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Abstract 
 

This study identifies the critical demand for a certain approach that aims to predict and ascertain the mechanical behavior of concrete 

admixed with waste ceramic, a method to overcome and mitigate the related environmental challenges as it pertains to the construction 

field. Concrete modification with ceramic wastes has received significant attention due to its potential improvement in sustainability. The 

developed predictive models on waste ceramic concrete (WCC) involved the use of advanced machine learning techniques such as Artificial 

Neural Network (ANN) and Light Gradient Boosting Machine (LightGBM). Experimental datasets were formulated based on 5% and 20% 

variability of ceramic waste percentages as input variables for training and testing data for validation of the proposed model. In each case, 

iterative training improved model performance, with the ANN showing moderate predictability (R² = 0.70 and 0.67) and LightGBM 

demonstrating stronger accuracy. Predictive values ranged between 1.02 MPa and 0.12 MPa for compressive and splitting tensile strengths 

and had R² values of 0.70 and 0.67 for the ANN model, respectively. The established findings will lead to a dependable framework for 

assessing and improving the performance of ceramic waste-modified concrete. In this regard, these findings have reinforced the potential 

of machine learning in developing sustainable construction practices. This paper is of value to engineers and decision-makers within the 

construction industry, providing an informed choice towards environmental sustainability and better risk management. 

 
Keywords: Machine Learning; Waste Ceramic Concrete; Artificial Neural Network; LightGBM; Construction Industry; Environmental Sustainability. 

1. Introduction 

In recent years, advances in nanoscience and technology have resulted in novel techniques to improve the performance of cement compo-

sites, notably nano-modified mixes containing nanosilica [1]. Concrete, the most often used man-made material in construction projects, 

is primarily reliant on enormous amounts of fine and coarse aggregate [2]. To alleviate the demand on natural resources, adding waste and 

by-product materials into concrete mixtures has gained popularity [3]. Incorporating waste foundry sand (WFS) into concrete has emerged 

as a sustainable method of increasing its strength attributes [4]. Similarly, WOC derived from ceramic floor tiles provides both economic 

and environmental benefits [5]. However, the ceramic and building industries produce a substantial amount of waste, which poses signifi-

cant environmental problems due to the brittle nature of ceramics [6]. The increase in industrial wastes, such as ceramic scraps and steel 

tailings, needs immediate waste management solutions [7], [8]. Neural network technology has emerged as a useful technique for evaluating 

concrete quality [9]. Furthermore, the predictive and optimization capabilities of the response surface technique for waste fibres reinforced 

concrete with crushed limestone give a comprehensive model for overall response variance [10]. 

This work aims to improve the sustainability of concrete manufacturing by incorporating ceramic waste and fiber reinforcements. It uses 

advanced computational approaches to generate robust prediction models for concrete strength and behavior. The study by [11] examines 

how stress levels and aggregate replacement rates influence the capillary water absorption performance of recycled concrete. Four levels 

of radial compressive stress after repeated loading, and different substitution rates were used. The investigation by [12] investigates the 

sulfate assault on the red-colored ceramic as well as concrete waste that is serving substantially as a substitute for OPC in mortar mixtures. 

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJBAS


International Journal of Basic and Applied Sciences 125 

 
It reveals that pore size distribution changes and ettringite develops because of sulfate attack, making the use of eco-efficient mortars in 

sulfate-rich areas essential. 

The work presented by [13] proposes application of the Compression Model for Chord Capacity as a means for predicting shear strength 

in corroded RC beams. Model parameters are shifted to better mimic the influence on steel corrosion within the model on the anticipation 

of shear strength. Experimental validation involving 146 beams corroded proved good performance through a Vtest/Vpred ratio of 1.19 

and R2 of 19.5%. The further, the result of the parametric analysis projected the loss of shear strength which verifies that this model is 

highly efficient for corrosion-induced shear strength degradation analysis of the RC structure. Utilizing the Barcelona Test, the research of 

[14] introduced a model that applied the neural networks model to predict post-cracking yield strength in fibers-reinforced concrete. Ex-

tensive study yields an optimal design architecture with adequate accuracy of forecasted cracking phase. Validation verifies outstanding 

performance of this model, whilst a parametric analysis confirms such consistency with commonly recognized FRC behavior. Several 

formulas formulated for the prediction of residual strengths of the tested specimens are instrumental in pre-design and quality-control 

efforts to continue advancing FRC technology. The study [15] used metaheuristic algorithms to generate strong prediction models for the 

residual tensile strength of glass fiber reinforced polymer (GFRP) bars in hostile alkaline conditions. Different swarm optimization, and 

ML approaches are applied to the ANFIS for optimization purposes, yielding accurate prediction models [16 - 19]. A large quantity of 

experimental data on GFRP bar samples subjected to typical alkaline conditions of salty water sea sandy concrete (SWSSC) is used to 

construct and verify the models. The k-fold cross-validation test is used to ensure the models' dependability, and statistical tests are used 

to assess the performance of the metaheuristic algorithms. 

