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Abstract 
 

Effective monitoring of paralyzed individuals is crucial for ensuring their safety and well-being, particularly in detecting falls and abnormal 

postural states. This research proposes a Particle Swarm Optimization (PSO)-driven Deep Maxout Network (DMN) to enhance the accuracy 

and efficiency of human posture recognition. The proposed system utilizes RGB images from the Fall Detection Dataset, which are 

preprocessed through resizing, normalization, data augmentation, and bounding box transformations. The DMN model, enhanced with 

Maxout activation, is employed for robust feature extraction, ensuring superior discrimination of postural states. Additionally, PSO is 

integrated for hyperparameter optimization, dynamically fine-tuning parameters to improve classification performance. The optimized 

DMN model achieved an accuracy of 96.4%, outperforming conventional classifiers. Furthermore, PSO-driven optimization significantly 

reduced computational complexity, ensuring faster convergence and improved generalization. Comparative analysis shows that the opti-

mized DMN exhibits a lower inference time (6.1 ms) than traditional models. Additionally, ROC-AUC analysis yields a score of 0.98, 

highlighting the model’s strong discriminative capability in distinguishing postural states. The proposed PSO-DMN framework presents a 

reliable and efficient approach for paralyzed person monitoring, offering real-time posture recognition with high accuracy. The system’s 

ability to detect falls, classify different postural states, and operate efficiently in real-time settings makes it a promising solution for 

healthcare applications, particularly in home and assisted-living environments. 

 
Keywords: Particle Swarm Optimization (PSO); Deep Maxout Network (DMN); Posture Recognition; Fall Detection; Human Activity Monitoring; 

Healthcare AI; Real-Time Classification; Hyperparameter Optimization. 

1. Introduction 

Paralysis is a critical medical condition that affects millions of individuals worldwide, severely impairing their mobility and independence 

[1]. It can result from various causes such as spinal cord injuries, stroke, neurological disorders, and traumatic brain injuriesBecause para-

lysed patients are more likely to experience complications, they need to be continuously monitored to ensure their safety and wellbeing 

[2]. Traditional caregiving methods involve manual supervision, which is labor-intensive, inefficient, and lacks real-time responsiveness. 

Integrating artificial intelligence (AI) and deep learning in healthcare has provided innovative solutions for intelligent patient monitoring, 

significantly improving the efficiency and accuracy of detecting critical postural changes and abnormal conditions in paralyzed individuals. 

With the advent of computer vision and sensor-based monitoring systems, automated posture detection has gained significant attention [3]. 

Wearable sensors, vision-based systems, and hybrid monitoring frameworks are increasingly used to track patient movements and alert 

caregivers in case of emergencies. However, these systems still face challenges related to data reliability, real-time processing, and gener-

alization across diverse environments. Deep learning models, particularly Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs), have shown promising results in human activity recognition, but they require large datasets and precise hyperparameter 

tuning to reach optimal performance [4]. To address these challenges, an optimized deep learning approach that enhances classification 

accuracy while reducing computational costs is necessary. 

Several research studies have explored deep learning-based approaches for human activity recognition and patient monitoring. CNNs have 

been extensively applied for image-based posture classification, leveraging their capability to extract spatial features effectively. For in-

stance, ResNet[5], VGGNet [6], and EfficientNet [7] have been employed for recognizing human postures in medical applications. 

http://creativecommons.org/licenses/by/3.0/
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However, traditional CNNs suffer from vanishing gradient problems and require significant computational resources. Additionally, many 

CNN-based approaches fail to generalize well across different lighting conditions, backgrounds, and patient variations, leading to potential 

misclassifications. 

To overcome CNN’s limitations, Long Short-Term Memory (LSTM) networks and hybrid CNN-LSTM models have been introduced for 

sequential data processing. These models can effectively capture temporal dependencies from wearable sensor data such as accelerometers 

and gyroscopes. Studies have demonstrated that LSTMs can improve recognition accuracy by considering motion patterns over time. 

However, LSTMs require careful hyperparameter tuning and often struggle with long training times due to their recurrent nature. Addi-

tionally, their dependency on large labeled datasets makes real-world deployment challenging, as collecting and annotating medical posture 

data is resource-intensive [8]. 

Optimization techniques have been widely adopted to improve deep learning models in healthcare applications. Genetic Algorithms (GA), 

Simulated Annealing (SA), and Bayesian Optimization (BO) have been utilized for tuning hyperparameters and feature selection [9]. 

