Bivariate Conditional Wigner Semicircle Distribution Modeling of Wind Speed and Direction
DOI:
https://doi.org/10.14419/eqwqbd48Keywords:
Wigner-Semicircle; Conditional; Marginal; Distribution; Moment; Bivariate; Circular-VariableAbstract
Wind direction and speed are increasingly significant for societal and human advancement, as it is essential to comprehending and forecasting various events. Therefore, a model that captures the distinct features of wind direction and speed is developed. The conditional and marginal Wigner semicircle distributions were combined to create a bivariate conditional Wigner semicircle distribution. The joint characteristics and estimation of its parameters were determined. Real-world wind speed and direction data, where the conditional reliance and circularity of the variables are suspected, were used to test the model. Based on the goodness-of-fit test and root mean square error, the outcome demonstrates that the model and the data are compatible. The model is suggested for use in situations where consideration must be given to variables with a conditional structure and cyclicity.
References
- R. T. Ogulata. Energy sector and wind energy potential in Turkey. Renew. Sustain. Energy Rev. 7, (2003), 469–484. https://doi.org/10.1016/S1364-0321(03)00090-X.
- N. Eskin, H. Artar, S. Tolun. Wind energy potential of Gokceada Island in Turkey. Renew. Sustain. Energy Rev. 12, (2008), 839–851 https://doi.org/10.1016/j.rser.2006.05.016.
- Q. Hu, Y. Wang, Z. Xie, P. Zhu, D. Yu. On estimating the uncertainty of wind energy with mixture of distributions. Energy 112, (2016), 935–962. https://doi.org/10.1016/j.energy.2016.06.112.
- M. Aslam. Testing average wind speed using a sampling plan for Weibull distribution under indeterminacy. Sci. Rep. 11, (2021), 7532. https://doi.org/10.1038/s41598-021-87136-8.
- Z. Wang, W. Liu. Wind energy potential assessment based on wind speed, its direction and power data. Scientific Reports, 11, (2021), 16879. https://doi.org/10.1038/s41598-021-96376-7.
- B. Safari, J. Gasore. A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleighmodels in Rwanda. Renew Energy (2010), https://doi.org/10.1016/j.renene.2010.04.032.
- B. Safari. Modeling wind speed and wind power distributeons in Rwanda. Renewable and Sustainable Energy Reviews 15, (2011), 925–935. https://doi.org/10.1016/j.rser.2010.11.001.
- Z. Pobočíková, J.S. Sedliačková. Statistical analysis of wind speed data based on Weibull and Rayleigh distribution, Communications- Scientific Letters of the University of Žilina, Vol. 16, (3a), (2014), 136-141. https://doi.org/10.26552/com.C.2014.3A.136-141.
- Y.M. Kantar, I. Usta. Analysis of the upper-truncated Weibull distribution for wind speed. Energy Convers. Manag. 96, (2015), 81–88. https://doi.org/10.1016/j.enconman.2015.02.063.
- S. H. Pishgar-Komleh, A. Keyhani, P. Sefeedpari. Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran). Renew. Sustain. Energy Rev. 42, (2015), 313–322. https://doi.org/10.1016/j.rser.2014.10.028.
- P. Wais. Two and three-parameter Weibull distribution in available wind power analysis. Renew. Energy 103, (2017), 15–29. https://doi.org/10.1016/j.renene.2016.10.041.
- I. Pobočíkováa, Z. Sedliačkováa, M. Michalková. Application of four probability distributions for wind speed modeling. Procedia Engineering 192, (2017), 713 – 718. https://doi.org/10.1016/j.proeng.2017.06.123.
- N. Aries, S. M. Boudia, H. Ounis. Deep assessment of wind speed distribution models: A case study of four sites in Algeria. Energy Convers. Manag. 155, (2018), 78- 90. https://doi.org/10.1016/j.enconman.2017.10.082.
- S.A. Akdag, A. Dinler. A new method to estimate Weibull parameters for wind energy applications. Energy Convers. Manag. 50, (2019), 1761–1766. https://doi.org/10.1016/j.enconman.2009.03.020.