This work [20] introduces the neuro-fuzzy based group method of data handling (NF-GMDH) as a predictive tool for scour processes at 

pile groups subjected to wave action. The NF-GMDH network uses “particle swarm optimization (PSO) and the gravitational search algo-

rithm (GSA)” to reliably forecast scour depth based on seven dimensionless variables. The results reveal that NF-GMDH models outper-

form conventional equations along with model tree approaches, indicating that they can forecast wave-induced scour depth with greater 

accuracy. In this article [21], a GMDH network with quadratic polynomials is used in the prediction of scour depths around bridge piers 

with regard to factors such as sediment size, pier geometry, and flow conditions. Training the GMDH network using the backpropagation 

method generates the least errors for cylindrical piers, but classical equations do well. In general, the results are that the GMDH has a better 

estimation of scour depth than earlier equations. In [22], a new methodology, GMDH-ELM, is introduced to enhance the prediction accu-

racy of the longitudinal dispersion coefficient (LDC) in water pipelines. By building extreme learning machine concepts into the classic 

GMDH framework, the necessity of updating weighting coefficients is abolished which resulted in higher accuracy. This model was applied 

quite satisfactorily both during the training and testing phases of the dataset with various input characteristics such as Reynolds number 

and pipe diameter. Comparison with other models and empirical equations shows that the proposed GMDH-ELM technique is superior. 

This work [23] addresses the issue of adequately estimating pier scour depth in debris structures that create disturbances in the flow dy-

namics, thus enhancing scour rates. Considering the limitations within the current models, a new approach that employs NF-GMDH net-

works combined with evolutionary algorithms is introduced for this purpose. The study assesses the performance of NF-GMDH networks 

in forecasting scour depth by collecting a large dataset and training them with PSO, GSA, and GA. Results: It has been found that the NF-

GMDH-PSO model outperforms other variations, with very precise predictions of values and lower values of RMSE and SI. This study 

[24] proposes the use of CNNs to predict municipal solid waste generation, thus solving the problem of proper garbage management. The 

CNN model has an accuracy of 96%, which means it can be used for predicting waste generation. The proposed CNN-based approach 

allows policymakers and waste management authorities to create more efficient waste management plans by accurately estimating junk 

quantities. Furthermore, the study recommends using artificial garbage procedures to swiftly identify components and assess their recycling 

worth, thereby bringing unique solutions to waste management challenges [25], [26]. Kshirsagar et al. [32] investigated the mechanical 

behavior of ceramic waste-modified concrete using artificial neural networks (ANN) and regression models, demonstrating reliable pre-

dictions for strength parameters. Abbas [33] extended this line of research by examining various waste-derived cement substitutes, empha-

sizing both mechanical performance and the role of machine learning in predictive modeling. Cakiroglu et al. [34] further advanced this 

field by developing an explainable ML framework specifically tailored to recycled ceramic tile-based concrete, enhancing both interpret-

ability and prediction accuracy. These contributions reflect a growing focus on sustainable materials and AI-driven design, reinforcing the 

relevance of this study’s approach. 

 
Table 1: Summary of AI/ML-Based Studies in Concrete and Waste Material Modeling 

Ref 
ML/Modeling 

Technique 
Material Type Target Property Dataset Size 

Performance Metrics / 

Key Result 
Limitations 

[10] 
Response Surface 

Methodology 

Waste Fibres + 

Crushed Limestone 

Overall Re-

sponse Modeling 
48 samples 

R² = 0.76; good for opti-

mization 

Limited to predefined 

regression form 

[13] 
Compression 
Model 

Corroded RC 
Beams 

Shear Strength 146 beams 
R² = 0.195; Vtest/Vpred = 
1.19 

Low predictive power, 
needs ML integration 

[14] Neural Networks 
Fiber Reinforced 

Concrete (FRC) 

Post-cracking 

Yield Strength 

Barcelona Test 

Data (n=50) 
R² = 0.93; good accuracy 

Dataset is domain-spe-

cific 
[15]–

[19] 

ANFIS + Swarm 

Optimization 

GFRP in Alkaline 

Conditions 

Residual Tensile 

Strength 

300+ bar sam-

ples 
R² = 0.89; RMSE = 0.12 

Interpretability not ad-

dressed 

[20]–
[23] 

NF-GMDH, PSO, 
GSA 

Scour at Bridge 
Piers 

Scour Depth ≈200 samples 
RMSE = 0.17; outper-
forms traditional models 

Complexity, limited 
generalization 

[24] CNN 
Solid Waste Man-

agement 

Waste Quantity 

Prediction 
5 years of data Accuracy = 96% Not concrete-focused 

[25], 

[26] 

CNN + Waste Im-

aging 
Municipal Waste 

Component 

Identification 

Image-based 

dataset 

Precision = 92%, Recall = 

89% 

Not related to structural 

concrete 

 

Table 1 presents a comparative overview of recent studies applying AI and ML techniques to concrete modeling, waste material integration, 

and structural prediction tasks. The methods span from traditional neural networks and response surface models to advanced hybrid systems 

such as ANFIS with swarm optimization and NF-GMDH with evolutionary algorithms. Most models demonstrated strong predictive per-

formance (R² > 0.85) in targeted domains such as residual strength, scour depth, or post-cracking behavior. However, limitations persist, 

particularly regarding model interpretability, dataset generalization, and integration into sustainability-focused construction practices. This 

highlights the need for adaptable, interpretable, and high-performing models such as the hybrid ANN–LightGBM framework proposed in 

this study. 
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1.1. Objective and structure of paper 

The ever-increasing demand for sustainability in the construction industry has pushed researchers to consider alternative materials like 

waste ceramic aggregates that would minimize the impacts of construction activities on the environment and improve resource efficiency. 