However, these methods often get trapped in local minima, reducing their efficiency in finding globally optimal solutions. Particle Swarm 

Optimization (PSO) has emerged as a promising alternative due to its ability to efficiently explore the search space and converge towards 

optimal solutions faster than traditional optimization methods. PSO has been successfully applied in hyperparameter tuning for CNNs and 

RNNs, achieving significant improvements in classification accuracy while reducing training time. 

Existing research also highlights the importance of integrating Maxout activation functions in deep learning models to mitigate overfitting 

and enhance feature learning. Maxout is particularly beneficial for deep networks as it dynamically selects the most informative features, 

reducing the risk of neuron saturation. Despite its advantages, Maxout has not been widely explored in human activity recognition tasks, 

especially for paralyzed patient monitoring. Studies have primarily focused on ReLU-based activation functions, which suffer from dying 

neurons and gradient-related issues. Combining Maxout with PSO for hyperparameter tuning can potentially enhance the robustness of 

deep learning models in real-world healthcare applications. 

Another critical limitation of existing systems is their real-time deployment feasibility. Many models achieve high accuracy in controlled 

environments but fail to generalize when deployed in smart healthcare settings. Computational efficiency, power consumption, and infer-

ence time are major bottlenecks that limit the real-time usability of deep learning-based monitoring systems. Additionally, edge computing 

integration remains an open challenge, as deploying deep models on low-power devices like Raspberry Pi or NVIDIA Jetson requires 

lightweight architectures with optimized hyperparameters. Addressing these issues is crucial for the effective implementation of AI-driven 

patient monitoring systems in clinical and home environments. 

Despite significant progress in deep learning-based posture recognition, several challenges remain unaddressed, including high computa-

tional cost, hyperparameter tuning complexity, real-time performance limitations, and model generalization issues. To overcome these 

challenges, this research proposes a Particle Swarm Optimization-Driven Deep Maxout Network (PSO-DMN) for effective monitoring of 

paralyzed persons. The proposed model integrates the Deep Maxout Network (DMN) to enhance feature learning while leveraging Particle 

Swarm Optimization (PSO) for optimizing hyperparameters such as the number of neurons, learning rate, dropout rate, and batch size. The 

UP-Fall Detection Dataset is used for training and validation, incorporating both RGB images and sensor data to create a multimodal 

monitoring system. The proposed model aims to improve classification accuracy, reduce training time, and enable real-time patient moni-

toring through deployment on edge computing devices. This research makes the following key contributions: 

• The proposed approach integrates Maxout activation with PSO-based hyperparameter optimization to enhance classification accu-

racy in human posture recognition. 

• The system effectively processes both RGB images and IMU sensor data, ensuring robust feature extraction from multiple data 

sources. 

• PSO is employed to fine-tune DMN hyperparameters, reducing computational complexity and improving the model's generalization 

ability. 

• The proposed model is compared with existing CNN, LSTM, and MLP models. 

The rest of the paper is structured as follows: Section 2 gives the literature review provides an in-depth analysis of existing research on 

deep learning-based posture recognition and optimization techniques. Section 3 shows the methodology presents the proposed PSO-driven 

Deep Maxout Network, detailing data preprocessing, feature extraction, and optimization strategies. Section 4 explores the experimental 

setup and results, discusses dataset details, training configurations, and evaluation metrics. Section 5 explores the conclusion, summarizes 

future work, the contributions, and outlines potential directions for further research. 

2. Related works 

The study focuses on acquiring and preprocessing EEG signals to generate a p-channel EEG signal dataset comprising p-dimensional 

signals [10]. This dataset is then normalized and used as input for a convolutional neural network, with the corresponding image instruction 

category serving as the output for the last layer. To enhance the efficiency of the deep learning model, a PSO is employed to optimize and 

adjust the convolutional neural network, mitigating issues such as local optimization, low efficiency, and the need for prior knowledge in 

manual model adjustments. The optimized model is further utilized for controlling various assistive devices, such as robotic arms and 

exoskeletons, facilitating multi-target motion assistance [11]. 

The study used a modified particle swarm optimisation with effective guides (MPSOEG) with an optimal guide creation (OGC) module 

[12], [13] that produces two kinds of exemplars: a global exemplar to guide the swarm towards promising solution regions and a unique 

local exemplar for each particle to escape from local or non-optimal solutions, effectively balancing exploration and exploitation. The 

performance evaluation of the proposed model was carried out using 25 scalable benchmark functions with a dimensional size of D = 50. 

These functions were classified into basic, shifted, complex, and hybrid functions, and their formulas, feasible search ranges, and global 

minimum fitness values were described in detail. 

The study utilized the BCI Competition IV dataset, which includes EEG data collected from participants engaged in motor imagery tasks. 

