interpretability and sluggish processing speeds. To address the issue, the study proposes a comprehensive pipeline that integrates deep learning and machine learning methodologies to enhance detection accuracy in identifying skin lesions. The dataset under con-consideration is the International Skin Imaging Collaboration (ISIC) 2020. Initially, we pre-process the photos to guarantee precise training and categorization. The EfficientNet-B7 deep learning model is employed for feature extraction and fed into a support vector machine (SVM) classifier. The assessment of parameters such as accuracy, precision, recall, and F1 score yielded an accuracy of 97.52% and an F1 score of 98.61%. The proposed model demonstrates superior results relative to other current models.
References
- Melarkode, N., Srinivasan, K., Qaisar, S. M., & Plawiak, P., “AI-Powered Diagnosis of Skin Cancer: A Contemporary Review, Open Challenges and Future Research Directions”, Cancers, 15(4), 2023, 1183. https://doi.org/10.3390/cancers15041183.
- H. Alharbi, G. A. Sampedro, R. A. Juanatas, and S.-J. Lim, “Enhanced skin cancer diagnosis: a deep feature extraction-based framework for the multi-classification of skin cancer utilizing dermoscopy images,” Frontiers in Medicine, vol. 11, Nov. 2024. https://doi.org/10.3389/fmed.2024.1495576.
- Vasanthakumari, P., Romano, R. A., Rosa, R. G. T., Salvio, A. G., Yakovlev, V., Kurachi, C., Hirshburg, J. M., & Jo, J. A., “Pixel-level classifica-tion of pigmented skin cancer lesions using multispectral autofluorescence lifetime dermoscopy imaging”, Biomedical Optics Express, 15(8), 2024, 4557. https://doi.org/10.1364/BOE.523831.
- Debelee, T. G., “Skin Lesion Classification and Detection Using Machine Learning Techniques: A Systematic Review”, Diagnostics, 13(19), 2023, 3147. https://doi.org/10.3390/diagnostics13193147.
- Mateen, M., Hayat, S., Arshad, F., Gu, Y., & Al-Antari, M. A., “Hybrid Deep Learning Framework for melanoma diagnosis using Dermoscopic Medical Images”, Diagnostics, 14(19), 2024, 2242. https://doi.org/10.3390/diagnostics14192242.
- Maurya, R., Mahapatra, S., Dutta, M. K., Singh, V. P., Karnati, M., Sahu, G., & Pandey, N. N., “Skin cancer detection through attention guided dual autoencoder approach with extreme learning machine”, Scientific Reports, 14(1), 2024. https://doi.org/10.1038/s41598-024-68749-1.
- Wang, Z., Wang, C., Peng, L., Lin, K., Xue, Y., Chen, X., Bao, L., Liu, C., Zhang, J., & Xie, Y., “Radiomic and deep learning analysis of dermo-scopic images for skin lesion pattern decoding”, Scientific Reports, 14(1), 2024. https://doi.org/10.1038/s41598-024-70231-x.
- Selvaraj, K. M., Gnanagurusubbiah, S., Roy, R. R. R., Peter, J. H. J., & Balu, S., “Enhancing skin lesion classification with advanced deep learning ensemble models: a path towards accurate medical diagnostics”, Current Problems in Cancer, 49, 2024, 101077. https://doi.org/10.1016/j.currproblcancer.2024.101077.
- Alfi, I. A., Rahman, M. M., Shorfuzzaman, M., & Nazir, A., “A Non-Invasive Interpretable diagnosis of melanoma skin cancer using deep learning and ensemble stacking of machine learning models”, Diagnostics, 12(3), 2022, 726. https://doi.org/10.3390/diagnostics12030726.
- G. Y. Oztel, “Vision transformer and CNN-based skin lesion analysis: classification of monkeypox,” Multimedia Tools and Applications, vol. 83, no. 28, pp. 71909–71923, Jul. 2024. https://doi.org/10.1007/s11042-024-19757-w.
- M. Shorfuzzaman, “An explainable stacked ensemble of deep learning models for improved melanoma skin cancer detection,” Multimedia Systems, vol. 28, no. 4, pp. 1309–1323, Apr. 2021. https://doi.org/10.1007/s00530-021-00787-5.
- Liang, J., “Image classification based on RESNET”, Journal of Physics Conference Series, 1634(1), 2020, 012110. https://doi.org/10.1088/1742-6596/1634/1/012110.
- M. S. Rao, Ch. Sekhar, and D. Bhattacharyya, “Comparative analysis of machine learning models on loan risk analysis,” in Advances in intelligent systems and computing, 2021, pp. 81–90. https://doi.org/10.1007/978-981-15-9516-5_7.
- Kavitha, C., Priyanka, S., Kumar, M. P., & Kusuma, V., “Skin Cancer Detection and Classification using Deep Learning Techniques”, Procedia Computer Science, 235, 2024, 2793–2802. https://doi.org/10.1016/j.procs.2024.04.264.
- Bassel, A., Abdulkareem, A. B., Alyasseri, Z. a. A., Sani, N. S., & Mohammed, H. J., “Automatic malignant and benign skin cancer classification using a hybrid deep learning approach”, Diagnostics, 12(10), 2022, 2472. https://doi.org/10.3390/diagnostics12102472.
- Kousis, I., Perikos, I., Hatzilygeroudis, I., & Virvou, M., “Deep learning methods for accurate skin cancer recognition and mobile application”, Electronics, 11(9), 2022, 1294. https://doi.org/10.3390/electronics11091294.
- Kumar S, Kumar A, “Extended feature space-based automatic melanoma detection system”. 2022. arXiv preprint arXiv:2209.04588
- Thapar P, Rakhra M, Cazzato G, Hossain MS, “A novel hybrid deep learning approach for skin lesion segmentation and classification”, J Healthcare Eng 2022:1709842 https://doi.org/10.1155/2022/1709842.
- Abdar, M., Samami, M., Mahmoodabad, S. D., Doan, T., Mazoure, B., Hashemifesharaki, R., Liu, L., Khosravi, A., Acharya, U. R., Makarenkov, V., & Nahavandi, S., “Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning”, Computers in Biology and Medicine, 135, 2021, 104418. https://doi.org/10.1016/j.compbiomed.2021.104418.
- Monika, M. K., Vignesh, N. A., Kumari, C. U., Kumar, M., & Lydia, E. L., “Skin cancer detection and classification using machine learning”, Ma-terials Today Proceedings, 33, 2020, 4266–4270. https://doi.org/10.1016/j.matpr.2020.07.366
Downloads
How to Cite
Received date: March 25, 2025
Accepted date: April 20, 2025
Published date: April 24, 2025