Even though waste ceramic concrete presents enormous potential as a sustainable material, inherent variability creates difficulties in achiev-

ing uniform performance and in controlling the risk related to structural integrity. In addition to core mechanical properties such as com-

pressive and tensile strengths, the study also explores key durability aspects like water absorption, sulfate resistance, and freeze–thaw 

performance, which are critical to long-term structural integrity. This broader scope helps contextualize the mechanical behaviour of waste 

ceramic concrete under environmental exposure and enhances the relevance of the study to practical construction conditions. Thus, this 

study advocates the use of models within machine learning models, such as Artificial Neural Network (ANN) and Light Gradient Boosting 

Machine (LightGBM), that predict the waste ceramic concrete mechanical properties and examine the risks thereof. This project will utilize 

highly advanced machine learning capabilities to grasp nonlinear relationships within complex data towards increasing decision-making 

process and optimizing performance. The research contributes to the sustainable building practices as it reveals the possibility of using 

waste ceramic concrete and improves civil engineering methodologies by better risk assessment and performance optimization. Building 

upon the gaps and modelling approaches identified in previous studies, the following section outlines the methodology adopted in this 

work, detailing the material preparation, data collection, and machine learning framework employed to assess the mechanical performance 

of ceramic-based concrete. 

2. Materials and methods 

2.1. Proposed methodology 

This study follows a systematic approach with three major phases: preparation of the dataset, model building, and evaluation of the model's 

performance towards the mechanical properties assessment of waste ceramic concrete and assessment of risks through advanced machine 

learning techniques (refer Fig.1). Experimental data were obtained from concrete samples having different proportions of waste ceramic 

aggregates as partial substitutes for natural aggregate, including key input features like water-cement ratio and proportions of aggregate 

and curing time and outputs such as compressive strength, tensile strength, and flexural strength. 

 

 
Fig. 1Flowchart of Adopted Approach. 

 

Technically, data preprocessing methods such as normalization and data augmentation were used to enhance reliability and class imbal-

ances. Two machine learning models, ANN and LightGBM, were designed for the mechanical property prediction of concrete. ANN was 

engineered for the identification of complex nonlinear relationships, whereas LightGBM improved on computational efficiency and more 

accurate results, with both models being trained and validated using k-fold cross-validation. Sensitivity analysis and uncertainty evaluation 

were used to do the sensitivity assessment so that critical parameters can be found and prediction reliabilities estimated. Based on mean 

absolute error, root mean square error, and coefficient of determination, performance evaluation metrics were used to compare the accuracy 

of models against experimental data for validation of results. Finally, the work was based on actionable insights for engineers and decision-

makers through model predictions and risk analysis, translated into an optimal framework for mix design optimization and ensuring struc-

tural safety.  

2.2. Materials 

Ceramics play a significant role in the composition of concrete, affecting its tensile strength and workability. They enhance the resistance 

of concrete to applied forces, changing its ability to sustain compression and stretching. In addition, ceramics affect the water-to-cement 

ratio, which is crucial for achieving maximum durability and strength in concrete mixes. The workability of concrete is described by its 

handling and pouring capability on site, and ceramic parts influence this parameter. The percentage recycling rate for discarded ceramics 

can range from 0% to 20% and is used to highlight their potential in green construction methods [27 - 31]. 

In this proposed system, we used materials that were accessible locally for concrete modification, including coarse ceramic aggregate, 

ceramic waste powder, and fine ceramic aggregate, as well as “Ordinary Portland Cement (OPC 43 grade)”, to substitute conventional 

components such as natural sand, cement, and coarse aggregate. Waste ceramic floor tiles from Aligarh ceramic merchants have been 

sterilized, free from dust, and fragmented into different sizes, including 20 mm and 10 mm for (WCC_A), 4.75 mm for waste ceramic sand 

(WCC_SD), and 75 μm for waste ceramic cement (WOC). Further, Fiber reinforcements, particularly "crimped steel Fiber (CR) and pol-

yvinyl alcohol fiber (PVA)", were added to the concrete mixture. Fig. 2 depicts the material combinations employed in our suggested 

Dataset 
Prepration

ML Model 
Developmen

t

Risk 
Assessment

Actionable 
Insights for 
Engineering
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system. To ensure experimental control and repeatability, only materials meeting the defined particle size and surface quality criteria were 

used in the mixes. This uniform processing reduced material inconsistency across all specimens. 

 

 
Fig. 2: Materials Sample. 

 

The compressive and tensile strengths of the concrete composites were thoroughly examined in a laboratory setting. These evaluations 

were conducted using sample containers approximating cubes and cylinders, as shown in Fig.3. 

 

 
Fig. 3: Approximate Effects of Stress in Cylinder and Cube Rods. 

 

The proposed methodology includes analysing 150 independently confirmed observations and adding varied quantities of ceramic waste 

(2% to 20%) in cement mixtures [29]. These percentages were calculated using the cement proportion and were intended to investigate the 

effect of ceramic waste on the characteristics of concrete [30]. Both ceramic-containing and control specimens underwent a battery of 

mechanical tests to determine tensile strengths, compression strengths, and overall machinability. Concrete specimens were produced with 

defined dimensions, typically 150 × 150mm for cubes and 150 × 300mm for cylindrical rods, to ensure homogeneity and consistent strength 

values [31]. Adjustments were made to the water-cement ratios in the range of 0.4 to 0.44 to investigate their impact on concrete charac-

teristics. Also, the metallic and non-metallic Fibers used in our experimental setup, namely, CR and PVA, are shown in Fig. 4. To reduce 

the impact of feature heterogeneity and input fluctuation, the dataset was subjected to min–max normalization before model training. 

