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Abstract 

In this paper, fractional-order model of the Hantavirus infection in terms of simple 

differential equations involving the mice population is presented. A study of the 

effect of changes in ecological conditions and diversity of habitats can be 

observed by varying the value of the environmental parameter  . Generalized 

Euler method (GEM) is considered in this paper to obtain an analytic approximate 

solution of this model. 

 
     Keywords: Generalized Euler method, Fractional order ordinary differential 
equations, Hantavirus fractional-order model. 

 

1      Introduction 

    In 1993 an outbreak of a severe and unknown disease occurred in the North 

American Southwest, striking with mortality in excess of 50%. The first reported 

cases came from healthy young adults who became sick and rapidly died at 

hospitals. Shortly afterwards, Sin Nombre virus (Bunyaviridae: Hantavirus), the 

first Hantavirus to be discovered in the New World, was identified as the 

infectious agent, and the very common deer mouse (Peromyscus maniculatus) as 

its host and reservoir [3]. Since then, numerous new Hantaviruses have been 
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discovered throughout the Americas, each one hosted by a single mouse species, 

and many of them responsible for severe human pathology. Hantavirus pulmonary 

syndrome (HPS) is an increasingly recognized infectious disease associated with 

infection of humans by new world Hantaviruses. The disease was transmitted to 

people by contact with rodents [7]. This leads to an extensive effort to trap all 

different types of rodents within the Four Corners area and detect the rodent with 

the antibodies to the strain of Hantavirus in question. Among all types of rodents 

trapped, the deer mouse was found to be the principle reservoir to the previously 

unknown strain of Hantavirus. The deer mouse population is abundant in North 

America where a potential for extensive outbreaks of HPS exists. The deer mouse 

is found in rural and semi-rural areas, in barns, homes and other buildings. 

Researchers believe that the virus is being passed from the deer mouse to humans 

from the contact made in these settings. Approximately 25% of the deer mice 

trapped were found to be infected with Hantavirus. Other mice were also found to 

be infected, but in lesser quantities [2]. The infection does not produce any 

clinical manifestation in the mice, which are asymptomatic carriers. Wild 

populations of host mice usually harbor a varying proportion of infected animals 

[3]. They are mostly adult males, and typically the most battered ones, from which 

it has been conjectured that contagion takes place by direct contact during fights. 

Infected females transmit their antibodies to newborns, which are thus protected 

from infection until they are weaned and become susceptible. Infected mice, it 

also seems, remain infected and infectious for their whole life (wild mice have 

short lives, with the luckier ones living a couple of years). It has been observed 

that the outbreaks of HPS in the North American Southwest in 1993 and again in 

1998-2000 were associated with the El Nino-Southern Oscillation (ENSO) 

phenomenon [1]. El Nino-the warm phase of the ENSO is accompanied by 

increased fall-spring precipitation in the arid and semi-arid regions of New 

Mexico and Arizona, in turn initiating a greater production of food resources for 

rodents: seeds, berries, nuts, insects. A “trophic cascade” is triggered, which leads 

to greater reproduction in rodents and, within a year, to large increases in rodent 

densities. At these higher densities, rodents disperse across the landscape 

(“ratadas,” as they are called in Latin American countries), and come into contact 

with humans in homes and businesses. An increase in the density of infected 

rodents was observed one year after the peak rodent densities, suggesting that a 

“wave” of virus infection was following the “wave” of rodent dispersal [4]. 

During times of adverse environmental conditions, a complete disappearance of 

the disease from local populations has been observed, as well as its eventual 

reappearance when conditions change. 

   The rest of the paper is organized as follows. In section 2, a discussion about the 

basic system of the Hantavirus infection is presented. Section 3 presents the 

importance of fractional calculus. Generalized Taylor’s formula and Generalized 

Euler method are introduced in section 4 and 5 respectively. Section 6 is devoted 

to the numerical results of the presented problem.     