This dataset was aimed at enhancing stroke rehabilitation outcomes. Particle Swarm Optimization (PSO) was integrated into these models 

to improve classification accuracy of motor imagery tasks, demonstrating a significant enhancement in performance and providing a per-

sonalized rehabilitation experience for stroke patients [14]. The optimized models provide a robust framework for developing advanced 

rehabilitation systems, improving accuracy in motor imagery classification, and offering tailored rehabilitation approaches. 

The study also explores the application of the PSO-PINN algorithm, which utilizes Particle Swarm Optimization (PSO) for training Phys-

ics-Informed Neural Networks (PINNs). This approach addresses convergence challenges associated with traditional gradient descent 

methods when solving partial differential equations (PDEs) with irregular solutions [15], [26]. Performance evaluation of the PSO-PINN 
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algorithm was conducted using classical ODE and PDE benchmarks, demonstrating its superior accuracy and ability to quantify prediction 

uncertainty through sample variance. 

A novel healthcare system integrating a touch sensor interface and Node MCU ESP 8266 with the Blynk app is proposed to assist individ-

uals with paralysis. This system enables users to communicate with caregivers by touching designated sensor areas corresponding to spe-

cific coded messages, thereby improving real-time emergency response and overall quality of care [16]. 

The study also looks at how a radial basis function neural network (RBFNN) can be trained using Local Field Potential (LFP) data from 

the subthalamic nucleus (STN) of Parkinson's disease patients. To confirm that the network can predict the onset of tremors, electromyo-

graphic (EMG) signals from the forearm were recorded concurrently with LFPs [17], [27]. The PSO-optimized RBFNN demonstrated a 

reduction in computational overhead while maintaining high accuracy in tremor detection. 

The study used a dataset acquired by controlled colon distension in rats that had undergone spinal cord surgery to detect Autonomic 

Dysreflexia (AD). With a high precision rate of 95.2% and an average classification accuracy of 93.9%, the dataset was carefully selected 

to train a deep neural network (DNN) architecture for AD monitoring. With a low false-negative rate and an average F1 score of 94.4%, 

the system showed strong performance, guaranteeing accurate detection of AD events [18]. 

Rehabilitation technologies were also explored, with studies examining robotic platforms such as DIAGNOBOT, which facilitates wrist 

and forearm rehabilitation through flexion-extension and pronation-supination movements [19]. Experiments on healthy subjects demon-

strated its effectiveness in therapeutic exercises. Additionally, wearable systems based on reaction wheels were used to provide balance 

biofeedback, aiding in rehabilitation for individuals with motor impairments. 

Further advancements in assistive robotics were highlighted, including real-time gait phase estimation systems validated through treadmill 

walking data, cloud robotics approaches for elderly care, and optimal feedback control methods for sit-to-stand transfers in aged individuals 

[20]. The collected research underscores the growing role of robotics and AI-driven technologies in rehabilitation and assistive healthcare, 

offering innovative solutions for enhanced patient care and recovery. Though deep learning and human activity detection have come a long 

way, there are still some issues that remain when it comes to monitoring paralyzed folks. First, although real-world medical data, especially 

those involving paralyzed patients, is restricted in quantity and diversity—a key obstacle for generalization, current models often depend 

on large-scale datasets. Most traditional models, second, are rather computationally complicated and take a long time to train, which im-

pedes their use in real-time healthcare applications, particularly on edge devices with constrained processing capacity. Third, especially in 

deeper architectures, typical activation functions like ReLU are susceptible to vanishing gradient problems and may lead to unsatisfactory 

feature learning. Often ineffective and subject to local minima, manual hyperparameter adjustment makes it challenging to get the best 

performance. At last, the use of single-modality RGB pictures without depth or sensor fusion restricts resilience in different lighting situ-

ations, occlusions, and real-world settings. By suggesting a Maxout-activated deep network improved by Particle Swarm Optimization for 

dynamic hyperparameter tuning and effective posture categorization using a lightweight architecture fit for real-time monitoring, this work 

tackles these issues. 

3. Methods and materials  

This research introduces a Particle Swarm Optimization-Driven Deep Maxout Network (PSO-DMN) for effective monitoring of paralyzed 

persons using the UP-Fall Detection Dataset. The Deep Maxout Network (DMN) enhances feature extraction, while Particle Swarm Opti-

mization (PSO) optimizes hyperparameters to improve classification accuracy. Extensive experiments evaluate the model’s performance 

against existing CNN, LSTM, and MLP approaches. 

3.1. Dataset description 

The Fall Detection Dataset from Kaggle [21] is a custom-built dataset designed for human activity recognition and fall detection. It consists 

of labeled images categorized into three key activities: Fall Detected, Walking, and Sitting, and it is shown in Fig.1. The dataset is structured 

into training and validation sets, ensuring a balanced approach for model training and evaluation. 