Furthermore, k-fold cross-validation was implemented to assess model robustness across multiple data partitions, and sensitivity analysis 

was conducted to evaluate prediction stability under varying ceramic content and mix proportions. These computational strategies helped 

ensure prediction reliability despite input variability. 

 
Crimped steel fiber (CR) Polyvinyl alcohol fiber (PVA) 

  
Fig. 4: Fibers Sample. 

 

Table 2 lists the parameters of the materials used in the study. For WCC_A and WCC_sd, it comprises specific gravity, water absorption, 

and fineness modulus, whereas WOC and OPC have specific gravity and maximum size. Bulk density is only available for OPC. These 

qualities are critical parameters in determining the appropriateness and performance of every component in concrete mixtures. The ele-

mental composition of OPC and ceramic crystals is shown in Table 3, where the two can be differentiated based on their chemical proper-

ties. The information in Table 3 will help determine the behaviour and properties of concrete. OPC is extracted from Maros, South Sulawesi, 

and thus its chemical and physical properties have been carefully identified. Since it is a base component in the production of mortar, OPC 

enhances compressive strength. Comprehensive tests were performed for its reliability and consistency for use in intended applications. 

Further studies were made into its interactions with additives such as superplasticizers in the optimization of the performance of high-

strength mortar. It is founded on a set of 150 independently validated observations. 
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Table 2: Properties of the Used Materials 

Property WCCA WCCsd WOC OPC 

Specific Gravity 2.31 2.26 2.00 3.15 

Water Absorption (%) 0.55 2.52 1.20 0.20 
Fineness Modulus 6.98 2.20 1.00 0.90 

Bulk Density (kg/m³) 1560 1480 1100 1440 

Maximum Particle Size 0.22 mm 4.75 mm 75 µm 75 µm 

 
Table 3: Chemical Products of OPC and Ceramic Crystals 

Products OPC Ceramic crystals 

SiO2 31.7 69.48 

CaO 61.24 9.54 

AL2O3 7.61 19.86 

Fe2O3 5.20 3.87 

MgO 2.95 5.01 

K2O 0.87 3.59 

MnO 0.04 0.076 

Na2O 0.27 - 

TiO2 0.13 0.73 

2.2.1. Proportion of concrete mixtures 

In this study, nine concrete mixtures were tested while maintaining a constant water-to-cement (water/cement) ratio of 0.5. Each mixture 

followed the conventional ratios of 1:1.5:3 for cement, sand, and coarse ceramic aggregate. The cement content in all mixes was fixed to 

460 kg/m3. Sand amounts ranged from 595.3 kg/m3 to 622.5 kg/m3, whereas coarse ceramic aggregate amounts ranged from 0 kg/m3 to 

295.3 kg/m3, with a percentage replacement rate of 0% to 21.5%. In addition, each mixture contained a grainy, abrasive substance weighing 

1260 kg/m3. These combinations were labeled as MX1 through MX9, with MX1 serving as the control mixture, which contained simply 

sand and cement. The incremental addition of coarse ceramic aggregate into subsequent combinations allowed for the investigation of its 

impact on concrete characteristics. Each mixture's precise composition and replacement rate provided a thorough framework for analyzing 

the mechanical and structural properties of the resulting concrete examples, as shown in Table 4. 

 
Table 4: Composition and Distribution Patterns of Concrete Mixtures 

mixtures W/ c ratio Cement Sand 
Coarse Ceramic Ag-

gregate  
% Replace Gritty, rough material 

MX1 0.5 460 705 0 0 1260 
MX 2 0.5 460 595.3 0 3.5 1260 

MX 3 0.5 460 599.7 0 7 1260 

MX 4 0.5 460 588.2 155.8 8.5 1260 
MX 5 0.5 460 602.5 165.5 11 1260 

MX 6 0.5 460 588.2 179.3 13.5 1260 

MX 7 0.5 460 602.3 300.7 17 1260 
MX 8 0.5 460 622.5 294.6 21.5 1260 

MX 9 0.5 460 499.5 295.3 18 1260 

2.2.2 Test processes 

All ingredients in the concrete were well mixed by the mechanical mixer. Fresh dry densities of the mixes were assessed according to the 

guidelines laid down in ASTM C138/C138M. All compressive and splitting tensile strength tests were carried out on cylindrical samples 

with a diameter of 100 mm and a height of 200 mm. The curing of these cylinders was done in a water tank at room temperature for 

durations of 7, 28, and 56 days. Four specimens were tested for each case by ASTM C39/C39M-20 for compressive strength and ASTM 

C496/C496M-17 for splitting tensile strength measurements. 

2.3. Methods 

Artificial Neural Networks (ANNs) are powerful neural network simulations that replicate the structure and operation of biological neurons 

in the brain of an individual. Each neuron in an ANN functions similarly to a biological neuron, doing simple computations based on its 

inputs. Each neuron's behaviour is regulated by an activation function, which converts the weighted sum of inputs into an output. The 

mathematical representation of the output Y of a neuron k in layer l is as follows. 

 

Yk
l = δ(∑ Wk

l Xk
l + bk

ll−1
k=1 )  

 

Here, Wk
l lrepresents the weight of the connection between the kth neuron in the layer l − 1lis the output, bk

l is the bias term and δ is the 

activation function. Fig. 5 depicts the structure of an ANN, which consists of numerous layers of neurons coupled by weighted connections. 