 

 

 

90                                                                                                        S.Z. Rida et al 

2      A basic system of the Hantavirus infection 

 
    To mathematically describe the full dynamics of the biological system that 

affects the mice population, the humans, the virus and the environment is not an 

easy mission. There are two major characteristics of the infection which are 

derived from the fact that environmental conditions play an important role in the 

dynamics of the disease. The first is the temporal attribute, whereby infection can 

completely die out from a population of mice if environmental conditions are poor, 

and then to reappear intermittently or when the conditions change [3,13]. The 

second is the spatial attribute, where there are signs of “focality” of the infection 

in “reservoir” populations. As environmental conditions change, these “refugia” 

of the reservoir can expand or contract, carrying the infection to other places. 

Abramson and Kenkre [2] introduced a mathematical model that incorporates 

decay by death of the mice population, the increase by birth and effect of the 

environment to stabilize the population, and their movement by diffusion. We 

shall only perform our study on the model which integrates the temporal 

characteristics, omitting the diffusion process. Abramson and Kenre [2] proposed 

a basic model of a biological system that mimics the spread of the Hantavirus 

infection which studies its temporal behaviour. The system consists of a 

population of susceptible and infected mice, represented by    and    

respectively. It is noted that the sex and age composition of the population are 

disregarded in this model. Eqs. (1) and (2) show the contagion of the infection, 

that converts susceptible into infected: 

                 
   

  
        

   

 
                                                                

                
   

  
      

   

 
                                                                       

 

 

Where                  is the total population of mice. The motivation for 

the terms in (1) and (2) follows:  

Births:    represents births of mice, all of them born susceptible, at a rate 

proportional to the total density, since all mice contribute equally to the 

procreation [13].  

Deaths:   represents the rate of population decay by death, proportional to the 

corresponding density. If necessary, separate rates    and    could be introduced 

for the susceptible and infected populations respectively. For Hantavirus, which 

does not seem to alter any physiological parameter of their hosts, we have the 

same death rate for both susceptible and infected mice.  

Competition:          represents a limitation process in the population growth, 

due to competition for shared resources. Each is proportional to the probability of 

an encounter of a pair formed by one mouse of the corresponding class, 

susceptible or infected, and one mouse of any class (since every mouse, either 

susceptible or infected, has to compete with the whole population).   is   
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“carrying capacity,” characterizing in a simplified way the capacity of the medium 

to maintain a population of mice. Higher values of carrying capacity represent a 

higher availability of water, food, shelter and other resources that mice can use to 

thrive [13]. 

Infection:        represents the number of susceptible mice that get infected, due 

to an encounter with an infected (and consequently infectious) mouse, at a rate   

that we assume constant. Contagion between deer mice is believed to take place 

during direct animal contact, mainly by biting. There are four parameters that 

characterize the system in (1) and (2), which are       and    Of those,   is 

chosen to be the control parameter of the dynamics because it best represents the 

influence of the environment. Changes in ecological conditions and diversity of 

habitats can be observed by varying the value of  . Although the system has four 

equilibria, two of them are irrelevant to the analysis, that is, the null state (very 

unstable) and a state with        for any parameters. The other two equilibria 

interchange their stability character at a critical value of the carrying capacity, 

which is given as 

 

   
 

      
 

 

More elaborate models could incorporate a density dependence on a, for example 

due to an increased frequency of fights when the density is too high and the 

population feels overcrowded [2,3]. Since the infection is chronic, infected mice 

do not die of it, and infected mice do not lose their infectiousness probably for 

their whole life, this single term adequately describes the infection dynamics of 

the two subpopulations. The presented model is able to successfully explain 

several field observations as environmentally controlled phase transitions, thus 

providing an analytical support to biological hypotheses such as the trophic 

cascade. According to [3], the equations (1) and (2) reflect a continuous model but 

in a real system, the population is discrete where it vanishes if it drops below one. 

The zero population state, which may be unstable in the continuous perspective, is 

stable against infinitesimal perturbations in a discrete model. In reality, a system 

requires a finite perturbation of one full mouse to start moving toward the positive 

equilibrium. It is only sensible that an infection that has died off will only 

reappear when an infected mouse has entered the system from the outside. 

   This paper attempts to derive a numerical solution for fractional order equations 

of Hantavirus infection model of order         

  

                                
   

 
                                                                

                            
   

 
                                                                        

 

The reason of using fractional order differential equations (FOD) is that FOD are 

naturally related to systems with memory which exists in most biological systems. 
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Also they are closely related to fractals which are abundant in biological systems. 