 

   
Fig. 1: Sample Images from the Fall Detection Dataset. 

 

Each image is annotated with bounding boxes that specify the location of the detected individual and their respective activity label. The 

labeling process was performed using MakeSense.ai, a web-based annotation tool, where bounding boxes were manually assigned to indi-

viduals in the images. The dataset is structured as in fig.2: 

 
(A) (B) 

  
Fig. 2: Fall Detection Dataset (A) Class Distribution (B) Training and Validation Images. 
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3.2. Data preprocessing 

Effective data preprocessing is essential for ensuring the robustness and accuracy of deep learning models. The Fall Detection Dataset 

consists of RGB images annotated with bounding boxes, requiring several preprocessing steps before training the Particle Swarm Optimi-

zation-Driven Deep Maxout Network (PSO-DMN). This section details the key preprocessing techniques applied, including image resizing, 

normalization, data augmentation, and label encoding. 

3.2.1. Image resizing and normalization 

Deep learning models require fixed input dimensions, making image resizing a critical step. All images in the dataset are resized to a 

uniform resolution (H, W, C), ensuring consistency. The resizing transformation is represented as: 

 

I′ = Resize(I, H, W)                                                                                                                                                                                       (1) 

 

Where I is the original image, and I is the resized image with height H and width W. 

After resizing, pixel values are normalized to scale intensities within a fixed range [22], typically [0,1] or [−1,1], which accelerates training 

and prevents numerical instability. Normalization is performed using min-max scaling: 

 

In =
I′−Imin

Imax− Imin
                                                                                                                                                                                                (2) 

 

Where In represents the normalized image, and Imin and Imax are the minimum and maximum pixel values, respectively. 

3.2.2. Data Augmentation 

To enhance model generalization and prevent overfitting, data augmentation techniques are applied, including rotation, flipping, brightness 

adjustment, and random cropping. Table 1 shows the Comparison of Original and Augmented Images. These transformations can be math-

ematically formulated as follows: 

 

Irot(x′, y′) = I(xcos θ − ysin θ, xsin θ + ycos θ)                                                                                                                                      (3) 

 

Where (x,y) are original pixel coordinates and (x′,y′) are transformed coordinates. 

 

Iflip(x, y) = I(W − x − 1, y)                                                                                                                                                                          (4) 

 

Where W is the image width. 

 

Iadj = αIn + β                                                                                                                                                                                                (5) 

 

Where α controls contrast and β adjusts brightness. 

These augmentation techniques help improve the robustness of the model by simulating real-world variations in lighting, orientation, and 

motion. 

 
Table 1: Comparison of Original and Augmented Images 

Augmentation Technique Original Number of Images Number of Augmented Images Total Number of Images After Augmentation 

Original Dataset 485 350 835 

3.2.3. Label encoding and bounding box transformations 

Each image in the dataset has corresponding bounding box annotations, which include the object class (Fall Detected, Walking, Sitting) 

and the bounding box coordinates (x, y, w, h) [23]. To ensure compatibility with deep learning models, the bounding boxes are normalized 

as follows: 

 

xn =
x

W
, yn =

y

H
, wn =

w

W
, hn =

h

H
                                                                                                                                                                (6) 

 

Where (xn, yn, wn, hn) are the normalized coordinates, and W, H are the image width and height, respectively. 

Additionally, class labels are converted into a numerical format using one-hot encoding: 

L = [l1, l2, l3]                                                                                                                                                                                                  (7) 

 

Where l1, l2, l3 represent binary indicators for Fall Detected, Walking, and Sitting, respectively. 

3.2.4. Class balancing 

Imbalanced datasets can bias models towards the majority classes. To address this, the Synthetic Minority Over-sampling Technique 

(SMOTE) is applied to generate synthetic samples for underrepresented classes. The SMOTE algorithm works by computing synthetic 

samples along the vector between a minority class sample X and one of its nearest neighbors XNN: 

 

Xsynthetic = X + λ(XNN − X), λ ∼ U(0,1)                                                                                                                                                     (8) 

 

Where λ is a random number sampled from a uniform distribution. This ensures better class balance in training data. 
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3.3. Proposed methodology 

The proposed framework employs a Particle Swarm Optimization (PSO)-Driven Deep Maxout Network (DMN) for the effective monitor-

ing of paralyzed persons, and it is shown in fig.3. The approach consists of several stages, including image preprocessing, feature extraction 

using DMN, and hyperparameter optimization using PSO. The integration of PSO enhances the network's ability to fine-tune hyperparam-

eters dynamically, leading to improved accuracy and robustness in recognizing postural states. The proposed system takes real-world 

images from the Fall Detection Dataset, processes them through a structured pipeline, and classifies the images into predefined categories 

such as "Fall Detected," "Walking," and "Sitting." This method ensures efficient and accurate monitoring, which is crucial in healthcare 

applications for paralyzed individuals. 

