A non-invasive approach for diagnosing diabetic retinopathy using stacked ensemble deep learning mechanism incidental towards chronic kidney disease
DOI:
https://doi.org/10.14419/ms00zj36Keywords:
Retina-Based CKD Diagnosis; Diabetic Retinopathy Diagnosis; Non-Invasive Techniques in CKD Prediction.Abstract
Chronic kidney disease (CKD) is progressive in several parts of the world. The prevalence of CKD is rapidly increasing due to dis-eases such as hypertension and diabetes, the two major causes of CKD, and due to the global aging population. Non-invasive methods play an important role in identifying CKD. Retinal photography nowadays is a source that provides vital information related to the eye as well as systemic vasculature and acts as a non-invasive diagnostic test. The physiological, developmental, and pathogenic pathway information shared by the eye and the kidney seems to be similar. With the advent of Deep Learning, the detection of CKD and diabetic retinopathy is taking new horizons. In this paper, a novel mechanism is proposed for identifying Diabetic Retinopathy, which highly influences CKD progression. Also, CKD prediction is done using retina images. To accomplish a notable detection, A lightweight and efficient Transfer Learning based architecture, “RIX Net,” has been employed in classifying diabetic retinopathy severity as well as CKD. Five datasets of various sizes with respect to Diabetic Retinopathy and one corresponding retinal dataset to CKD have been used to measure the performance of the proposed architecture. The architecture performed well with around 90% performance in all cases.
References
- Farrah, T. E., Dhillon, B., Keane, P. A., Webb, D. J., & Dhaun, N, “The eye, the kidney, and cardiovascular disease: old concepts, better tools, and new horizons”, Kidney International, 98(2), 2020, 323–342. https://doi.org/10.1016/j.kint.2020.01.039.
- Grzybowski, A., Jin, K., Zhou, J., Pan, X., Wang, M., Ye, J., & Wong, T. Y,“Retina Fundus Photograph-Based Artificial Intelligence Algorithms in Medicine: A Systematic Review”, Ophthalmology and Therapy, 13(8), 2024, 2125–2149. https://doi.org/10.1007/s40123-024-00981-4.
- Mitani, A., Hammel, N., & Liu, Y, “Retinal detection of kidney disease and diabetes”, Nature Biomedical Engineering, 5(6), 2021, 487–489. https://doi.org/10.1038/s41551-021-00747-4.
- Wen, J., Liu, D., Wu, Q., Zhao, L., Iao, W. C., & Lin, H, “Retinal image‐based artificial intelligence in detecting and predicting kidney diseases: Current advances and future perspectives”, View, 2023, 4(3). https://doi.org/10.1002/VIW.20220070.
- Haq, N. U., Waheed, T., Ishaq, K., Hassan, M. A., Safie, N., Elias, N. F., & Shoaib, M, “Computationally efficient deep learning models for diabet-ic retinopathy detection: a systematic literature review”, Artificial Intelligence Review, 2024, 57(11). https://doi.org/10.1007/s10462-024-10942-9.
- Rim, T. H., Lee, G., Kim, Y., Tham, Y., Lee, C. J., Baik, S. J., Kim, Y. A., Yu, M., Deshmukh, M., Lee, B. K., Park, S., Kim, H. C., Sabayanagam, C., Ting, D. S. W., Wang, Y. X., Jonas, J. B., Kim, S. S., Wong, T. Y., & Cheng, C, “Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms” The Lancet Digital Health, 2(10), 2020, e526–e536. https://doi.org/10.1016/S2589-7500(20)30216-8.
- Amir Hamzah NA, Wan Zaki WMD, Wan Abdul Halim WH, Mustafar R, Saad AH, “Evaluating the potential of retinal photography in chronic kidney disease detection: a review’, PeerJ. 12, 2024, e17786. https://doi.org/10.7717/peerj.17786.
- Young Su Joo, Tyler Hyungtaek Rim,Hee Byung Koh, Joseph Yi, Hyeonmin Kim, Geunyoung Lee, Young Ah Kim, Shin-Wook Kang, Sung Soo Kim and Jung Tak Park, “Non-invasive chronic kidney disease risk stratification tool derived from retina-based deep learning and clinical factors”, Npj Digital Medicine, 2023, 6(1). https://doi.org/10.1038/s41746-023-00860-5.