The results derived of the fractional system (3), (4) are of a more general nature.  

 

3      Fractional calculus 

    Although fractional derivatives have a long mathematical history [8], for many 

years they were not used in biology or physics. One possible explanation of such 

unpopularity could be that there are multiple nonequivalent definitions of 

fractional derivatives [9]. Another difficult is that fractional derivatives have no 

evident geometrical interpretation because of their nonlocal character [10]. It was 

found that various; especially interdisciplinary applications can be elegantly 

modeled with the help of the fractional derivatives. For example, the nonlinear 

oscillation of earthquake can be modeled with fractional derivatives, and the fluid-

dynamic traffic model with fractional derivatives can eliminate the deficiency 

arising from the assumption of continuum traffic flow. However, during the last 

ten years fractional calculus starts to attract much more attention of physicists and 

mathematicians [17]. In biology, it has been deduced that the membranes of cells 

of biological organism have fractional-order electrical conductance [4] and then 

are classified in groups of non-integer order models. FODE are naturally related 

to systems with memory which exists in most biological systems. Also, they are 

closely related to fractals, which are abundant in biological systems [10,11]. We 

first give the definition of fractional-order integration and fractional-order 

differentiation [14]. For the concept of fractional derivative, we will adopt 

Caputo's definition, which is a modification of the Riemann–Liouville definition 

and has the advantage of dealing properly with initial value problems. 

Definition 1 The fractional integral of order     of a function        is 

given by 

                      
 

    
             

 

 

            

                                              
Hence we have  

 

                  
      

        
                   

 

Definition 2 Riemann–Liouville and Caputo fractional derivatives of order   of a 

continuous function        is given respectively by  
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Where                                     

The definition of fractional derivative involves an integration which is non-local 

operator (as it is defined on an interval) so fractional derivative is a non-local 

operator. In other word, calculating time-fractional derivative of a function      at 

some time      requires all the previous history, i.e. all      from     to 

    . 

4        Generalized Taylor’s formula 

      In this section we introduce a generalization of Taylor’s formula that involves 

Caputo fractional derivatives. This generalization is presented in [19].  

Suppose that   
              for            , where      . So we 

have 

      
   

       
   

        
   

           

           

 

   

                                        

With                  
In case of   = 1, the generalized Taylor’s formula (5) reduces to the classical 

Taylor’s formula. 

 

5      Generalized Euler method (GEM) 

 

     Most nonlinear fractional differential equations do not have analytic solutions, 

so approximations and numerical techniques must be used [15]. The 

decomposition method (ADM) and the variational iteration method (VIM) are 

relatively new approaches to provide an analytical approximate solution to linear 

and nonlinear problems, and they are particularly valuable as tools for scientists 

and applied mathematicians, because they provide immediate and visible 

symbolic terms of analytic solutions, as well as numerical approximate solutions 

to both linear and nonlinear differential equations. In recent years, the application 

of the ADM, VIM, [15,16] in linear and nonlinear problems has been developed. 

On the other hand, these methods are effective for small time, i.e.       , 

however the standard homotopy perturbation method (HPM) cannot solve the 

problem for larger time and in fact the solution of the chaotic system using HPM 

is an open problem [16]. Nevertheless by chance, there are cases at which these 

methods give good approximation for a large range of time ( ) [15]. A few 

numerical methods for fractional differential equations have been presented in the 

literature [9,12]. However many of these methods are used for very specific types 

of differential equations, often just linear equations or even smaller classes. In 

[19], Odibat and Momani derived the generalized Euler’s method that we have 

developed for the numerical solution of initial value problems with Caputo 
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derivatives. The method is a generalization of the classical Euler’s method. 

Consider the initial value problem [5,6]. 

