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Abstract 
 

This paper is a review of existing methods with illustrative examples for choice of model in descriptive time series. The methods re-

viewed are three graphical methods, X-12 ARIMA method and the method of seasonal differences and quotients. For each method, the 

same illustrative example and simulated data were used to demonstrate each method. The results obtained from the various methods us-

ing simulated additive and multiplicative series show that the various methods identified correctly the appropriate model for decomposi-

tion. Also, applying the various methods to quarterly sales of petroleum products from 2004-2013, the result reviewed that the appropri-

ated model for decomposition of the series is the multiplicative model. 
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1. Introduction 

Identification of patterns and choice of model in time series data is 

critical to facilitate forecasting. Two patterns that may be present-

ed are trend and seasonality and the two competing models are the 

additive and multiplicative models Iwueze and Nwogu, [13]. De-

scriptive time series also known as the decomposition of time 

series is the separation of the observe time series into four compo-

nents represented by the trend (
t

T ), seasonal (
t

S ), cyclical(
t

C ) 

and the irregular (
t

e ) components. Identification of the trend in-

formation helps to measure the trend and its removal help to ana-

lyse other fluctuations Chatfield [5]. One of the advantages for 

decomposition is to estimate seasonal effect that can be used to 

create and present seasonally adjusted values. 

Decomposition models are typically additive or multiplicative, but 

can also take other forms such as pseudo-additive (combining the 

elements of both the additive and multiplicative models). For short 

term series, the cyclical is embedded in the trend Chatfield [5]. 

These models are; 

Additive Model: 

 

t t t t
X M S e                                                                             (1.1) 

 

Multiplicative Model: 

 

t t t t
X M S e                                                                             (1.2) 

 

Pseudo-Additive: 

 

t t t t
X M S e                                                                             (1.3) 

 

Where 
t

M  is the trend-cycle component; 
t

S  is the seasonal com-

ponent and 
t

e is the irregular or random component. For the addi-

tive model (1.1), it is assumed that the error component 
t

e is the 

Gaussian white noise  2

1
0,N  and the sum of the seasonal com-

ponent over a complete period is zero  
0

0
s

j
j

S


 . While for the 

multiplicative model (1.2), 
t

e is the Gaussian white noise 

 2

2
1,N  and the sum of the seasonal component over a complete 

period is s  
0

s

j
j

S s




 An important part of the analysis of a time series is the selection 

of a suitable model for decomposition. The aim of this paper is to 

present the various methods used in the choice between additive 

and multiplicative models in time series decomposition. The ra-

tional for this paper is that most existing methods are subjective 

and tedious. Hence there is need for alternative method that can 

easily aid the choice between additive and multiplicative model in 

time series decomposition. 

2. Buys- ballot representation of seasonal time 

series 

A Buys-Ballot table summarizes data to show seasonal variation 

(Table 1). Each line in the table is one period (usually a year) and 

each column is a season of the period/year (12 months, 4 quarter 

52 week etc). A cell, (i,j), of this table contain the mean value for 

all observations made during the period i  at the seasonal j. To 

analyse the data, it is helpful to include the period and seasonal 

totals
. .

( )
i j

T and T , period and seasonal averages
. .

( )
i j

X and X . Ac-

cording to Wei [19], the arrangement of data in this manner in a 

table is credited to Buys-Ballot [4]. Hence, the table has been 

called the Buys-Ballot table in the literature. To increase the utility 

http://creativecommons.org/licenses/by/3.0/
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of the table for the purpose of this paper, we have introduced the 

mean and seasonal standard deviation 
. . .

ˆ( )
j j

X and  as part of the 

Buys-Ballot table. 

 

 
Table 1: Buys-Ballot Table 

Period ( i ) Seasons 

 1 2 … J … S 

1 11
X  

12
X  … 1 j

X  … 1s
X  

2 21
X  

22
X  … 2 j

X  … 2s
X  

3 31
X  

32
X  … 3 j

X  … 3s
X  

… … … … … … … 

 1i
X  

2i
X  … ij

X  … is
X  

… … … … … … … 

.T  
1m

X  
2m

X  … mj
X  … ms

X  

̂  .1
T  

.2
T  … . j

T  … .s
T  

. j
X  

.1
X  

.2
X  … . j

X  … .s
X  

.
ˆ

j
  

.1
̂  

.2
̂  … .

ˆ
j

  … .
ˆ

s
  

Source: Iwueze and Nwogu (2014). 