 

 
Fig. 3: Workflow of the Proposed Methodology. 

3.3.1. Feature extraction using deep maxout network (DMN) 

Feature extraction plays a crucial role in the accurate classification of postural states in paralyzed person monitoring systems. The Deep 

Maxout Network (DMN) is employed to extract deep hierarchical features from the input images, allowing for robust representation learn-

ing and it is shown in fig.4. Unlike conventional activation functions, such as ReLU, Sigmoid, and Tanh, which introduce non-linearity 

through fixed mathematical formulations, Maxout activation dynamically selects the most informative features [24-25]. This unique prop-

erty enables DMN to achieve superior feature discrimination, especially in complex classification tasks like fall detection. 

The core concept of Maxout Networks lies in the Maxout activation function, which is defined as: 

 

f(x) = max (w1
Tx + b1, w2

Tx + b2, . . . , wk
Tx + bk )                                                                                                                                      (9) 

 

Where x represents the input feature vector, w1, w2,...,wk are the weight parameters, b1, b2,...,bk are bias terms, and k is the number of 

feature maps in a given layer. 

Unlike ReLU, which outputs max (0, x), Maxout generalizes this concept by taking the maximum over multiple affine transformations. 

This ensures that the most dominant feature representation is selected at each layer, effectively handling vanishing gradient issues and 

improving feature learning. 

 

 
Fig. 4: Architecture of the DMN. 

3.3.2. DMN-based convolutional feature extraction 

Given an input image I of dimensions H×W×C (Height, Width, Channels), the feature extraction process using DMN consists of the 

following steps: 

The input image undergoes a convolution operation to extract local spatial features. The convolution operation is mathematically expressed 

as: 

 

Fij
(l)

= ∑ ∑ Wmn
(l)

nm I(i+m)(j+n) + B(l)                                                                                                                                                           (10) 

 

Where Fij
(l)

 represents the feature map at layer l, Wmn
(l)

 denotes the convolution filter, I(i+m)(j+n) is the input patch, and B(l) is the bias term. 

After convolution, the extracted features are processed through Maxout units to select the most prominent activations: 

 

Z(l) = max
1≤k≤K

{Wk
(l)

F(l) + Bk
(l)

}                                                                                                                                                                      (11) 

 

Here, K represents the number of parallel feature maps, ensuring that the most significant features are retained. 
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To improve convergence and stabilize training, batch normalization is applied after Maxout activation: 

 

Ẑ(l) =
Z(l)−μ 

σ+ϵ
                                                                                                                                                                                                 (12) 

 

Where μ and σ are the batch mean and variance, respectively, and ϵ is a small constant to prevent division by zero. 

The extracted features undergo Max-Pooling to reduce dimensionality while preserving essential spatial information: 

 

Pi,j
(l)

= max
m,n

Z(i+m)(j+n)
(l)

                                                                                                                                                                                (13) 

 

This ensures that only the most dominant features are retained, enhancing the model’s computational efficiency. 

The final extracted feature vector is flattened and passed through fully connected layers to produce classification scores. The output prob-

ability distribution over class labels is computed using Softmax activation: 

 

p( y = c ∣∣ x ) =
ezc

∑ e
zj

j
                                                                                                                                                                                    (14) 

 

Where zc represents the logits corresponding to class c, ensuring that the sum of probabilities across all classes equals 1. Algorithm 1 

shows the feature extraction using Deep Maxout Network (DMN). 

 
Algorithm 1: Feature Extraction Using Deep Maxout Network (DMN) 

Input: Image I, pre-trained DMN model Output: Feature vector F 

1) Preprocess the input image (resize, normalize, and augment). 

2) Apply convolutional layers to extract spatial features. 
3) Pass feature maps through Maxout activation for optimal feature selection. 

4) Normalize features using batch normalization. 

5) Apply pooling layers to reduce spatial dimensions while preserving key features. 
6) Flatten the pooled feature maps into a one-dimensional vector. 

7) Pass the feature vector through fully connected layers for classification. 

8) Apply Softmax activation to obtain class probabilities. 
9) Return the final feature vector for use in classification and monitoring. 

