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Abstract

Analysing the properties of a probability distribution is a question of general interest. In this paper we describe
the properties of the matrix-exponential class of distributions, developing some properties for the discrete case and
proving the closure properties, which for the case of phase-type distributions are extended to the matrix-exponential
case, this not being an immediate consequence. Given the structure of this class of distributions, we were able to
achieve the results in both matrix and algorithmic form. These results can be used in stochastic modelling, and in
the latter case, the model can be analysed in matrix and algorithmic form.
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1 Introduction

Analysing the properties of a probability distribution is a question of immediate interest. These properties enable us
to determine the internal structure of the distribution and can be used to study various associated measures. In this
paper we analyse certain properties of matrix-exponential distributions (ME), which were preceded by the phase-type
(PH) class. This class of distributions, with an underlying Markov structure, enables us to express in algorithmic
and algebraic form certain results and measures that are intractable when complex probability models are developed
in a classical form. This class of distributions has been used in several fields, such as telecommunications, queuing
theory, survival analysis and reliability theory. It was introduced by Neuts (1975)[1] and a comprehensive treatment
of its properties was provided in Neuts (1981) [2]. Among these properties is the fact that the class of phase-type
distributions is closed under a variety of operations; this has been considered in the modelling of systems in fields
such as reliability and queuing theory. Some examples are given in Shaked and Shantikumar (1985)[3]; more recently,
Pérez-Ocón and Ruiz-Castro (2004)[4] investigated general repairable systems involving phase-type distributions.
One important property of phase-type distributions is that they are dense in the class of all distributions defined
on non-negative real numbers. A characterization of this class of distributions is given in O’Cinneide (1990)[5],
following the structure of the Laplace-Stieltjes transform.

The class of ME distributions is wider than that of phase-type distributions. Both classes have distributions with
the same form but representations of ME distributions do not necessarily have a simple probabilistic interpretation.
Given that the representations have a similar form, when a ME distribution is considered in complex analysis, the
results can also be achieved in an algorithmic form.

On the other hand, the ME class can be considered a class with a rational Laplace-Stieltjes transform. This fact
characterizes this class of distributions, and was proven by Asmussen and Bladt (1997)[6]. A study of this class of
distributions is given in the latter paper and in Asmussen and O’Cinneide (1998)[7]. ME distributions have been
applied in several fields, particularly in queuing theory, and can be interpreted in various ways. Thus, Bladt and
Neuts (2003)[8] consider an interpretation via flows, using random stopping times of deterministic flows. In addition,
they introduced a generalization of the Markovian arrival process (MAP) to the setting of ME distributions, thus
obtaining the Rational arrival process (RAP). Other studies have also been performed with ME distributions;
Fackrell (2005)[9] developed a characterization for ME distributions and used it for fitting data by maximum
likelihood estimation. In this paper we analyse the overparameterizing of ME distributions.
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We study ME distribution and develop its properties. The ME distribution has useful properties that allow it to
be used in the construction of general analytical models. For the discrete case, a characterization is made using the
probability generating function of a discrete ME distribution. The closure properties of phase-type distributions
are extended to the ME class of distributions. This extension is not an immediate consequence from the phase-type
case.

The Kronecker product and its properties are commonly used in matrix-analytical methods when PH distribu-
tions are presented, and also with ME distributions. We define this and present some of its properties.

Definition 1.1. If M and N are rectangular matrices with dimensions m1 ×m2 and n1 ×n2 respectively, then their
Kronecker product M⊗N is a matrix with dimension m1n1 ×m2n2 written in a block partitioned form as (MijN)
for i = 1, . . . ,m1 and j = 1, . . . ,m2.

Kronecker product property. If M, N, U and V are rectangular matrices with appropriate dimensions for defining
the products MU and NV then

(M⊗N) (U⊗V) = MU⊗NV.

Definition 1.2. If M and N are rectangular matrices of order m and n respectively and Im and In identity matrices
of order m and n respectively then their Kronecker sum M⊕N is

M⊕N = M⊕ In + Im ⊕N.