- Sabanayagam, C., Xu, D., Ting, D. S. W., Nusinovici, S., Banu, R., Hamzah, H., Lim, C., Tham, Y., Cheung, C. Y., Tai, E. S., Wang, Y. X., Jonas, J. B., Cheng, C., Lee, M. L., Hsu, W., & Wong, T. Y, “A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations”, The Lancet Digital Health, 2(6), 2020, e295–e302. https://doi.org/10.1016/S2589-7500(20)30063-7.
- Betzler, B. K., Chee, E. Y. L., He, F., Lim, C. C., Ho, J., Hamzah, H., Tan, N. C., Liew, G., McKay, G. J., Hogg, R. E., Young, I. S., Cheng, C., Lim, S. C., Lee, A. Y., Wong, T. Y., Lee, M. L., Hsu, W., Tan, G. S. W., & Sabanayagam, C, “Deep learning algorithms to detect diabetic kidney disease from retinal photographs in multiethnic populations with diabetes”, Journal of the American Medical Informatics Association, 30(12), 2023, 1904–1914. https://doi.org/10.1093/jamia/ocad179.
- An, S., Vaghefi, E., Yang, S., Xie, L., & Squirrell, D, “Examination of alternative eGFR definitions on the performance of deep learning models for detection of chronic kidney disease from fundus photographs”, PLoS ONE, 18(11), 2023, e0295073. https://doi.org/10.1371/journal.pone.0295073.
- Zhang, K., Liu, X., Xu, J., Yuan, J., Cai, W., Chen, T., Wang, K., Gao, Y., Nie, S., Xu, X., Qin, X., Su, Y., Xu, W., Olvera, A., Xue, K., Li, Z., Zhang, M., Zeng, X., Zhang, C. L., . . . Wang, G, “Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images”, Nature Biomedical Engineering, 5(6), 2021, 533–545. https://doi.org/10.1038/s41551-021-00745-6.
- Nadeem, M. W., Goh, H. G., Hussain, M., Liew, S., Andonovic, I., & Khan, M. A, “Deep Learning for Diabetic Retinopathy Analysis: A review, research challenges, and future directions”, Sensors, 22(18), 2022, 6780. https://doi.org/10.3390/s22186780.
- Bhandari, S., Pathak, S., & Jain, S. A, “A literature review of Early-Stage Diabetic Retinopathy Detection using deep learning and Evolutionary Computing techniques”, Archives of Computational Methods in Engineering, 30(2), 2022, 799–810. https://doi.org/10.1007/s11831-022-09816-6.
- Vij, R., & Arora, S, “A Systematic Review on Diabetic Retinopathy Detection using Deep Learning techniques”, Archives of Computational Meth-ods in Engineering, 30(3), 2022, 2211–2256. https://doi.org/10.1007/s11831-022-09862-0.
- Grzybowski, A., Brona, P., Lim, G., Ruamviboonsuk, P., Tan, G. S. W., Abramoff, M., & Ting, D. S. W, “Artificial intelligence for diabetic reti-nopathy screening: a review”, Eye, 34(3), 2019, 451–460. https://doi.org/10.1038/s41433-019-0566-0.
- Nanegrungsunk, O., Ruamviboonsuk, P., & Grzybowski, A, “Prospective studies on artificial intelligence (AI)-based diabetic retinopathy screen-ing”, Annals of Translational Medicine, 10(24), 2022, 1297. https://doi.org/10.21037/atm-2022-71.
- Bermejo, S., González, E., López-Revuelta, K., Ibernon, M., López, D., Martín-Gómez, A., Garcia-Osuna, R., Linares, T., Díaz, M., Martín, N., Barros, X., Marco, H., Navarro, M. I., Esparza, N., Elias, S., Coloma, A., Robles, N. R., Agraz, I., Poch, E., . . . Soler, M. J, “The coexistence of di-abetic retinopathy and diabetic nephropathy is associated with worse kidney outcomes”, Clinical Kidney Journal, 16(10), 2023, 1656–1663. https://doi.org/10.1093/ckj/sfad142.
- Lee, G. W., Lee, C. H., & Kim, S. G. (2022), “Association of advanced chronic kidney disease with diabetic retinopathy severity in older patients with diabetes: a retrospective cross-sectional study”, Journal of Yeungnam Medical Science, 40(2), 146–155. https://doi.org/10.12701/jyms.2022.00206.
- Wang, D., Fan, K., He, Z., Guo, X., Gong, X., Xiong, K., Wei, D., Chen, B., Kong, F., Liao, M., Wang, W., Huang, W., & Liu, H, “The relation-ship between renal function and diabetic retinopathy in patients with type 2 diabetes: A three-year prospective study”, Heliyon, 9(4), 2023, e14662. https://doi.org/10.1016/j.heliyon.2023.e14662.