3.3.3. Hyperparameter optimization using particle swarm optimization (PSO) 

Hyperparameter tuning plays a crucial role in enhancing the performance of deep learning models. In this study, we employ Particle Swarm 

Optimization (PSO) to optimize the hyperparameters of the Deep Maxout Network (DMN), ensuring improved classification accuracy for 

paralyzed person monitoring. PSO, inspired by the collective behavior of birds flocking or fish schooling, efficiently searches the hyperpa-

rameter space to find an optimal solution. 

PSO optimizes a function by iteratively improving candidate solutions (particles) based on their personal best (pbest) and global best 

(gbest) positions. Each particle in the swarm updates its velocity and position using the following equations: 

 

vi
(t+1)

= wvi
(t)

+ c1r1(pbesti − xi
(t)

) + c2r2(gbesti − xi
(t)

)                                                                                                                     (15) 

 

Where vi
(t+1)

 is the updated velocity of particle i at iteration t+1, w is the inertia weight controlling the impact of the previous velocity, 

c1 and c2 are acceleration coefficients for personal and global learning, r1 and r2 are random numbers in [0,1], pbesti is the personal best 

position of particle i, gbesti is the global best position in the swarm, xi
(t)

Is the current position of particle i. 

 

xi
(t+1)

= xi(t) + vi(t + 1)                                                                                                                                                                           (16) 

 

Where xi
(t+1)

 is the new position of particle i at iteration t+1. 

The fitness function evaluates the classification performance of DMN using a specific hyperparameter configuration. The objective func-

tion is defined as: 

 

F = α ⋅ Accuracy − β ⋅ Complexity                                                                                                                                                            (17) 

Where accuracy is the classification accuracy of DMN, Complexity represents the computational cost, α and β are weight factors to balance 

accuracy and efficiency. 
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Fig. 5: Process of Hyperparameter Optimization Using Particle Swarm Optimization (PSO). 

3.3.4. PSO-based hyperparameter optimization for DMN 

In the optimization of hyperparameters for the Deep Maxout Network (DMN), each particle in the Particle Swarm Optimization (PSO) 

algorithm represents a candidate solution defined by a set of hyperparameters, represented as P={η,λ,d,b} where η is the learning rate, λ is 

the regularization parameter, d is the dropout rate, and b is the batch size. The process begins with the random initialization of particles 

within the hyperparameter space to ensure diversity in exploration. 

Once initialized, the fitness function is evaluated for each particle by training the DMN using the respective hyperparameter values and 

measuring the classification accuracy. This accuracy serves as the performance metric to guide the optimization process. The position and 

velocity of each particle are updated iteratively according to the PSO update equations: 

 

vi
(t+1)

= wvi
(t)

+ c1r1(pbesti − xi
(t)

) + c2r2(gbesti − xi
(t)

)                                                                                                                     (18) 

 

This process is repeated iteratively until a predefined stopping criterion is met, such as reaching the maximum number of iterations or 

observing convergence in hyperparameter values. By leveraging PSO, the DMN is optimized efficiently, leading to improved generaliza-

tion and performance in postural state classification. Algorithm 2 represents the hyperparameter optimization using PSO 

 
Algorithm 2: Hyperparameter Optimization Using PSO 

Input: Hyperparameter search space, Number of particles N, Maximum iterations T Output: Optimized hyperparameter set P* 

1) Initialize the swarm with random hyperparameters within defined ranges. 

2) Evaluate the fitness function F for each particle using DMN. 
3) Set the personal best pbestand global best gbest 

4) For each iteration t in range T: 

• For each particle i: 

▪ Update velocity using: 

vi
(t+1)

= wvi
(t)

+ c1r1(pbesti − xi
(t)

) + c2r2(gbesti − xi
(t)

)  

▪ Update position using: 

xi
(t+1)

= xi(t) + vi(t + 1)  

▪ Evaluate new fitness F(xi
(t+1)

) 

▪ Update pbest if the new fitness is better. 

▪ Update gbest if the best particle improves. 

5) Return the best hyperparameter set P*. 

 

Table 2 presents the optimized hyperparameter values obtained through Particle Swarm Optimization (PSO) for training the Deep Maxout 

Network (DMN). The optimization process involved searching within predefined ranges for each hyperparameter to identify the most 

effective combination that maximizes model performance. 

The learning rate (η was explored within the range [0.0001,0.01] and the optimized value was determined to be 0.0023, ensuring a balance 

between convergence speed and stability. The batch size (b) was selected from discrete values {16,32,64,128, with an optimal batch size 

of 32, which provides an efficient trade-off between computational cost and model generalization. The dropout rate (d), crucial for pre-

venting overfitting, was tuned within the range [0.2,0.5] and the optimal value was found to be 0.3, indicating a moderate level of 
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regularization. Lastly, the regularization parameter (λ) was searched within [0.0001,0.1] with the optimized value of 0.005, contributing to 

improved generalization by penalizing overly complex models. 

