Bivariate Conditional Wigner Semicircle Distribution Modeling of Wind ‎Speed and Direction

Authors

  • Onoghojobi Benson

    Department of Statistics, Federal University Lokoja, Nigeria
  • Otaru Olawale Paul

    Department of Statistics, Federal University Lokoja, Nigeria https://orcid.org/0000-0002-9894-2842
  • David Ibitayo Lanlege

    Department of Mathematics, Federal University Lokoja‎, Nigeria
  • Job Eunice Ohunene

    Department of Statistics, Federal University Lokoja, Nigeria
  • Eseyin Babatunde Olamide

    Department of Statistics, Federal University Lokoja, Nigeria
  • Owonipa Oluremi Rasheedat

    Department of Statistics, Kogi State University, Nigeria

Received date: June 9, 2025

Accepted date: July 1, 2025

Published date: July 6, 2025

DOI:

https://doi.org/10.14419/eqwqbd48

Keywords:

Wigner-Semicircle; Conditional; Marginal; Distribution; Moment; Bivariate; Circular-Variable

Abstract

Wind direction and speed are increasingly significant for societal and human advancement, as it ‎is essential to comprehending and forecasting various events. Therefore, a model that captures ‎the distinct features of wind direction and speed is developed. The conditional and marginal ‎Wigner semicircle distributions were combined to create a bivariate conditional Wigner semicircle ‎distribution. The joint characteristics and estimation of its parameters were determined. Real-world wind speed and direction data, where the conditional reliance and circularity of the ‎variables are suspected, were used to test the model. Based on the goodness-of-fit test and root ‎mean square error, the outcome demonstrates that the model and the data are compatible. The ‎model is suggested for use in situations where consideration must be given to variables with a ‎conditional structure and cyclicity.