- S. Deep, A. Sarkar, M. Ghawat, M.K. Rajak. Estimation of the wind energy potential for coastal locations in India using the Weibull model. Re-new. Energy 161, (2020), 319- 339. https://doi.org/10.1016/j.renene.2020.07.054.
- H. Chen, Y. Birkelund, S.N. Anfnsen, R. Staupe-Delgado, F. Yuan. Assessing probabilistic modelling for wind speed from numerical weather pre-diction model and observation in the Arctic. Sci. Rep. 11, (2021), 7613. https://doi.org/10.1038/s41598-021-87299-4.
- J.A. Carta, D. Mentado. A continuous bivariate model for wind power density and wind turbine energy output estimations. Energy Con-vers. Manag. 48, (2007), 420–432. https://doi.org/10.1016/j.enconman.2006.06.019.
- J.A. Carta, P. Ramirez. Analysis of two-component mixture Weibull statistics for estimation of wind speed distributions. Renew. Energy 32, (2007), 518–531. https://doi.org/10.1016/j.renene.2006.05.005.
- P. Kiss, I.M. Janosi. Comprehensive empirical analysis of ERA-40 surface wind speed distribution over Europe. Energy Convers. Manag. 49, (2008), 2142–2151. https://doi.org/10.1016/j.enconman.2008.02.003.
- S. Akpinar, E.K. Akpinar. Estimation of wind energy potential using finite mixture distribution models. Energy Convers. Manag. 50, (2009), 877–884. https://doi.org/10.1016/j.enconman.2009.01.007.
- S.A. Akdag, H. S. Bagiorgas, G. Mihalakakou. Use of two-component Weibull mixtures in the analysis of wind speed in the Eastern Mediterrane-an. Appl. Energy 87, (2010), 2566–2573. https://doi.org/10.1016/j.apenergy.2010.02.033.
- J. Zhang, S. Chowdhury, A. Messac, L. Castillo. A multivariate and multimodal wind distribution model. Renew. Energy 51, (2013), 436–447. https://doi.org/10.1016/j.renene.2012.09.026.
- D. Mazzeo, G. Oliveti, E. Labonia. Estimation of wind speed probability density function using a mixture of two truncated normal distributions. Renew. Energy 115, (2018), 1260–1280. https://doi.org/10.1016/j.renene.2017.09.043.
- T.B. Ouarda, C. Charron. On the mixture of wind speed distribution in a Nordic region. Energy Convers. Manag. 174, (2018), 33–44. https://doi.org/10.1016/j.enconman.2018.08.007.
- S. Mahbudi, A. Jamalizadeh, R. Farnoosh. Use of finite mixture models with skew-t normal Birnbaum-Saunders components in the analysis of wind speed: Case studies in Ontario Canada. Renew. Energy 162, (2020), 196–211. https://doi.org/10.1016/j.renene.2020.07.084.
- J.A. Carta, C. Bueno, P. Ramirez. Statistical modelling of directional wind speeds using mixtures of von Mises distributions: Case study. Energy Convers. Manag. 49, (2008), 897-907. https://doi.org/10.1016/j.enconman.2007.10.017.
- J.L. Vega, G. Rodriguez. Modelling mean wave direction distribution with the von Mises model, (2009), 3-14. https://doi.org/10.2495/CP090011.
- K.V. Mandia, C.C. Taylor, G. K. Subramaniam. Protein bioinformatics and mixtures of bivariate von Mises distributions for angular data. Biomet-rics, 63, (2007), 505-512. https://doi.org/10.1111/j.1541-0420.2006.00682.x.
- N. Masseran, A.M. Razali, K. Ibrahim, M.T. Latif. Fitting a mixture of von Mises distributions in order to model data on wind direction in Penin-sular Malaysia. Energy Convers. Manag. 72, (2013), 94–102. https://doi.org/10.1016/j.enconman.2012.11.025.
- T.H. Soukissian. Probabilistic modeling of directional and linear characteristics of wind and sea states. Ocean Eng. 91, (2014), 91–110. https://doi.org/10.1016/j.oceaneng.2014.08.018.
- J. Horn, E.B. Gregersen, J.R. Krokstad, B. J. Leira, J.Amdahl. A new combination of conditional environmental distributions. Appl. Ocean Res. 73, (2018), 17–26. https://doi.org/10.1016/j.apor.2018.01.010.