These optimized hyperparameters enhance the performance of the DMN by effectively balancing learning efficiency, regularization, and 

computational feasibility, leading to improved accuracy in postural state classification. 

 
Table 2: Hyper Tuning 

Hyperparameter Search Range Optimized Value 

Learning Rate (η) [0.0001,0.01] 0.0023 
Batch Size (b) {16,32,64,128} 32 

Dropout Rate (d) [0.2,0.5] 0.3 

Regularization (λ) [0.0001,0.1] 0.005 

4. Results and discussion 

4.1. Hardware and software configuration 

The experiments were conducted on a high-performance computing setup with the following specifications: an Intel Core i9-12900K 

processor, 32GB RAM, and an NVIDIA RTX 3090 GPU with 24GB VRAM. The implementation was carried out using Python 3.9 with 

TensorFlow and PyTorch deep learning libraries, and it is mentioned in Table 3. Additional packages such as NumPy, Pandas, and Scikit-

learn were used for data processing and evaluation. 

 
Table 3: Experimental Hardware Configuration 

Component Specification 

Processor Intel Core i9-12900K (16 cores, 5.2 GHz) 

GPU NVIDIA RTX 3090 (24GB GDDR6X) 

RAM 64GB DDR4 3200MHz 

Storage 2TB NVMe SSD 

OS Ubuntu 20.04 LTS 

4.2. Performance evaluation 

To assess the effectiveness of the Deep Maxout Network (DMN), the model is trained using optimized hyperparameters, and its perfor-

mance is compared against conventional approaches. The classification results based on multiple evaluation metrics are summarized in 

Table 4. 

 
Table 4: Performance Metrics of DMN 

Metric Accuracy Precision Recall F1-Score 

Value (%) 96.4 94.8 95.2 95.0 

 

The high accuracy (96.4%) and the balanced precision-recall values indicate that the DMN model effectively learns discriminative features 

for classifying different postural states. The F1-score of 95.0% suggests that the model maintains a good balance between precision and 

recall, minimizing false positives and false negatives. 

 

 
Fig. 6: Accuracy Comparison with the Traditional Models. 

4.3. Comparative analysis with conventional models 

To highlight the superiority of the DMN model, we compare its performance against traditional machine learning classifiers like Support 

Vector Machines (SVM), Multi-Layer Perceptron (MLP), and CNN models. The results are displayed in Table 5 and visualised in fig.7. 

While the optimized Deep Maxout Network (DMN) demonstrated high overall classification accuracy (96.4%), certain misclassifications 

were observed, particularly between visually similar postural states. A detailed examination of the confusion matrix (Figure 8) reveals that 

most misclassification errors occurred between the "Walking" and "Fall Detected" classes. Several instances of "Walking" were misclas-

sified as "Fall Detected." This can be attributed to overlapping visual features during dynamic limb movements, particularly mid-step poses 

where the individual appears off-balance. Occlusions and motion blur in some images further complicated the model's ability to distinguish 

between controlled walking and actual falling. Additionally, some instances of "Sitting" were confused with "Fall Detected" when the 

posture appeared slouched or when the subject's upper body was partially obscured, mimicking the appearance of a collapse. These obser-

vations underscore the importance of integrating temporal cues or multimodal inputs (e.g., inertial data) to provide additional context for 

posture classification. Incorporating sequence-based frames or depth information may help resolve these visual ambiguities in future work. 
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Table 5: Comparison of DMN with Traditional Models 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

SVM 88.2 85.6 86.3 85.9 
MLP 90.5 88.9 89.1 89.0 

CNN 93.7 92.4 92.8 92.6 

DMN (Optimized) 96.4 94.8 95.2 95.0 

 

From the results, DMN outperforms SVM, MLP, and CNN, demonstrating its robustness in extracting relevant postural features. 

 

 
Fig. 7: Comparison of DMN with Traditional Models. 

 

The computational efficiency of the models is evaluated based on training and inference times. The time taken for training and inference 

is shown in Table 6. 

 
Table 6: Training and Inference Time Comparison 

Model Training Time (hours) Inference Time (ms) 

SVM 2.1 8.5 

MLP 1.9 7.3 

CNN 3.5 9.2 
DMN (Optimized) 2.8 6.1 

 

The DMN model exhibits faster inference time (6.1 ms) compared to traditional models, making it suitable for real-time applications. 