Kronecker sum property. If M and N are rectangular matrices of order m and n respectively, then

exp (M⊕N) = exp (M))⊗ exp (N) .

The paper is organized as follows: the matrix-exponential distribution is defined in Section 2 for the discrete
and continuous case, and its properties are shown. Section 3 focuses on analysing the closure properties of ME
distributions. Finally, concluding remarks are shown in Section 4.

2 Probability of matrix-exponential distributions

In this section matrix-exponential distributions (ME), in the discrete and continuous cases, are defined. Throughout
the paper, I denotes the identity matrix and e a column vector of ones, in both cases with the appropriate order.
Also, the transpose of a matrix A is denoted as A′.

2.1 Continuous ME distributions

Definition 2.1. A continuous non-negative random variable is distributed according to a ME distribution with
representation (β,S, ν) if its density function has the form

g(t) = βexp(St)ν ; t ≥ 0

where β is a row vector, ν is a column vector and S is a matrix in which complex entries are allowed. The order of
the matrix S is the dimension of the representation.

Matrix S must be non singular and the following conditions are necessary: −βS−1ν = 1 and βν ≥ 0.
The distribution function is given by

F (t) = 1 + β exp(St)S−1ν = 1 + βS−1 exp(St)ν ; t ≥ 0,

and the moment generating function (mgf) is

B̂(s) = β (−sI − S)−1
ν.

Given the mgf the Laplace-Stieltjes transform is

φ(s) = β (sI − S)−1
ν ; Re(s) > 0. (1)

The n − th moment has the expression
(−1)n−1n!βS−n−1ν.

From the above expression, the expected value of a ME distribution with representation (β,S, ν) is βS−2ν.
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2.2 Discrete ME distributions

Definition 2.2. A discrete non-negative random variable is distributed according to a ME distribution with repre-
sentation (α,T, s)if its probability mass function (pmf) is

pk = αTk−1s ; k ≥ 1.

The matrix I−T must be non-singular and it is verified that α(I−T)−1s = 1 ; αs ≥ 0 and αTk−1s ≥ 0, for k ≥ 1.
The order of the matrix T is the dimension of the representation. The distribution function of this distribution is
given by

F (n) = α(I −Tn)(I −T)−1s = 1 − αTn(I −T)−1s ; n ≥ 1,

and the survival one is
S(n) = αTn(I −T)−1s ; n ≥ 1.

From the above definition, the probability generating function (pgf) is calculated and has the form

P (z) = zα (I − zT)−1 s = α (z−1I −T)−1
s, (2)

with factorial moments
P (k)(1) = k!αTk−1 (I −T)−k−1 s = k!α (I −T)−k−1 Tk−1s,

where P (k)(1) = dk

dkz
P (z)∣

z=1
.

Therefore, the expected value of a ME distribution with representation (α,T, s) is

µ = P (1)(1) = α (I −T)−2 s.

In this section, two useful properties are proven. A characterization is made using the probability generating
function (Proposition 2.3) and any discrete ME distribution can have a representation (α,T,u) with u = e −Te,
proven in Proposition 2.4.

Proposition 2.3. The probability generating function of a discrete Matrix-Exponential distribution can be written
as

P (z) = b1z
n + b2z

n−1 +⋯ + bn−1z
2 + bnz

anzn + an−1zn−1 +⋯ + a1z + 1
(3)

for some n ≥ 1 and constants a1, a2 , . . .,an, b1, b2, . . . , bn. Moreover, the distribution has the following represen-
tation (α,T,u)

α = (b1, b2, . . . , bn),

T =
⎛
⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 ⋯ 0 0
0 0 1 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 0 ⋯ 0 1
−an −an−1 −an−2 −an−3 −an−4 ⋯ −a2 −a1

⎞
⎟⎟⎟⎟⎟
⎠

,u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0
⋮
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4)

