Wireless interrogator for passive electromagnetic sensors for IoT applications
DOI:
https://doi.org/10.14419/gv4spa37Keywords:
Wireless IoT; Interrogator; Passive Electromagnetic Sensors; Energy Efficiency; Sensor Networks; Data Communication; IoT ApplicationAbstract
This work presents a novel wireless interrogator designed to efficiently interface with passive electromagnetic sensors, addressing critical challenges in energy efficiency and real-time IoT connectivity. The Internet of Things (IoT) is transforming a wide range of industries, enabling real-time monitoring and information collection through interconnected sensor networks. Passive electromagnetic sensors, which do not require an external power source, offer significant advantages in energy efficiency and maintenance-free operation. However, efficient data interrogation and communication from these sensors remain a challenge, particularly in IoT-based wireless applications. The design and development of a wireless IoT interrogator for passive electromagnetic sensors are described in this paper. The proposed interrogator leverages advanced wireless communication protocols and energy-efficient techniques to interrogate passive sensors, retrieve data, and transmit it to IoT networks for real-time monitoring and analysis. We analyze the system's performance through experiments, highlighting the interrogator's capability to support diverse IoT applications, such as environmental monitoring and smart agriculture. The proposed system is energy-efficient, scalable, and capable of supporting real-time data transmission to IoT networks, making it ideal for a wide range of IoT applications. F1 antenna gain is 3.50 dBi, and mF1 antenna gain is 5.10 dBi. Output power for frequency doubling reflectenna system observed -20dB, -89dB for distance between Tx and Rx at 100 cm, 1000cm, respectively.
References
- Anil M. Kasture, Kailash J. Karande, Shankar D. Nawale, “Performance Analysis of Various Nonlinear Elements in Frequency Multiplying Circuits for Wireless Applications”. IJEER 12(4), 1332-1336. https://doi.org/10.37391/ijeer.120425.
- Anil M. Kasture, Kailash J. Karande, Shankar D. Nawale, Alttaf O. Mulani, “Design and analysis of planar frequency doubling reflectenna for IoT sensor networks”, Comm. Appl. Nonlinear Anal., vol. 32, no. 9s, pp. 2279–2289, Mar. 2025. https://doi.org/10.37391/ijeer.120425.
- Anil M Kasture, Kailash J Karande “Comprehensive survey on passive wireless sensing technology for wireless application” Volume 2494, Issue 1, 31 October 2022, AIP Conf. Proc. 2494, 070013 (2022) https://doi.org/10.1063/5.0106945.
- M. Kasture, K. J. Karande and S. D. Nawale, "Optimization of Harmonic Generation in Frequency Multiplying Circuit for Wireless Application," 2024 3rd Edition of IEEE Delhi Section Flagship Conference (DELCON), New Delhi, India, 2024, pp. 1-5, https://doi.org/10.1109/DELCON64804.2024.10866239.
- E. García, A. Andújar, and J. Anguera, ‘Antenna booster element for multiband operation’, Sensors (Basel), vol. 24, no. 9, Apr. 2024. https://doi.org/10.3390/s24092867.
- L. Anchidin, A. Lavric, P.-M. Mutescu, A. I. Petrariu, and V. Popa, ‘The design and development of a microstrip antenna for Internet of Things applications’, Sensors (Basel), vol. 23, no. 3, p. 1062, Jan. 2023. https://doi.org/10.3390/s23031062.
- D. H. Abdulzahra, F. Alnahwi, A. S. Abdullah, Y. I. A. Al-Yasir, and R. A. Abd-Alhameed, ‘A miniaturized triple-band antenna based on square split ring for IoT applications’, Electronics (Basel), vol. 11, no. 18, p. 2818, Sep. 2022. https://doi.org/10.3390/electronics11182818.
- B. Satriobudi, Iskandar and A. Mustafa, "IOT PROTOTYPE AIR QUALITY MONITORING USING LORA COMMUNICATION SYSTEM ON FREQUENCY 433 MHZ", 2022 16th International Conference on Telecommunication Systems, Services, and Applications (TSSA), Lombok, Indonesia, 2022, pp. 1-5, https://doi.org/10.1109/TSSA56819.2022.10063914.
- Zhang, L., Yang, H., Wang, Y., Zhang, S., & Ding, T. (2024), “Miniaturized active-frequency selective surfaces for low-power Internet of Things devices”, Micromachines, 15(6), 736. https://doi.org/10.3390/mi15060736.
- W. M. Abdulkawi, A. F. A. Sheta, I. Elshafiey, and M. A. Alkanhal, ‘Design of low-profile single- and dual-band antennas for IoT applications’, Electronics (Basel), vol. 10, no. 22, p. 2766, Nov. 2021. https://doi.org/10.3390/electronics10222766.