 

  
                                                                                     (6) 

 

Let       be the interval over which we want to find the solution of the problem 

(6). In actuality, we will not find a function      that satisfies the initial value 

problem (6). Instead, a set of points             is generated, and the points are 

used for our approximation. For convenience we subdivide the interval        into 

k subintervals [       ] of equal width         by using the nodes        , for   

          . Assume that        
      and   

       are continuous on       and 

use the generalized Taylor’s formula (5) to expand      about       . For 

each value   there is a value    so that 

              
           

  

      
    

            
   

       
                  

When    
                        and      are substituted into equation (7), 

the result is an expression for      : 

                       
  

      
    

            
   

       
 

If the step size   is chosen small enough, then we may neglect the second-order 

term (involving    ) and get 

            
  

      
            

 

The process is repeated and generates a sequence of points that approximates the 

solution       The general formula for generalized Euler’s method (GEM) when 

          is 

 

              
  

      
                                                                               

 

for                . It is clear that if    , then the generalized Euler’s 

method (8) reduces to the classical Euler’s method. 

6      Results and discussions  

Using the constants mentioned earlier, we shall vary the initial values of    and 

  against different values of parameter k. This gives us an appreciation of the 

effect of initial values and   on the system. The time step   used in this paper is 

0.1. We shall use the constants                  as were chosen by 

Abramson and Kenkre [3]. In this case      . 
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(a)                                                            (b) 

 

 

Figure 1: The populations of susceptible (a) and infected (b) mice versus time in 

years for     : Gray solid line (   ), Dotted line (       , Black solid 

line (      ). 

 

 

 

 

(a)                                                                   (b) 

Figure 2: The populations of susceptible (a) and infected (b) mice versus time in 

years for     : Gray solid line (   ), Dotted line (       , Black solid 

line (      ). 
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(a)                                                             (b) 

 

Figure 3: The populations of susceptible (a) and infected (b) mice versus time in 

years for     : Gray solid line (   ), Dotted line (       , Black solid 

line (      ).   

 

 

 

         
 

                                  

 

 

                   

                                                              

                               (a)                                                                  (b) 

Figure 4: The populations of susceptible (a) and infected (b) mice versus time in 

years for     : Gray solid line (   ), Dotted line (       , Black solid 

line (      ). 
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                                    (a)                                                               (b)  

Figure 5: The populations of susceptible (a) and infected (b) mice versus time in 

years for     : Gray solid line (   ), Dotted line (       , Black solid 

line (      ). 
 

                             (a)                                                                (b) 

Figure 6: The populations of susceptible (a) and infected (b) mice versus time in 

years for     : Gray solid line (   ), Dotted line (       , Black solid 

line (      ). 

 

 

7      Conclusion 

 
     In this paper, generalized Euler method (GEM) was implemented to describe 

the effect of carrying capacity  , which is used as a control parameter in the 

model of HPS described by the presented fractional model. The results show that 

the solution continuously depends on the time-fractional derivative and on the 

values of the parameters. The presented figures show the numerical solutions for 

(3), (4) with varying values of       and       against different values of  . In 

Figures (1-3), we assumed that                   but in Figures (4-6), we 

assumed that                . As mentioned before, changes in ecological 

conditions and diversity of habitats affect the mice population which can be seen 
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through the carrying capacity  . Figure 1, and Figure 4 show that if         the 

population of infected mice   , will reduce to zero (after about 5 years) regardless 

of the initial number. In other words, for all initial values, the infection will die 

away. The population of susceptible mice    on the other hand, will approach a 

steady state of 5. For        in Figure 2, and Figure 5, the number of infected 

mice,    will also decrease to zero, but at a much slower rate and    will reach a 

steady state of about 10 years. Again, this observation is for all the set of initial 

values used. In Figure 3, and Figure 6,     , then for all sets of initial values,    

will approach a steady state of 10 whereas    will maintain at 5. We noticed here 

that the infected population   , does not shrink to zero like for the other two 

environmental conditions. This corresponds to the notion that infected mice will 

“thrive” when the environmental conditions are favorable.  

    As a definition of fractional calculus:        
            has been 

provided. In the presented problem, the susceptible group   , the infected group 

  , and the removed group, have been obtained, the results obtained show that 

when      the solution of the fractional model,        and      , reduce to the 

standard solution    and   .  

     In this paper, we modified the ODE of Hantavirus model into a system of 

fractional-order. Our studies on the use of GEM for solving the presented model 

show that GEM is a good tool in solving the biological system. One of the 

advantages of GEM is its capability of presenting us with continuous solutions, 

thus giving us better understanding, insight as well as detail over the time interval. 
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