References

  1. R. T. Ogulata. Energy sector and wind energy potential in Turkey. Renew. Sustain. Energy Rev. 7, (2003), 469–484. https://doi.org/10.1016/S1364-0321(03)00090-X.
  2. N. Eskin, H. Artar, S. Tolun. Wind energy potential of Gokceada Island in Turkey. Renew. Sustain. Energy Rev. 12, (2008), 839–851 https://doi.org/10.1016/j.rser.2006.05.016.
  3. Q. Hu, Y. Wang, Z. Xie, P. Zhu, D. Yu. On estimating the uncertainty of wind energy with mixture of distributions. Energy 112, (2016), 935–962. https://doi.org/10.1016/j.energy.2016.06.112.
  4. M. Aslam. Testing average wind speed using a sampling plan for Weibull distribution under indeterminacy. Sci. Rep. 11, (2021), 7532. https://doi.org/10.1038/s41598-021-87136-8.
  5. Z. Wang, W. Liu. Wind energy potential assessment based on wind speed, its direction and power data. Scientific Reports, 11, (2021), 16879. https://doi.org/10.1038/s41598-021-96376-7.
  6. B. Safari, J. Gasore. A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleighmodels in Rwanda. Renew Energy (2010), https://doi.org/10.1016/j.renene.2010.04.032.
  7. B. Safari. Modeling wind speed and wind power distributeons in Rwanda. Renewable and Sustainable Energy Reviews 15, (2011), 925–935. https://doi.org/10.1016/j.rser.2010.11.001.
  8. Z. Pobočíková, J.S. Sedliačková. Statistical analysis of wind speed data based on Weibull and Rayleigh distribution, Communications- Scientific Letters of the University of Žilina, Vol. 16, (3a), (2014), 136-141. https://doi.org/10.26552/com.C.2014.3A.136-141.
  9. Y.M. Kantar, I. Usta. Analysis of the upper-truncated Weibull distribution for wind speed. Energy Convers. Manag. 96, (2015), 81–88. https://doi.org/10.1016/j.enconman.2015.02.063.
  10. S. H. Pishgar-Komleh, A. Keyhani, P. Sefeedpari. Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran). Renew. Sustain. Energy Rev. 42, (2015), 313–322. https://doi.org/10.1016/j.rser.2014.10.028.
  11. P. Wais. Two and three-parameter Weibull distribution in available wind power analysis. Renew. Energy 103, (2017), 15–29. https://doi.org/10.1016/j.renene.2016.10.041.
  12. I. Pobočíkováa, Z. Sedliačkováa, M. Michalková. Application of four probability distributions for wind speed modeling. Procedia Engineering 192, (2017), 713 – 718. https://doi.org/10.1016/j.proeng.2017.06.123.
  13. N. Aries, S. M. Boudia, H. Ounis. Deep assessment of wind speed distribution models: A case study of four sites in Algeria. Energy Convers. Manag. 155, (2018), 78- 90. https://doi.org/10.1016/j.enconman.2017.10.082.
  14. S.A. Akdag, A. Dinler. A new method to estimate Weibull parameters for wind energy applications. Energy Convers. Manag. 50, (2019), 1761–1766. https://doi.org/10.1016/j.enconman.2009.03.020.
  15. S. Deep, A. Sarkar, M. Ghawat, M.K. Rajak. Estimation of the wind energy potential for coastal locations in India using the Weibull model. Re-new. Energy 161, (2020), 319- 339. https://doi.org/10.1016/j.renene.2020.07.054.
  16. H. Chen, Y. Birkelund, S.N. Anfnsen, R. Staupe-Delgado, F. Yuan. Assessing probabilistic modelling for wind speed from numerical weather pre-diction model and observation in the Arctic. Sci. Rep. 11, (2021), 7613. https://doi.org/10.1038/s41598-021-87299-4.
  17. J.A. Carta, D. Mentado. A continuous bivariate model for wind power density and wind turbine energy output estimations. Energy Con-vers. Manag. 48, (2007), 420–432. https://doi.org/10.1016/j.enconman.2006.06.019.
  18. J.A. Carta, P. Ramirez. Analysis of two-component mixture Weibull statistics for estimation of wind speed distributions. Renew. Energy 32, (2007), 518–531. https://doi.org/10.1016/j.renene.2006.05.005.
  19. P. Kiss, I.M. Janosi. Comprehensive empirical analysis of ERA-40 surface wind speed distribution over Europe. Energy Convers. Manag. 49, (2008), 2142–2151. https://doi.org/10.1016/j.enconman.2008.02.003.
  20. S. Akpinar, E.K. Akpinar. Estimation of wind energy potential using finite mixture distribution models. Energy Convers. Manag. 50, (2009), 877–884. https://doi.org/10.1016/j.enconman.2009.01.007.
  21. S.A. Akdag, H. S. Bagiorgas, G. Mihalakakou. Use of two-component Weibull mixtures in the analysis of wind speed in the Eastern Mediterrane-an. Appl. Energy 87, (2010), 2566–2573. https://doi.org/10.1016/j.apenergy.2010.02.033.
  22. J. Zhang, S. Chowdhury, A. Messac, L. Castillo. A multivariate and multimodal wind distribution model. Renew. Energy 51, (2013), 436–447. https://doi.org/10.1016/j.renene.2012.09.026.
  23. D. Mazzeo, G. Oliveti, E. Labonia. Estimation of wind speed probability density function using a mixture of two truncated normal distributions. Renew. Energy 115, (2018), 1260–1280. https://doi.org/10.1016/j.renene.2017.09.043.
  24. T.B. Ouarda, C. Charron. On the mixture of wind speed distribution in a Nordic region. Energy Convers. Manag. 174, (2018), 33–44. https://doi.org/10.1016/j.enconman.2018.08.007.
  25. S. Mahbudi, A. Jamalizadeh, R. Farnoosh. Use of finite mixture models with skew-t normal Birnbaum-Saunders components in the analysis of wind speed: Case studies in Ontario Canada. Renew. Energy 162, (2020), 196–211. https://doi.org/10.1016/j.renene.2020.07.084.