Proof. Let us consider a discrete ME distribution with representation (β,S, ν). The probability generating function
for a discrete ME distribution is given in (2) and the following expression is obtained from Proposition 2.3. given
in Asmussen and Bladt (1997)[6]. The Laplace-Stieltjes transform given in (1) can be written as

f̂(s) = β (sI − S)−1
ν = b1 + b2s + b3s

2 +⋯ + bnsn−1

sn + a1sn−1 +⋯ + an−1s + an
,

for some n ≥ 1 and constants a1, a2 , . . .,an, b1, b2, . . . , bn.
If it is considered then

P (z) = zβ (I − zS)−1
ν = β (z−1I − S)−1

ν

= f̂(z−1) = b1z
n + b2z

n−1 +⋯ + bn−1z
2 + bnz

anzn + an−1zn−1 +⋯ + a1z + 1
.
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It remains to be proved that the probability generating function (3) coincides with zα (I − zT)−1 u, where α ,
T and u are given in (4). The following expression, f̂(s) = α (sI −T)−1 u, is proved in Proposition 2.3 in Asmussen
and Bladt (1997)[6]. The proof is completed given that P (z) = f̂(z−1).
Proposition 2.4. For any discrete ME distribution, their exists a representation (α,T,u) such that Te + u = e.

Proof. A minimal representation (β,S, ν) of the ME distribution is considered and the probability mass function
is equal to f(k) = βSk−1ν.

Let M be a non-singular matrix; then

f(k) = βMM−1Sk−1MM−1ν = βM(M−1SM)k−1M−1ν.

This matrix must verify M−1ν +M−1SMe = e which is equivalent to Me = (I − S)−1ν.
Using the structure given in (4) from Proposition 2.3 we can consider the matrix M with the following form

M = 1
1 +∑i ai

I.

Then the result is obtained with α = βM, T = S and u = M−1ν.

Remark 2.5. A discrete ME distribution with representation (α,T,u), such that u = e −Te, will be denoted as
(α,T). Analogously for the continuous case with the condition u = −Te.

In general, for the discrete and continuous cases, the representation of a ME distribution is not unique as can
be seen in Asmussen and Bladt (1997) [6]. The minimal one is defined as follows.

Definition 2.6. A representation (α,T, s) of a matrix-exponential distribution is said to be minimal if it has the
lowest possible dimension.

3 Closure properties of ME distributions

The result of several operations involving ME distributions again has a ME distribution. This aspect is important
when ME distributions are considered in applications and for studying properties for different probabilistic models.
Complex operations that in general require numerical expressions are replaced by matrix ones with these properties.
This is very useful because the results obtained are expressed in algorithmic and matrix forms, which makes it
possible to implement the results computationally. For each case, the representation of the ME distribution is
given.

3.1 Convolution and mixture operators

Proposition 3.1. Let F (⋅) and G(⋅) continuous (or discrete) ME distributions with representations (α1,T1, s1)
and (α2,T2, s2) respectively. Then the convolution F ∗G(⋅) is a ME distribution with representation (γ,L, ν) where
γ = (α1,0), ν = (0, s2)′ and

L = ( T1 s1α1

0 T2
) .

Proof. The Laplace-Stieltjes of (γ,L, ν) is given by φ(s) = γ(sI−L)−1ν. Given the expressions of the above matrices

γ (sI −L)−1 u = (α1,0)( sI −T1 −s1α
0 sI −T2

)
−1

( 0
s2

)

= (α1,0)( (sI −T1)−1 (sI −T1)−1 s1α2 (sI −T2)−1

0 (sI −T2)−1 )( 0
s2

) ,

which is equal to
α1 (sI −T1)−1 s1α2 (sI −T2)−1 s2.
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Proposition 3.2. Let (p1, p2, . . . , pn) be a discrete probability distribution and Fj(⋅), 1 ≥ j ≥ n continuous ME
distributions with representations (αj ,Tj , sj). The mixture is ME distributed with representation