In case of Fall Detected (Class 1), 300 instances of 'Fall Detected' were correctly identified as 'Fall Detected', 10 instances of 'Fall Detected' 

were mistakenly classified as 'Walking', and 5 instances were classified as 'Sitting', 15 instances of 'Walking' and 10 instances of 'Sitting' 

were incorrectly predicted as 'Fall Detected'. In case of Walking (Class 2), 295 instances of 'Walking' were correctly classified as 'Walking'. 

8 instances of 'Walking' were misclassified as 'Sitting', and 15 instances were predicted as 'Fall Detected'. 10 instances of 'Fall Detected' 

and 5 instances of 'Sitting' were missed and misclassified as 'Walking'. In case of Sitting (Class 3), 305 instances of 'Sitting' were correctly 

identified as 'Sitting', 5 instances of 'Sitting' were predicted as 'Walking', and 10 instances were predicted as 'Fall Detected', 8 instances of 

'Walking' were incorrectly predicted as 'Sitting', and 5 instances of 'Fall Detected' were also misclassified as 'Sitting'. The confusion matrix 

is given in Figure 8, and Table 7 below shows the ability 7. Summary of Misclassification Patterns. 

 
Table 7: Summary of Misclassification Patterns 

True class Misclassified As Probable Cause 

Fall detected Walking Upright posture during fall initiation; mid-fall frame 

Fall detected Sitting Slumped or crouched fall position; bounding box ambiguity 

Walking Fall Detected Arm/leg displacement suggesting instability or imbalance 
Walking Sitting Static walking posture; lack of movement cues 

Sitting Fall Detected Reclined posture with occluded upper body 

Sitting Walking Slight forward lean interpreted as initiating motion 

 

 
Fig. 8: Confusion Matrix of the Proposed Work. 

Figure 9 illustrates how the discriminative ability of DMN is assessed using the Area Under the Curve (AUC) measure and the Receiver 

Operating Characteristic (ROC) curve. Better categorization performance is indicated by a higher AUC value. 
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Fig. 9: ROC Curve of the Proposed Work with an AUC Score of 0.98, DMN Exhibits Superior Classification Performance. 

5. Conclusion 

This study introduces an optimized Deep Maxout Network (DMN) for postural state classification, leveraging Particle Swarm Optimization 

(PSO) to fine-tune key hyperparameters. By optimizing parameters such as learning rate, batch size, dropout rate, and regularization factor, 

the proposed method ensures a balance between classification accuracy, model generalization, and computational efficiency. The experi-

mental results confirm that the optimized DMN achieves superior performance, attaining an accuracy of 96.4%, surpassing traditional 

classifiers such as Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), and Convolutional Neural Networks (CNN). Further-

more, the model exhibits an F1-score of 95.0%, demonstrating a strong equilibrium between precision and recall, while the Receiver 

Operating Characteristic (ROC) analysis indicates a high AUC score of 0.98, highlighting its strong discriminatory capability. Beyond 

classification performance, the model ensures computational efficiency, with an inference time of 6.1 milliseconds, making it highly suit-

able for real-time applications such as healthcare monitoring, fall detection, and rehabilitation support systems. Compared to conventional 

machine learning approaches that require extensive feature engineering, the DMN autonomously learns complex spatial features, enhancing 

its robustness. AI-powered posture monitoring systems in healthcare must consider ethical and regulatory issues as well as technological 

performance. By using anonymized picture inputs without face characteristics or personal identities, the PSO-optimized Deep Maxout 

Network (DMN) protects patient privacy and data. Edge devices process and store all data locally, minimizing cloud transmission and 

unwanted access threats.  

Additionally, the system architecture complies with US and international healthcare data protection rules, including HIPAA. The solution 

needs FDA software-as-a-medical-device (SaMD) certification before clinical implementation. Future investigations will involve multi-

center clinical trials with various demographics and real-world scenarios to guarantee system dependability and applicability. These phases 

validate the system's generalizability, resolve ethical issues, and ensure safe hospital and home-care integration. However, despite these 

promising results, certain limitations exist. The dataset, although comprehensive, could be expanded to include a broader range of postural 

activities for improved generalization. Additionally, integrating multi-sensor fusion, such as combining image data with accelerometer and 

gyroscope readings, may further refine classification accuracy. Future research will focus on improving the generalization of the model by 

incorporating more diverse datasets that capture real-world variations in postural activities. Additionally, the integration of the optimized 

DMN with edge computing platforms will facilitate low-latency, real-time classification for wearable healthcare devices. Lastly, employing 

explainable AI (XAI) techniques will enhance model transparency, ensuring greater interpretability and trust in healthcare applications. 
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