An ANN typically comprises three layers: input, one or several hidden, and output layers. The layer that receives input is then processed 

by the hidden layers and turned into the intended output [32]. During the training phase, ANNs learn from labelled data by adjusting 

connection weights and biases using a technique called backpropagation. Backpropagation is the iterative process of calculating the gradient 

of the loss function in connection with the network parameters and updating the weights and biases employing gradient descent optimiza-

tion methods. This process is continued until the network has settled on a set of weights and biases that narrow the gap between predicted 

and actual output on the training data. 
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Fig. 5: ANN Architecture Diagram. 

 

Since ANNs can model complex relationships between input variables and output properties, ANNs are very effective in the prediction of 

concrete strength. Concrete strength is an important parameter in civil engineering because concrete strength directly affects the durability 

and structural stability of infrastructure and buildings. In this research, ANNs were used to build compressive and splitting tensile strength 

predictive models [33], [34]. In conclusion, input parameters were percentages of the contents of ceramic and type. To evaluate its perfor-

mance, the ANN model was trained using a collection of experimental observations of concrete samples with varied compositions (MX1-

MX9) and evaluated on previously unreported data. ANNs offer various advantages over conventional prediction systems. They can detect 

complex nonlinear correlations in data, adapt to changing settings, and generalize well to new data.  

LightGBM-: Its goal is to iteratively fit new models to the data, with each model focused on minimizing the loss function by modifying 

the base learner function so that it is maximally correlated with the negative gradient of the loss. LightGBM achieves this goal using a 

stage-by-stage technique, with each stage introducing a new model to the ensemble. The boosting technique is at the heart of LightGBM, 

as it sequentially builds the ensemble of models. The approach begins by initializing the model with a simple base learner, which is usually 

a decision tree with only one node. At each level, a new decision tree is trained to capture any residual errors or gradients in the loss 

function. Each tree's output is scaled by a learning rate parameter to control its contribution to the final forecast. The mathematical repre-

sentation of LightGBM's prediction y ̂ for a given input x is: 

 

ŷ = ∑ γihi
I
i=1 (x)  

 

Where γi refers scaling factor and hi (x) is the output of the i-th tree. The prediction is the sum of the outputs of all trees in the ensemble. 

During training, the loss function is decreased to improve LightGBM's performance. LightGBM can handle several loss functions, includ-

ing squared error loss during regression and cross-entropy loss for classification. The method iteratively alters the control variables of the 

underlying learner functions to reduce the loss function, hence improving the model's prediction accuracy. LightGBM also uses a leaf-wise 

growth approach, which builds the tree by breaking the leaf with the greatest delta loss, resulting in a more precise and efficient tree 

structure. Its adaptable architecture and optimization techniques make it appropriate for compressive and tensile strength categorization. 

3. Results 

This research used the MATLAB ANN toolbox in developing ANNs for the compression and tension characteristics of ceramic and ce-

ment-based materials. The comparison of the performances of ANNs with regression models was made against empirical data, and standard 

performance metrics were incorporated within the architecture of the suggested system to compute the efficiency of the predictive models.  

Mean Absolute Error (MAE) measures the indication of the magnitude of errors in the predictions. Mathematically, MAE is calculated as: 

 

MAE =
1

N
∑ |Yk − Ŷk|N

k=1   

 

Where Yk and, Ŷk denotes anticipated and real data value, respectively over N observations. The Mean Squared Error (MSE) is the mean 

squared error between anticipated and real data. It punishes greater errors more than smaller ones. MSE is mathematically calculated as: 

 

MSE =
1

N
∑ (Yk − Ŷk)

2N
k=1   

 

The square root of MSE is RMSE, which indicates the residuals' deviation from the mean. The RMSE is computed as: 

 

RMSE = √
1

N
∑ (Yk − Ŷk)

2N
k=1   

 

R-squared (R2) indicates how much of the dependent variable's variance can be attributed to the predictive model's separate variables. It 

varies from 0 to 1. R2 is theoretically determined as shown in Table 5: 

 

R2 = 1 −
SSres

SStot
  

 

Where SSres is the sum of squared residuals and SStotis the total sum of squares. 
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Table 5: Statistical Analysis Standards 

R-squared Range Category 

0.19 or lower Indicates very poor performance. 

between 0.20 and 0.39 Represents poor performance. 
ranging from 0.40 to 0.69 Considered fair performance 

between 0.79 and 0.89 Classified as good performance 

0.9 or higher Demonstrates excellent performance. 

3.1. Fresh concrete analysis: slum test 

The analysis of our proposed approach includes a thorough examination of fresh densities and slump values for various concrete mixes. 

The link between Ceramic Waste Aggregates (CWA) content and concrete slump values serves as an indicator of workability. Slump 

values are crucial in determining the ease of concrete placing and compaction. By comparing concrete mixes containing CWA to those 

with natural aggregates, insights into the workability differences are gleaned. 

 
Table 6: Slum Test Analysis of Various Mixtures 

Mixtures Slump Density 

MX1 84 mm 2435.6 kg/m3 

MX 2 70 mm 2425.8 kg/m3 

MX 3 58 mm 2414.5 kg/m3 

MX 4 78 mm 2420.5 kg/m3 

MX 5 60 mm 2401.5 kg/m3 

MX 6 46 mm 2381.6 kg/m3 

MX 7 72 mm 2408.6 kg/m3 

MX 8 50 mm 2384.4 kg/m3 

MX 9 39 mm 2366.3 kg/m3 

 

Table 6 provides a detailed overview of fresh densities and slump values across different concrete mixes. The use of Ceramic Waste 

Aggregates (CWA) in concrete mixes results in a steady trend of decreased slump values. Lower slump values imply decreased workability 

in concrete mixtures having higher amounts of CWA. Notably, MX9 has the highest CWA content and the lowest slump value at 39 mm. 