- I.E. Gongsin, F.W. O. Saporu. A bivariate Conditional Weibull distribution with Application. Afrika Matematika 33 (3), (2020), 565-583. https://doi.org/10.1007/s13370-019-00742-8.
- Z. Cheng, E Svangstu, T Moan, Z. Gao. Long-term joint distribution of environmental conditions in a Norwegian Fjord for design of floating bridges. Ocean Engineering 191, (2019) 106472. https://doi.org/10.1016/j.oceaneng.2019.106472.
- J. Velarde, E. Vanem, C. Kramhoft, J.D Sorense. Probabilistic analysis of offshore wind turbines under extreme resonant response: application of environmental contour method. Applied Ocean Research, 93, (2019),101947. https://doi.org/10.1016/j.apor.2019.101947.
- E. Vanem, A. Hafver, G. Nalvarte. Environmental contours for circular-linear variables based on the direct sampling method. Wind Energy 23 (3), (2020), 563–574. https://doi.org/10.1002/we.2442.
- E. Vanem, T. Zhu, A. Babanin. Statistical modeling of the ocean environment-A review of recent developments in theory and applications. Marine Structures, 86, (2022), 103297. https://doi.org/10.1016/j.marstruc.2022.103297.
- Q. Han, Z. Hao, T. Hu, F. Chu. Non-parametric models for joint probabilistic distributions of wind speed and direction data. Renew. Energy, 126, (2018), 1032-1042. https://doi.org/10.1016/j.renene.2018.04.026.
- H. Li, X. Zhang, C. Li. Copula-based joint distribution analysis of wind speed and direction. Journal of Engineering Mechanics, 145(5), (2019). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001600.
- Z. Wang, W. Zhang, Y. Zhang, Z. Liu. Circular-linear-linear probabilistic model based on vine copulas: An application to the joint distribution of wind direction, wind speed, and air temperature. Journal of Wind Engineering and Industrial Aerodynamics, 215, (2021), 104704. https://doi.org/10.1016/j.jweia.2021.104704.
- H. Wang, T. Xiao, H. Gou, Q. Pu. Joint distribution of wind speed and direction over complex terrains based on non-parametric copula models. Journal of Wind Engineering and Industrial Aerodynamics, 241 (1), (2023), 105509. https://doi.org/10.1016/j.jweia.2023.105509.
- E. Erdem, J. Shi. Comparison of bivariate distribution construction approaches for analyzing wind speed and direction data. Wind Energy 14, (2011), 27–41. https://doi.org/10.1002/we.400.
- M.L. Mehta. Random Matrices. Academic Press. Tracy, C. A., & Widom, H. (1994)2 Level-spacing distributions and the Airy kernel. Communica-tions in Mathematical Physics, 159(1), (2004), 151-174. https://doi.org/10.1007/BF02100489.
- C.A. Tracy, H. Widom. Level spacing distributions and the airy kernel. Comm. Math.Phys 159, (1994), 151-174. https://doi.org/10.1007/BF02100489.
- F. Haake, S. Gnutzmann, M. Ku. Quantum Signatures of Chaos. Springer (2018). https://doi.org/10.1007/978-3-319-97580-1.
- A. Sengupta, P. Mitra, R. Kundu. Eigenvalue distributions of large random networks. Journal of Network Theory in Finance, 5(1), (2019), 1-19.
- J. Brown, D. Robinson, D. Modeling correlated market returns using the bivariate Wigner semicircle distribution. Financial Risk Management Jour-nal, 17(4), (2021), 325- 348.
- L. Green, R. Patel. Environmental applications of the bivariate Wigner semicircle distribution. Environmental Modeling and Software, 98, (2023), 45-59.
- S. Miller, M. Johnson, A. Lee. Parameter estimation in the bivariate Wigner semicircle distribution. Journal of Statistical Computation and Simula-tion, 92(6), (2022), 1205-1223.
- V. Gupta, T. Johnson. Theoretical insights into the bivariate Wigner semicircle distribution. Journal of Applied Probability and Statistics, 45(2), (2023), 209-232.
Downloads
Received date: June 9, 2025
Accepted date: July 1, 2025
Published date: July 6, 2025