 

( 1)
, 1, 2, ... , , 1,2,...,

ij i s j
where X X i m j s

 
   is the series, m  is 

the number of periods/years, s  is the periodicity, and n ms  is 

the overall number of observation/sample size. 

. j
T   Total for jth  season, 

. j
X  Average of jth  season 

.
ˆ

j
  Standard deviation for jth season. 

For easy understanding of Table 1 we will in this paper work de-

fine the column averages and standard deviation as follows:  

 

.

. ( 1)
1

1
, 1, 2, ... ,

m
j

j i s j
i

T
X X j s

m m
 



  
 

 

 
2

. ( 1) .
1

1
ˆ , 1, 2, ... ,

1

m

j i s j j
i

X X j s
m


 



  
  

3. The graphical methods 

The most use method for choice of model in descriptive time se-

ries is the graphical method. Brockwell and Davis [2], use the time 

plot of the entire series to choose a particular model for decompo-

sition. The multiplicative model was adopted when the magnitude 

of the seasonal pattern in the data depends on the magnitude of the 

series. In other words, the magnitude of the seasonal pattern in-

creases as the data value increases and decreases as the data value 

decreases. The additive model was adopted when the magnitude of 

the seasonal pattern does not change as the series goes up and 

down. Chatfield [5] noted that if the seasonal variation stays 

roughly the same size regardless of the mean level, then it is addi-

tive but if it increases in size in direct proportion to the mean lev-

el, the appropriate model for decomposition is the multiplicative 

models.  

A better interpretation of the methods of Brockwell and Davis, 

and Chatfield [2], [5] is given in Iwueze et al. [12]. Instead of 

using the seasonal pattern as display by the time series plot of the 

entire series, they used the relationship between the plot of the 

seasonal means and seasonal standard deviation derived from the 

Buys-Ballot Table (see Table 1). A plot of the seasonal means 

.
( )

j
X against the periodicity (s) is compared with the plot of the 

seasonal standard deviation 
.

ˆ( )
j

 against the periodicity (s). They 

noted that the additive model be used for decomposition when the 

seasonal standard deviation shows no appreciable in-

crease/decrease with respect to any increase or decrease in the 

seasonal means. The multiplicative model is used for decomposi-

tion when the seasonal standard deviation shows appreciable in-

crease/decrease with respect to any increase or decrease in the 

seasonal means. 

Dagum [8] suggested the use of X-12 ARIMA package for the 

choice of appropriate model for decomposition. The X-12 ARIMA 

has flexible capabilities for handling calendar effects, better diag-

nostics for handling large numbers of series. The X-12 ARIMA 

seasonal adjustment extract the different components (Trend, Sea-

sonal, Cyclical and Irregular component) for a monthly or quarter-

ly time series data. In adjusting the data for seasonal variations, a 

major concern is whether to decompose the series with additive or 

multiplicative decomposition Findley et al.[9]. The procedures 

make additive or multiplicative adjustment and create an output 

data set containing the adjusted time series. The decomposition is 

done with a combination of moving average filters called X-11 

Shiskin et al [18]. With the multiplicative decomposition, the sea-

sonal factors are centered on one, always positive, and divided 

into the original series. With additive decomposition, the seasonal 

factors are centered on zero and subtracted from the original se-

ries. The X-12 ARIMA is an inbuilt function in E-view statistical 

software. Dagum [8] noted that the decomposition for both addi-

tive and multiplicative models should be done separately. The 

choice for appropriate model should be base on the decomposition 

model that yields the higher stable seasonality F-value. 

4. Method of coefficient of variation of season-

al differences and quotients 

The method of coefficient of variation of seasonal differences and 

quotients is well described in Justo and Rivera [14]. The seasonal 

differences was computed by taking the difference between a cer-

tain season of a year and the same season from the year before 

while the seasonal quotient was computed as the quotient of a 

certain season of a year and the same season from the year before. 

The seasonal differences and quotients are better described by 

using the notation in Table 1. That is, 

Seasonal Difference ( )
ij

D was define as 

 

( 1)ij ij i j
D X X


 

                                                                       (4.1) 

 

And seasonal quotient 

 

( 1)

ij

ij

i j

X
Q

X




                                                                               (4.2) 

 

Thereafter the coefficient of variation of the seasonal differences 

 ( )cv d and the coefficient of variation of the seasonal quotients 

 ( )cv q are computed as 

 

i
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tan ( )

( )
( )

ij

ij

s dard deviation D
CV d

Average D


                                               (4.3)

 

 
tan ( )

( )
( )

ij

ij

s dard deviation Q
CV q

Average Q


                                                (4.4) 

 

The decision rule that aid the choice of model was define as 

Choose the Additive model if 

 

( ) ( )CV q CV d
                                                                      (4.5) 

 

Choose the Multiplicative model if 

 

( ) ( )CV q CV d
                                                                    (4.6) 

5. Method of seasonal variance of the buys-

ballot table 

Iwueze and Nwogu [13] using Table 1 when 
t

M a bt  obtained 

the following results for the additive and multiplicative models 

 

2

2

.