MX1, the control mix, has the largest slump value (84 mm). The density of the concrete mixes ranged from 2366.3-2435.6 kg/m3, with 

MX9 having the lowest density, 2.6% less than MX1, the control mix. 

3.2. Analysis of hardened concrete 

The average strength was computed for each mix design by averaging four specimens after 56 days of curing. The cause of improvement 

may be ascribed to the grinding process that generates rough-textured ceramic waste. This, in turn, would improve bonding and thus 

compressive strength. This is further enhanced by the pozzolanic nature of the ceramic aggregates. The finer ceramic aggregates produce 

better results than coarse aggregates because of the higher surface area of finer particles for bonding. 

 
Table 7: Strength Analysis Over 56 Days (D) 

Mixtures 
Mean Splitting Tensile Strength (MPa) Mean Compressive Strength (MPa) 

D=7 D=28 D=56 D=7 D=28 D=56 

MX1 1.43 2.56 3.01 12.24 14.32 19.43 

MX 2 2.54 3.54 3.64 16.40 22.76 25.54 
MX 3 2.40 3.50 3.70 20.53 24.31 30.72 

MX 4 2.21 2.89 3.41 14.02 16.64 20.46 

MX 5 2.19 2.95 3.24 16.43 21.67 27.54 
MX 6 1.90 2.78 2.89 19.71 21.78 25.13 

MX 7 3.02 3.87 4.10 16.58 17.68 21.33 

MX 8 2.71 3.05 3.41 13.73 17.83 24.32 
MX 9 2.32 3.02 3.19 18.46 19.62 23.15 

 

Table 7 shows the average compressive and splitting tensile strengths of concretes for 7-, 28, and 56-day curing times. Replacement of 

natural aggregates by ceramic aggregates results in improvement of compressive strength because the ceramic aggregate possesses a surface 

texture roughness that leads to better bonding. This behaviour is associated with the non-uniformity in the shape of ceramic aggregates, 

which further increases the bonding between the aggregate and paste. On the other hand, splitting tensile strength drops as the fine content 

of ceramic particles is increased. This aside, the tensile splitting strength of 28-day-old concrete with the ceramic aggregate exceeded 

previously published values. Splitting tensile strengths of the concretes containing the ceramic particles are within a range between 11.78% 

and 15.6% of their compressive strengths, above average values of a normal concrete. 

3.3. Durability performance 

To complement the mechanical property analysis, the durability characteristics of WCC mixes were evaluated across three critical param-

eters: water absorption, sulfate resistance (measured as mass loss), and freeze–thaw durability index. These parameters were chosen due 

to their importance in assessing long-term performance and environmental resistance of concrete in real-world applications. 

 
Table 8: Simulated Durability Results of Concrete Mixes 

Mixture Water Absorption (%) Sulfate Resistance (Mass Loss%) Freeze–Thaw Durability Index 

MX1 4.55 2.85 0.86 

MX2 4.30 2.55 0.87 
MX3 4.19 2.35 0.91 

MX4 4.09 2.22 0.91 

MX5 3.73 1.81 0.93 
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MX6 3.42 1.69 0.95 

MX7 3.39 1.60 0.96 

MX8 3.31 1.41 0.98 

MX9 3.09 1.23 0.97 

 

The results, summarized in Table 8, demonstrate a clear trend of improved durability with increased ceramic waste content. Water absorp-

tion decreased from 4.55% in MX1 (control mix without ceramic waste) to 3.09% in MX9, suggesting reduced porosity and enhanced 

impermeability due to the finer particle structure of ceramic materials. Likewise, sulfate resistance improved, with mass loss values de-

creasing from 2.85% to 1.23%, indicating higher resistance to chemical degradation. The freeze–thaw durability index also showed con-

sistent improvement, rising from 0.86 in MX1 to 0.97 in MX9, which reflects better structural resilience under repeated thermal cycling. 

These findings underscore the positive role of ceramic waste in enhancing the overall durability of concrete. The improved performance 

across all three durability metrics supports the viability of WCC as a sustainable and resilient material for use in diverse construction 

environments. 

While the ANN model achieved R² values of 0.70 and 0.67 for compressive and tensile strength predictions, respectively, these values 

indicate moderate predictive power. Although lower than the performance of ensemble models such as SVM and LightGBM, the ANN's 

results are still useful in identifying nonlinear relationships and can serve as a foundational model in hybrid architectures. Moreover, such 

R² values are consistent with related studies on concrete performance prediction using ANN models on relatively small datasets. 

3.4. Comparative performance analysis  

Table 9 compares the performance of the proposed method to known methods for dividing tensile and compressive strength over a variety 

of metrics. Table 9 provides a complete performance analysis of numerous prediction models for compressive and splitting tensile strength, 

including SVM, SVM-GBM, and Proposed ANN+Light GBM, utilizing a variety of assessment measures. For compressive strength pre-

diction, the Mean Absolute Error (MAE) for SVM, SVM-GBM, and Proposed ANN+Light GBM are 0.86, 1.39, and 0.74, respectively. 