- Yan, Y., Yu, L., Sun, C., Zhao, H., Zhang, H., & Wang, Z, “Retinal microvascular changes in diabetic patients with diabetic nephropathy”, BMC Endocrine Disorders, 2023, 23(1). https://doi.org/10.1186/s12902-022-01250-w.
- Nusinovici, S., Sabanayagam, C., Lee, K. E., Zhang, L., Cheung, C. Y., Tai, E. S., Tan, G. S. W., Cheng, C. Y., Klein, B. E. K., & Wong, T. Y, “Retinal microvascular signs and risk of diabetic kidney disease in asian and white populations”, Scientific Reports, 11(1), 2021. https://doi.org/10.1038/s41598-021-84464-7.
- Ramasamy, L. K., Padinjappurathu, S. G., Kadry, S., & Damaševičius, R, “Detection of diabetic retinopathy using a fusion of textural and ridgelet features of retinal images and sequential minimal optimization classifier”, PeerJ Computer Science, 7, 2021, e456. https://doi.org/10.7717/peerj-cs.456.
- Kang, E. Y., Hsieh, Y., Li, C., Huang, Y., Kuo, C., Kang, J., Chen, K., Lai, C., Wu, W., & Hwang, Y, “Deep Learning–Based detection of early renal function impairment using Retinal Fundus images: model development and validation”, JMIR Medical Informatics, 8(11), 2020, e23472. https://doi.org/10.2196/23472.
- Zhao, L., Ren, H., Zhang, J., Cao, Y., Wang, Y., Meng, D., Wu, Y., Zhang, R., Zou, Y., Xu, H., Li, L., Zhang, J., Cooper, M. E., Tong, N., & Liu, F, “Diabetic retinopathy, classified using the Lesion-Aware deep learning System, predicts diabetic End-Stage renal disease in Chinese patients”, Endocrine Practice, 26(4), 2020, 429–443. https://doi.org/10.4158/EP-2019-0512.
- Yamanouchi, M., Mori, M., Hoshino, J., Kinowaki, K., Fujii, T., Ohashi, K., Furuichi, K., Wada, T., & Ubara, Y, “Retinopathy progression and the risk of end-stage kidney disease: results from a longitudinal Japanese cohort of 232 patients with type 2 diabetes and biopsy-proven diabetic kidney disease”, BMJ Open Diabetes Research & Care, 7(1), 2019, e000726. https://doi.org/10.1136/bmjdrc-2019-000726.
- Shi, S., Gao, L., Zhang, J., Zhang, B., Xiao, J., Xu, W., Tian, Y., Ni, L., & Wu, X, “The automatic detection of diabetic kidney disease from retinal vascular parameters combined with clinical variables using artificial intelligence in type-2 diabetes patients”, BMC Medical Informatics and Decision Making, 23(1), 2023. https://doi.org/10.1186/s12911-023-02343-9.
- Zhao, X., Gu, X., Meng, L., Chen, Y., Zhao, Q., Cheng, S., Zhang, W., Cheng, T., Wang, C., Shi, Z., Jiao, S., Jiang, C., Jiao, G., Teng, D., Sun, X., Zhang, B., Li, Y., Lu, H., Chen, C., . . . Chen, Y, “Screening chronic kidney disease through deep learning utilizing ultra-wide-field fundus images”, Npj Digital Medicine, 7(1), 2024. https://doi.org/10.1038/s41746-024-01271-w.
- Zhang, M., Ye, Z., Yuan, E., Lv, X., Zhang, Y., Tan, Y., Xia, C., Tang, J., Huang, J., & Li, Z, “Imaging-based deep learning in kidney diseases: recent progress and future prospects”, Insights Into Imaging, 15(1), 2024. https://doi.org/10.1186/s13244-024-01636-5.
- J, M. S., & Sharat, S, “The renal-retinal connection - The eye in chronic kidney disease”, IP International Journal of Ocular Oncology and Oculo-plasty, 10(3), 2024, 158–165. https://doi.org/10.18231/j.ijooo.2024.030.
- P. K. Sekharamantry, M. S. Rao, Y. Srinivas, and A. Uriti, “PSR-LeafNet: a deep learning framework for identifying medicinal plant leaves using support vector machines,” Big Data and Cognitive Computing, vol. 8, no. 12, p. 176, Dec. 2024. https://doi.org/10.3390/bdcc8120176.
Downloads
How to Cite
Received date: March 14, 2025
Accepted date: April 12, 2025
Published date: April 15, 2025