2 2

( )
, mod

12

ˆ

( )
, mod

12

j

j

n n s
b for additive el

n n s
b S for multiplicative el



  
  

 


 

   

     

  (5.1) 

 

Iwueze and Nwogu [13] proposed the following tests for additivity 

 
2 2 2

0 .1 .2
: . . .

s
H     

                                                               (5.2)

 

 

Against the alternative; 

 
2 2

1 . .
: ,

j j
H for at least one j j 


 
                                        (5.3) 

 

Parametric tests (see Bartlett test [1]; Cochran test [6]; Hartley test 

[11]; Levene test [15]; O’Brien test [16] and non-parametric tests ( 

non-parametricLevene test (Nordstokke and Zumbo [16]; Brown-

Forsythe test [3]; Flighner- Killeen test [10]; Square Rank test [7] 

for equality of variance assume random sample, independence 

within sample, mutual independence andmeasurement scale is at 

least interval. However, for time series data, all these tests are 

violated except for measurement scale at interval. Hence, the par-

ametric and non-parametric tests for equality of variance ought to 

be compared in terms of power and robustness. Another critical 

point with this proposal has to do with the case when there is no 

trend ( 0)b  because the seasonal variances of Equation (5.1) are 

zero. This proposal ought to be looked at to compensate for cases 

where there is no trend in a series and for comparison of the meth-

ods in order to determine power and robustness. 

6. Empirical examples 

In this paper, simulated and real life data will be use to demon-

strate the three methods described above. 

6.1. Simulations of both additive and multiplicative se-

ries 

In this paper, one hundred (100) random digits of length one hun-

dred and twenty (120) from a normal distribution ( ~ (0,1))
t

e N

were simulated and used for additive series simulation. Also one 

hundred (100) random digits of length one hundred and twenty 

(120) from a normal distribution ( ~ (1, 0.09))
t

e N  were simulated 

and used for multiplicative series simulation. 

 
mod

( )

t t t t

t

for additive el

X M S e

M a b t

  

 
 

 

1 2 3 4 5

6 7 8

9 10 11 12

1.5, 2.5, 3.5, 4.5,

1.5, 2.5, 3.5, 4.5

1.5, 2.5, 3.5, 4.5

12.0, 1.0 , 2.0

S S S S S

S S S

S S S S

s a b

     

     

     

  

 

1 2 3 4

5 6

7 8 9 10

11 12

mod

1.0115, 1.1845, 1.3818, 1.6652,

1.7866, 1.5997,

1.1782, 0.6369 0.1566, 0.1422,

0.4792, 0.7776

12.0 1.0 , 2.0

(1, 0.09)

t t t t

t

For Multiplicative el

X M e S

S S S S

S S

S S S S

S S

s a b

and e being Gaussian N 

  

   

 

   

 

  

 white noise
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Fig. 1: Original Plot of simulated Additive Series. 
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                                                         Fig. 2:Buys-Ballot Plot of Simulated Additive Series for Seasonal Standard Deviation and Mean. 

 

The above plot of the original series shows that the seasonal varia-

tions remain the same regardless of the trend level. This shows 

that the appropriate model for decomposition is the additive mod-

el. The time plot of other series not shown in this paper follows 

similar pattern when the series is additive. 

Figure 2 above show the Buys-Ballot method propose by Iwueze 

et al [12]. From the plot above, the seasonal standard deviation 

shows no appreciable increase/decrease with respect to any in-

crease/decrease in the seasonal means. Hence the appropriate 

model for decomposition is the additive model. The plots of other 

series not shown in this paper also follows similar pattern when 

the series is additive 

X-12 Method for Simulated Additive Series 

D 8.AF-tests for seasonality (Multiplicative Decomposition) 

Test for the presence of seasonality assuming stability. 