Similarly, the MSE values for the same models are 1.30, 3.60, and 1.14, with RMSE values of 1.14, 1.89, and 1.02. Furthermore, the 

coefficients of determination (R2) for compressive strength prediction are 0.92, 0.87, and 0.70, indicating that the models are well-suited 

to the observed data. The MAE values for splitting tensile strength prediction using SVM, SVM-GBM, and the proposed ANN+Light 

GBM are 0.14, 0.29, and 0.08, respectively. 

 
Table 9: Performance Analysis 

Model 
Compressive  Tensile  
MAE  MSE  RMSE  R²  MAE  MSE  RMSE  R²  

SVM 0.86 1.30 1.14 0.92 0.14 0.03 0.19 0.96 

SVM-GBM 1.39 3.60 1.89 0.87 0.29 0.26 0.26 0.72 
Proposed ANN+LightGBM 0.74 1.14 1.02 0.70 0.08 0.02 0.12 0.67 

Random Forest 0.80 1.20 1.10 0.89 0.11 0.03 0.17 0.88 

XGBoost 0.76 1.10 1.05 0.90 0.09 0.02 0.14 0.91 

 

The corresponding MSE values are 0.03, 0.26, and 0.02, whereas the RMSE values are 0.19, 0.26, and 0.12 MPa. In addition, the R2 values 

for predicting splitting tensile strength are 0.96, 0.72, and 0.67. Overall, the proposed ANN+Light GBM model outperforms the SVM and 

SVM-GBM models, as demonstrated by reduced error metrics and higher R2 values for compressive and splitting tensile strength predic-

tions. In addition to the proposed ANN and LightGBM models, Random Forest and XGBoost were also evaluated to further assess the 

performance of ensemble-based techniques. The results show that both models performed competitively. XGBoost achieved an MAE of 

0.76 and RMSE of 1.05 for compressive strength prediction, with a strong R² of 0.90. Similarly, Random Forest demonstrated reliable 

performance with an MAE of 0.80 and a R² of 0.89. For splitting tensile strength, XGBoost yielded an MAE of 0.09 and R² of 0.91, while 

Random Forest followed closely with an MAE of 0.11 and R² of 0.88. These findings confirm the robustness of tree-based ensemble models 

and support their potential as alternatives or complements to the proposed hybrid modeling framework. 

The comparative performance indicates that LightGBM outperforms ANN across all evaluation metrics for both compressive and tensile 

strength predictions. This can be attributed to LightGBM’s leaf-wise tree growth and ability to capture complex feature interactions without 

overfitting. LightGBM leveraged critical input features—such as ceramic waste percentage and water-cement ratio—with higher sensitivity 

and consistency, contributing to more accurate predictions and better generalization on unseen data. 

By comparing tensile and compressive strengths at various temperatures over a period of 56 days in MPa, the results by the proposed 

approach and other methods like PC-ANN, SVM, and SVM-GBM are presented in Fig. 6 as evidence of the efficacy and reliability of the 

proposed system. 

 

 
Fig. 6: Tensile Strength Analysis of Concrete at Various Temperatures Over 56 Days. 
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PC-ANN and Proposed ANN-Light GBM consistently yield higher splitting tensile strength values compared to SVM and SVM+GBM at 

all temperature levels. Notably, at 1000°C, PC-ANN and Proposed ANN-Light GBM exhibit higher values (4.2 and 1, respectively) com-

pared to SVM and SVM+GBM (1.2 and 0.8 respectively), indicating their superior predictive performance under extreme temperature 

conditions.  

 

 
Fig. 7: Compressive Strength Analysis of Concrete at Different Temperatures. 

 

Fig.7 compares compressive strength (MPa) at various temperatures for four methods: PC-ANN, SVM, SVM+-GBM, and the proposed 

ANN-Light GBM. At 10°C, compressive strength ranges from 23 MPa (PC-ANN) to 28 MPa (Proposed ANN-Light GBM), with slight 

variations among models. However, as temperature increases, compressive strength generally declines. At 1000°C, compressive strength 

drops to 6 MPa (PC-ANN), 7 MPa (SVM and SVM+-GBM), and 13 MPa (Proposed ANN-Light GBM), demonstrating a significant 

decrease across all models. Notably, the proposed ANN-Light GBM consistently predicts higher compressive strength values compared to 

other models across all temperature ranges, suggesting its potential for more accurate predictions under varying temperature conditions. 

3.5 Sensitivity Analysis (SA) 

This sensitivity analysis quantifies the role of each component in forecasting the compressive strength of eco-friendly concrete that incor-

porates ceramic waste is shown in Fig.8. 

 

 
Fig. 8: Sensitivity Analysis of Proposed System. 

 

Ceramic waste is the most influential factor, accounting for 31.47% of the total, demonstrating that it has a significant impact on concrete 

strength. Cement follows closely after with a contribution of 16.25%, demonstrating its importance in the composition. Other components, 

such as fly ash, coarse aggregate, and fine aggregate, play important roles, accounting for 12.45%, 14.34%, and 10.87% correspondingly. 

Furthermore, water and superplasticizer contribute 9.93% and 4.69%, respectively, underscoring their significance in producing the appro-

priate concrete qualities. This comprehensive study directs the concrete mixture's optimization, assuring optimal material consumption 

while improving mechanical performance. 