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(p1α1, p2α2, . . . , pnαn),

⎛
⎜⎜⎜
⎝

T1 0 ⋯ 0
0 T2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ Tn

⎞
⎟⎟⎟
⎠

,

⎛
⎜⎜⎜
⎝

s1

s2

⋮
sn

⎞
⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof. The distribution of the mixture is given by

F (t) =
n

∑
i=1

piFi(t) =
n

∑
i=1

pi (1 + αi exp(Tit)T−1
i si) = 1 +

n

∑
i=1

piαi exp(Tit)T−1
i si

= 1 + (p1α1, p2α2, . . . , pnαn)

⋅ exp

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜
⎝

T1 0 ⋯ 0
0 T2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ Tn

⎞
⎟⎟⎟
⎠

t

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜
⎝

T1 0 ⋯ 0
0 T2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ Tn

⎞
⎟⎟⎟
⎠

−1

⎛
⎜⎜⎜
⎝

s1

s2

⋮
sn

⎞
⎟⎟⎟
⎠

,

which completes the proof.

A result with infinite mixtures is given in the following proposition.

Proposition 3.3. Let {sl} be a discrete ME density with representation (β,S, ν) and F (⋅) a continuous ME
distribution with representation (α,T,u). Then the mixture of the successive convolutions of F (⋅) distribution,
∑∞

l=0 slF
(l)(⋅), is ME distributed with representation (γ,L, r) and

γ = α⊗ β ; L = T⊗ I + uα⊗ S and r = u⊗ ν.

Proof. Let P (z) and f(z) be the probabilitites generating function and the density function of a discrete and
continuous ME distribution respectively; then

P (z) = zβ (I − zS)−1
ν

f(s) = α (sI −T)−1 u.

The Laplace-Stieltjes transform of the mixture is given by

P (f(s)) = f(s)β (I − f(s)S)−1
ν.

This result is proved if,
γ (sI −L)−1 r = f(s)β (I − f(s)S)−1

ν.

Firstly, let us prove the inverse matrix. We denote it as U = (sI −L)−1, then

I = (sI −L)−1 U = sU − (T⊗ I)U − [uα⊗ S]U.

Given that I−T is a non-singular matrix, sI−T⊗ I = (sI −T)⊗ I is also non-singular and so the above expression
can be written as

(sI −T⊗ I)U = I + [uα⊗ S]U,

and then
(sI −T)−1 ⊗ I = [I − [(sI −T)−1 ⊗ I] [uα⊗ S]]U.

Therefore

U = [I − [(sI −T)−1 ⊗ I] [uα⊗ S]]−1 [(sI −T)−1 ⊗ I]

=
∞
∑
i=0

[(sI −T)−1 uα⊗ S]i [(sI −T)−1 ⊗ I]

=
∞
∑
i=0

[(sI −T)−1 uα]i (sI −T)−1 ⊗ Si.

And finally
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γ (sI −L)−1 r = (α⊗ β) [
∞
∑
i=0

[(sI −T)−1 uα]i (sI −T)−1 ⊗ Si] (u⊗ ν)

=
∞
∑
i=0

α [(sI −T)−1 uα]i (sI −T)−1 u⊗ βSiν

Given that f(s) = α (sI −T)−1 u,

α [(sI −T)−1 uα]i (sI −T)−1 u = α [(sI −T)−1 uα]i+1 = f(s)i+1,

and so

γ (sI −L)−1 r =
∞
∑
i=0

f(s)i+1 ⊗ βSiν =
∞
∑
i=0

f(s)β (f(s)S)i
ν = f(s)β (I − f(s)S)−1

ν.

An analogous result can be proved when F (⋅) is a discrete ME. We show it without proof.

Proposition 3.4. Let {sl} and {pj} be discrete ME densities with representations (β,S, ν) and (α,T,u) of orders
n and m respectively. Then the distribution ∑∞

l=0 sl{pj}(l), is ME distributed with representation (γ,L, r) and

γ = α⊗ β ; L = T⊗ I + uα⊗ S and r = u⊗ ν.