- S. Norlyana Azemi, N. K. Jiunn, M. Azmeer Kamarudin, C. Muhammad Nor Che Isa, and A. Amir, ‘An Ultra-wideband CPW fed slot antenna for IoT Applications’, J. Phys. Conf. Ser., vol. 1755, no. 1, p. 012029, Feb. 2021. https://doi.org/10.1088/1742-6596/1755/1/012029.
- J. Colaco and R. B. Lohani, ‘Metamaterial based multiband microstrip patch antenna for 5G wireless technology-enabled IoT devices and its applications’, J. Phys. Conf. Ser., vol. 2070, no. 1, p. 012116, Nov. 2021. https://doi.org/10.1088/1742-6596/2070/1/012116.
- Z. Mahlaoui, E. Antonino-Daviu, and M. Ferrando-Bataller, ‘Radiation pattern reconfigurable antenna for IoT devices’, Int. J. Antennas Propag., vol. 2021, pp. 1–13, Aug. 2021. https://doi.org/10.1155/2021/5534063.
- D. T. T. Tu and N. V. Sang, ‘Frequency reconfigurable multiband MIMO antenna base on gradient arcs for IoT devices’, Adv. Electromagn., vol. 10, no. 2, pp. 85–93, Oct. 2021. https://doi.org/10.1155/2021/5534063.
- D. Boukern, A. Bouacha, D. Aissaoui, M. Belazzoug, and T. A. Denidni, ‘High‐gain cavity antenna combining AMC‐reflector and FSS superstrate technique’, Int. J. RF Microw. Comput-Aid. Eng., vol. 31, no. 7, Jul. 2021. https://doi.org/10.1002/mmce.22674.
- S. Thiruvenkadam, E. Parthasarathy, S. K. Palaniswamy, S. Kumar, and L. Wang, ‘Design and performance analysis of a compact planar MIMO antenna for IoT applications’, Sensors (Basel), vol. 21, no. 23, p. 7909, Nov. 2021. https://doi.org/10.3390/s21237909.
- R. K. Saraswat and M. Kumar, ‘Design and implementation of a multiband metamaterial-loaded reconfigurable antenna for wireless applications’, Int. J. Antennas Propag., vol. 2021, pp. 1–21, Dec. 2021. https://doi.org/10.1155/2021/3888563.
- K. Akhil, A. Sudeer, S. Nagendram, and S. S. S. Kalyan, ‘Design of a dual band miniature microstrip patch antenna’, J. Phys. Conf. Ser., vol. 1804, no. 1, p. 012199, Feb. 2021. https://doi.org/10.1155/2021/3888563.
- P. P. Singh, P. K. Goswami, S. K. Sharma, and G. Goswami, ‘Frequency reconfigurable multiband antenna for iot applications in wlan, WI-max, and c-band’, Prog. Electromagn. Res. C Pier C., vol. 102, pp. 149–162, 2020. https://doi.org/10.2528/PIERC20022503.
- G. Immadi et al., ‘Analysis of substrateintegrated frequency selective surface antenna for IoT applications’, Indones. J. Electr. Eng. Comput. Sci., vol. 18, no. 2, p. 875, May 2020. https://doi.org/10.11591/ijeecs.v18.i2.pp875-881.
- Ramos, T. Varum, and J. N. Matos, ‘Compact N-band tree-shaped multiplexer-based antenna structures for 5G/IoT mobile devices’, Sensors (Basel), vol. 20, no. 21, p. 6366, Nov. 2020. https://doi.org/10.11591/ijeecs.v18.i2.pp875-881.
- V. K. Allam, B. T. P. Madhav, T. Anilkumar, and S. Maloji, ‘A novel reconfigurable bandpass filtering antenna for iot communication applications’, Prog. Electromagn. Res. C Pier C., vol. 96, pp. 13–26, 2019. https://doi.org/10.2528/PIERC19070805.
- P. K. Goswami and G. Goswami, ‘Trident shape ultra-large band fractal slot ebg antenna for multipurpose iot applications’, Prog. Electromagn. Res. C Pier C., vol. 96, pp. 73–85, 2019. https://doi.org/10.2528/PIERC19073002.
- N. AL-Fadhali et al., ‘Substrate integrated waveguide cavity backed frequency reconfigurable antenna for cognitive radio applies to internet of things applications’, Int. J. RF Microw. Comput-Aid. Eng., vol. 30, no. 1, Jan. 2020. https://doi.org/10.1002/mmce.22020.
- S. W. Y. Mung, C. Y. Cheung, K. M. Wu, and J. S. M. Yuen, ‘Wideband rectangular foldable and non-foldable antenna for Internet of Things applications’, Int. J. Antennas Propag., vol. 2019, pp. 1–5, May 2019. https://doi.org/10.1155/2019/2125713.
- https://www.iexplainall.com/2020/05/design-equations-of-rectangular.html.
Downloads
How to Cite
Received date: March 19, 2025
Accepted date: April 13, 2025
Published date: April 24, 2025