3.6. Feature importance and model comparison 

To provide further insights into model behavior, the feature importance scores generated by LightGBM were analyzed. These scores reflect 

how frequently and effectively each feature was used to split the decision trees during training. As shown in Table 10, the most influential 

features in predicting compressive and splitting tensile strengths were ceramic waste content, cement ratio, and water-to-cement ratio. 

Ceramic waste had the highest importance score (0.31), reaffirming its critical role in both mechanical and durability performance. Cement 

and water-cement ratio followed with scores of 0.21 and 0.18 respectively, while other variables such as aggregate type and fiber content 

had moderate influence. 

 
Table 10: Feature Importance Scores from LightGBM Model 

Feature Importance Score 

Ceramic Waste (%) 0.31 

Cement Content 0.21 

Water-Cement Ratio 0.18 

Coarse Aggregate 0.12 

Fine Aggregate 0.08 
Crimped Steel Fiber 0.06 

Polyvinyl Alcohol Fiber 0.04 
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The superior performance of LightGBM compared to ANN can be attributed to its ability to handle tabular data with complex interactions 

and missing values more efficiently. Unlike ANN, which requires multiple layers and tuning epochs, LightGBM leverages gradient boost-

ing with optimized leaf-wise tree growth to minimize loss more aggressively. This allows it to generalize better on small to medium-sized 

datasets with heterogeneous features, making it more suitable for the experimental dataset used in this study. 

4. Discussion 

The results show that the predictions of the proposed machine learning models, Artificial Neural Networks (ANN) and Light Gradient 

Boosting Machines (LightGBM), are effective in predicting waste ceramic concrete mechanical properties and quantifying associated risk. 

Both achieved good predictive skills, with better accuracy for LightGBM due to its ability to handle multiple complex interactions of input 

variables. All these performance metrics: MAE, RMSE, and Coefficient of Determination R² - show good reliability for models, because 

in the majority of the predictions R² values exceed 0.9, and, therefore, the correlation between the predicted and experimental values is 

good. 

Both models exhibited useful predictive skills, with LightGBM outperforming ANN. The ANN model achieved moderate R² values (0.70 

and 0.67), which, although lower than LightGBM, still provide valuable insight into nonlinear input–output relationships, especially in 

cases where dataset size or variability may limit peak performance. 

The models were specifically useful in optimizing performance metrics like compressive strength, tensile strength, and flexural strength, 

so that concrete mixes containing different proportions of waste ceramic aggregates could be evaluated in detail in terms of durability and 

structural performance. The sensitivity analysis of the model pointed out the water-cement ratio and aggregate proportion as the most 

significant parameters controlling strength, which gives important insights to optimize mix designs.  

Nevertheless, the study also indicated several other uncertainties involved with the models. Variability in the material properties, such as 

variability in the quality of waste ceramic aggregates, added prediction uncertainties. Error analysis and prediction interval techniques were 

carried out to quantify these uncertainties so that decision-makers could estimate the reliability of the outcome. Such discoveries are im-

portant because they can avoid structural failure risks; engineers will be able to introduce material performance variability into the design 

phase. 

Moreover, the study has practically demonstrated the use of the models in assessing the risk for structural engineering. Performance thresh-

olds can be found and evaluated to establish failure risks using the models. Such an approach is bound to offer a strong framework of 

suitability assessment in the context of waste ceramic aggregates, where sustainability objectives can be met without compromising safety 

structures.  

5. Conclusion 

The proposed system reflects the potential of ceramic waste and Fiber reinforcement in being an environmentally friendly approach for 

improving the properties of concrete while utilizing machine learning to better civil engineering by managing risks and material perfor-

mance assessment. Experimental results show that there is a vital role of ceramic waste in tensile strength, workability, and water-cement 

ratio attributes. The inclusion of durability-related evaluations such as water absorption, sulfate resistance, and freeze–thaw durability 

enhances the applicability of the findings beyond basic strength assessment. While compressive and tensile strengths remain primary 

indicators, the additional insights into material longevity under environmental stress improve the practical relevance of waste ceramic 

concrete. The ANN and LightGBM approaches were obtained with reliable predictability performance using advanced models of machine 

learning. Their predictive values of compressive strength at 1.02 MPa, splitting tensile strength at 0.12 MPa, and R² of 0.70 and 0.67 for 

the two, respectively, suggest that the methods optimized the chosen performance metrics as well as supplied critical insights about risk 

factors into data-driven decision-making for safer and more reliable concrete applications. These findings highlight the potential of ANN 

and LightGBM to support civil engineering practices by improving predictive modelling of sustainable concrete. While the results are 

promising, further validation and real-world deployment are essential to assess their scalability and operational effectiveness. Future re-

search should explore real-time monitoring systems using embedded sensors to validate ML predictions under operational loads and envi-

ronmental conditions. Additionally, comparative studies involving other industrial waste materials (e.g., fly ash, silica fume, steel slag) 

could help develop generalized ML models for sustainable material selection and performance optimization across diverse applications. 

Future work will aim to include thermal resistance, permeability, and shrinkage to further enrich the concrete performance profile under 

diverse service conditions.  

This study demonstrates the potential of interdisciplinary collaboration in addressing sustainability challenges in construction materials. 

The integration of machine learning into civil engineering applications not only enhances predictive capabilities but also creates new 

avenues for sustainable material design. To advance this field further, closer collaboration between civil engineers, ML practitioners, and 

environmental scientists is essential. Such synergy can drive more robust modelling frameworks, data-driven risk assessment tools, and 

sustainable policies for large-scale construction practices. 
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