3.2 Maximun and minimum operators

In several fields, such as reliability and queuing theory, maximun and minimun operators are frequently used. The
closure properties for these operators have been studied for different classes of distributions.

Proposition 3.5. Let F1(⋅) and F2(⋅) be ME distributions with representation (α1,T1, s1) and (α2,T2, s2) respec-
tively. Then the operator max(F1, F2) is ME distributed with representation (γ,L,u) being

γ = (α1 ⊗ α2, α1, α2) ; u = ((T−1
1 ⊕T−1

2 ) (s1 ⊗ s2) , s1, s2)′ ,

L =
⎛
⎜
⎝

T1 ⊕T2 0 0
0 T1 0
0 0 T2

⎞
⎟
⎠

.

Proof. The distribution function of a ME distribution with representation (γ,L,u) is equal to

F (t) = 1 + (α1 ⊗ α2, α1, α2)
⎡⎢⎢⎢⎢⎢⎣
exp

⎛
⎜
⎝
⎛
⎜
⎝

T1 ⊕T2 0 0
0 T1 0
0 0 T2

⎞
⎟
⎠

t
⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦

⎛
⎜
⎝

T1 ⊕T2 0 0
0 T1 0
0 0 T2

⎞
⎟
⎠

−1

⋅
⎛
⎜
⎝

(T−1
1 ⊕T−1

2 ) (s1 ⊗ s2)
s1

s2

⎞
⎟
⎠

= 1 + (α1 ⊗ α2, α1, α2)
⎛
⎜
⎝

exp ((T1 ⊕T2) t) 0 0
0 exp (T1t) 0
0 0 exp (T2t)

⎞
⎟
⎠

⋅
⎛
⎜
⎝

(T1 ⊕T2)−1 0 0
0 T−1

1 0
0 0 T−1

2

⎞
⎟
⎠
⎛
⎜
⎝

(T−1
1 ⊕T−1

2 ) (s1 ⊗ s2)
s1

s2

⎞
⎟
⎠

= 1 + (α1 ⊗ α2) exp ((T1 ⊕T2) t) (T1 ⊕T2)−1 (s1 ⊗ s2) + α1 exp (T1t)T−1
1 s1

+α2 exp (T2t)T−1
2 s2.

The expression (T−1
1 ⊕T−1

2 ) (s1 ⊗ s2) can be expressed in the following way,

(T−1
1 ⊕T−1

2 ) (s1 ⊗ s2) = T−1
1 s1 ⊗ s2 + s1 ⊗T−1

2 s2

= (T1 ⊕T2) (T−1
1 s1 ⊗T−1

2 s2) . (5)
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Therefore, the distribution function can be expressed as

F (t) = 1 + (α1 ⊗ α2) exp ((T1 ⊕T2) t) (T−1
1 s1 ⊗T−1

2 s2) + α1 exp (T1t)T−1
1 s1

+α2 exp (T2t)T−1
2 s2

= 1 + α1 exp (T1t)T−1
1 s1α2 exp (T2t)T−1

2 s2 + α1 exp (T1t)T−1
1 s1

+α2 exp (T2t)T−1
2 s2

= [1 + α1 exp (T1t)T−1
1 s1] [1 + α2 exp (T2t)T−1

2 s2]
= F1(t)F2(t).

Remark 3.6. Another representation is given by (γ,L,u), where

γ = (α1 ⊗ α2,0,0) L =
⎛
⎜
⎝

T1 ⊕T2 0 0
0 T1 0
0 0 T2

⎞
⎟
⎠

; u = (0, s1, s2)′ .

Proposition 3.7. Let F1(⋅) and F2(⋅) be ME distributions with representation (α1,T1, s1) and (α2,T2, s2) respec-
tively. Then the operator min(F1, F2) is ME distributed with representation (γ,L,u) being

γ = (α1 ⊗ α2) ; L = T1 ⊕T2 ; u = − (T−1
1 ⊕T−1

2 ) (s1 ⊗ s2) .