  26. J.A. Carta, C. Bueno, P. Ramirez. Statistical modelling of directional wind speeds using mixtures of von Mises distributions: Case study. Energy Convers. Manag. 49, (2008), 897-907. https://doi.org/10.1016/j.enconman.2007.10.017.
  27. J.L. Vega, G. Rodriguez. Modelling mean wave direction distribution with the von Mises model, (2009), 3-14. https://doi.org/10.2495/CP090011.
  28. K.V. Mandia, C.C. Taylor, G. K. Subramaniam. Protein bioinformatics and mixtures of bivariate von Mises distributions for angular data. Biomet-rics, 63, (2007), 505-512. https://doi.org/10.1111/j.1541-0420.2006.00682.x.
  29. N. Masseran, A.M. Razali, K. Ibrahim, M.T. Latif. Fitting a mixture of von Mises distributions in order to model data on wind direction in Penin-sular Malaysia. Energy Convers. Manag. 72, (2013), 94–102. https://doi.org/10.1016/j.enconman.2012.11.025.
  30. T.H. Soukissian. Probabilistic modeling of directional and linear characteristics of wind and sea states. Ocean Eng. 91, (2014), 91–110. https://doi.org/10.1016/j.oceaneng.2014.08.018.
  31. J. Horn, E.B. Gregersen, J.R. Krokstad, B. J. Leira, J.Amdahl. A new combination of conditional environmental distributions. Appl. Ocean Res. 73, (2018), 17–26. https://doi.org/10.1016/j.apor.2018.01.010.
  32. I.E. Gongsin, F.W. O. Saporu. A bivariate Conditional Weibull distribution with Application. Afrika Matematika 33 (3), (2020), 565-583. https://doi.org/10.1007/s13370-019-00742-8.
  33. Z. Cheng, E Svangstu, T Moan, Z. Gao. Long-term joint distribution of environmental conditions in a Norwegian Fjord for design of floating bridges. Ocean Engineering 191, (2019) 106472. https://doi.org/10.1016/j.oceaneng.2019.106472.
  34. J. Velarde, E. Vanem, C. Kramhoft, J.D Sorense. Probabilistic analysis of offshore wind turbines under extreme resonant response: application of environmental contour method. Applied Ocean Research, 93, (2019),101947. https://doi.org/10.1016/j.apor.2019.101947.
  35. E. Vanem, A. Hafver, G. Nalvarte. Environmental contours for circular-linear variables based on the direct sampling method. Wind Energy 23 (3), (2020), 563–574. https://doi.org/10.1002/we.2442.
  36. E. Vanem, T. Zhu, A. Babanin. Statistical modeling of the ocean environment-A review of recent developments in theory and applications. Marine Structures, 86, (2022), 103297. https://doi.org/10.1016/j.marstruc.2022.103297.
  37. Q. Han, Z. Hao, T. Hu, F. Chu. Non-parametric models for joint probabilistic distributions of wind speed and direction data. Renew. Energy, 126, (2018), 1032-1042. https://doi.org/10.1016/j.renene.2018.04.026.
  38. H. Li, X. Zhang, C. Li. Copula-based joint distribution analysis of wind speed and direction. Journal of Engineering Mechanics, 145(5), (2019). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001600.
  39. Z. Wang, W. Zhang, Y. Zhang, Z. Liu. Circular-linear-linear probabilistic model based on vine copulas: An application to the joint distribution of wind direction, wind speed, and air temperature. Journal of Wind Engineering and Industrial Aerodynamics, 215, (2021), 104704. https://doi.org/10.1016/j.jweia.2021.104704.
  40. H. Wang, T. Xiao, H. Gou, Q. Pu. Joint distribution of wind speed and direction over complex terrains based on non-parametric copula models. Journal of Wind Engineering and Industrial Aerodynamics, 241 (1), (2023), 105509. https://doi.org/10.1016/j.jweia.2023.105509.
  41. E. Erdem, J. Shi. Comparison of bivariate distribution construction approaches for analyzing wind speed and direction data. Wind Energy 14, (2011), 27–41. https://doi.org/10.1002/we.400.
  42. M.L. Mehta. Random Matrices. Academic Press. Tracy, C. A., & Widom, H. (1994)2 Level-spacing distributions and the Airy kernel. Communica-tions in Mathematical Physics, 159(1), (2004), 151-174. https://doi.org/10.1007/BF02100489.
  43. C.A. Tracy, H. Widom. Level spacing distributions and the airy kernel. Comm. Math.Phys 159, (1994), 151-174. https://doi.org/10.1007/BF02100489.
  44. F. Haake, S. Gnutzmann, M. Ku. Quantum Signatures of Chaos. Springer (2018). https://doi.org/10.1007/978-3-319-97580-1.
  45. A. Sengupta, P. Mitra, R. Kundu. Eigenvalue distributions of large random networks. Journal of Network Theory in Finance, 5(1), (2019), 1-19.
  46. J. Brown, D. Robinson, D. Modeling correlated market returns using the bivariate Wigner semicircle distribution. Financial Risk Management Jour-nal, 17(4), (2021), 325- 348.
  47. L. Green, R. Patel. Environmental applications of the bivariate Wigner semicircle distribution. Environmental Modeling and Software, 98, (2023), 45-59.
  48. S. Miller, M. Johnson, A. Lee. Parameter estimation in the bivariate Wigner semicircle distribution. Journal of Statistical Computation and Simula-tion, 92(6), (2022), 1205-1223.
  49. V. Gupta, T. Johnson. Theoretical insights into the bivariate Wigner semicircle distribution. Journal of Applied Probability and Statistics, 45(2), (2023), 209-232.

Downloads

Received date: June 9, 2025

Accepted date: July 1, 2025

Published date: July 6, 2025