Proof. The argument is similar to that described in Proposition 3.5. The distribution function of a ME distribution
with representation (γ,L,u) is

F (t) = 1 − (α1 ⊗ α2) exp ((T1 ⊕T2) t) (T1 ⊕T2)−1 (T−1
1 ⊕T−1

2 ) (s1 ⊗ s2) .

and after operating on it and considering (5) we have

F (t) = 1 − (α1 ⊗ α2) exp ((T1 ⊕T2) t) (T−1
1 s1 ⊕T−1

2 s2)
= 1 − α1 exp (T1t)T−1

1 s1α2 exp (T2t)T−1
2 s2

= 1 − (1 − F1(t)) (1 − F2(t)) .

3.3 Integral operator

In fields such as reliability, given a probability distribution it is of interest to analyse the mean time by time t. To
study this, the integral calculus must be considered. With the following results, the integrals can be replaced by
algebraic operations, thus providing algebraic results.

Proposition 3.8. Let (α,T,u) be a minimal representation of a ME distribution F (⋅). Then F ∗(t) = 1
µ ∫

t
0 (1 − F (r))dr

is the distribution function of a ME distribution, where µ is the expected value of F (⋅). The representation of this
new distribution is given by (π,T,u), being π = −µ−1αT−1.

Proof.

F ∗(t) = 1
µ
∫

t

0
(1 − F (r))dr = 1

αT−2u
αT−1 (I − exp (Tt))T−1u

= 1 − 1
αT−2u

αT−1 exp (Tt)T−1u

= 1 + π exp (Tt)T−1u.

Remark 3.9. The vector π is the unique solution of the system

π (T + uα) = 0 ; −πT−1u = 1

and verifies πu = µ−1. Moreover, F also has the representation (π′,T, ν), where π′ = −µ−1α and ν = T−1u.
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Corollary 3.10. Let (α,T,u) be a minimal representation of a ME distribution with expected value equal to µ and
with distribution function F (⋅). Then, the function F ∗(t) = 1

µ ∫
t
0 (1 − F (r))dr is the distribution function of a ME

distribution with representation (ω,S), being ω = −µ−1αT−1M and S = M−1TM, where M is the matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
an

0 0 0 0 ⋯ 0 0
0 −1 1 0 0 ⋯ 0 0
0 0 −1 1 0 ⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 0 0 ⋯ −1 1
−1 0 0 0 0 ⋯ 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

being an the value given in Corollary 2.1 in Asmussen and Bladt (1997)[6].

Proof. Let us consider the Corollary 2.1., given in Asmussen and Bladt (1997)[6], to express the ME distribution
(α,T,u) through the representation (β,S), where β = αM and S = M−1TM. From this new representation and
after operating, the function F ∗ has the following expression:

F ∗(t) = 1 + µ−1βS−1 exp (St)e = 1 + µ−1αT−1M exp (St)e = 1 − ω exp (St)e.

Remark 3.11. The vector ω is the unique solution for the system ω (S + νβ) = 0 verifying ωe = 1, where ν = −Se.
It is verified that ων = µ−1. The vectors ω and π are related through the expression ω = πM.

4 Conclusions

Analogously to PH ones, ME distributions have a structured form, which allows us to work in an algorithmic
form in stochastic models in which these distributions are involved. We show that the closure properties of PH
distributions can be extended to the wider class of ME distributions, also in a well structured form. This extension
is not an immediate consequence from the properties of PH distributions. In addition, we show a characterization
for discrete ME distributions and some properties are proved. These properties enable us to facilitate stochastic
modelling in several fields. Given that PH distributions are dense in the set of non-negative distributions, the ME
class is also dense. For this reason, in stochastic modelling, when general distributions are involved, the latter can be
approximated by ME distributions. This methodology allows us to develop the models and to deduce the measures
in a tractable, algebraic and algorithmic form. We show that operations which require numerical integrations can
be replaced by matrix operations. This class of distributions is not subject to probabilistic interpretation as are PH
distributions, and they can be physically interpreted.
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