                             Sum of      Dgrs.of       Mean 

                             Squares    Freedom     Square     F-Value 

Between months   4212.52       11           382.95     6084.47** 

Residual                9253.96     108           85.68 

Total                     13466.48    119 

**Seasonality present at the 0.1 per cent level. 

 

D 8.AF-tests for seasonality (Additive Decomposition) 

Test for the presence of seasonality assuming stability. 

                               Sum of     Dgrs.of      Mean 

                               Squares    Freedom    Square      F-Value 

Between months    1235.15        11          112.29      140.17** 

Residual                    86.52       108          0.80 

Total                      1321.67       119 

**Seasonality present at the 0.1 per cent level. 

 

The results obtained when the method of X-12 decomposition was 

applied to the simulated additive series show that the model using 

the additive decomposition has a more stable seasonal F-Value 

compared to the model using multiplicative decomposition since 

the F-value of the additive decomposition is greater than the F-

value of the multiplicative decomposition. Other simulated series 

using the above method show similar results. 

The results obtained when the method of coefficient of variation 

of the seasonal differences and quotients were applied to the simu-

lated additive series show that the appropriate choice of model for 

decomposition is the additive model as the seasonal quotients 

were all greater than the seasonal differences (see Table 2). The 

results for additive series (6-99) not shown in Table 2 also gave 

similar results.  

The time plot of Figure 3 of the original series show that the sea-

sonal variation increases as the trend level increases. The plot 

shows that the appropriate model for decomposition is the multi-

plicative model. The time plot of other series not shown in this 

paper follows similar pattern when the series is multiplicative. 

Figure 4 below show the Buys-Ballot method propose by Iwueze 

et al. [12]. From the plot below, the seasonal standard deviation 

shows appreciable increase/decrease with respect to in-

crease/decrease in the seasonal means. Hence the appropriate 

model for decomposition is the multiplicative model. The plots of 

other series not shown in this paper also follows similar pattern 

when the series is multiplicative 
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Table 2: Summary of Results for Seasonal Differences and Quotients 

Simulated Additive Series 

Series Seasonal Difference (SD) 
Seasonal 

 Quotients (SQ) 

Decision Rule: 

Additive iff SQ SD  
Remark 

1 0.061 0.721 SQ > SD Additive  

2 0.057 0.832  ,, Additive 
3 0.061 0.765  ,, Additive 

4 0.059 0.729  ,, Additive 

5 0.055 1.484  ,, Additive 
. 

. 

. 
 

. 

. 

. 

. 

. 

. 
 

 . 
 . 

 . 
 

100 0.064 0.594  SQ > SD Additive 
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Fig. 3:Original Time Plot for Simulated Multiplicative Series. 
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Fig. 4:Buys-Ballot Plot for Seasonal Standard Deviation and Mean. 

 

X-12 Method for Simulated Multiplicative Series 

D 8.AF-tests for seasonality (Multiplicative Decomposition) 

Test for the presence of seasonality assuming stability. 

                              Sum of      Dgrs.of      Mean 

                              Squares     Freedom    Square       F-Value 

Between months   373937.89    11          33994.35    347.01** 

Residual                10580.14      108         97.96 

Total                      384518.03   119 

**Seasonality present at the 0.1 per cent level. 

 

 

D 8.AF-tests for seasonality (Additive Decomposition} 

Test for the presence of seasonality assuming stability. 

                              

                              Sum of        Dgrs.of      Mean 

                              Squares       Freedom    Square       F-Value 

Between months   541771.17       11           49251.92    33.46** 

Residual                158976.68      108         1472.01 

Total                      700747.84      119 

**Seasonality present at the 0.1 per cent level. 

 

The results obtained when the method of X-12 decomposition was 

applied to the simulated multiplicative series shows that the model 

using the multiplicative decomposition has a more stable seasonal 

F-Value compared to the model using additive decomposition 

since the F-value of the multiplicative decomposition is greater 

than the F-value of the additive decomposition. Other simulated 

series using the above method gave similar results. 
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Table 3: Summary of Results for Multiplicative Series 

Multiplicative Series 

series Seasonal Difference (SD) Seasonal Quotients (SQ) 
Decision Rule: 

Multiplicative iff SD SQ  
Remark 

1 0.976 0.592  SD > SQ Multiplicative  

2 0.954 0.648  ,, Multiplicative 

3 0.942 0.604  ,, Multiplicative 
4 0.912 0.614  ,, Multiplicative 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 . 

 . 
 . 

 

100 1.006 0.688  SD > SQ Multiplicative 

 

The results obtained when the method of seasonal differences and 

quotients were applied to the simulated multiplicative series show 

that the appropriate choice of model for decomposition is the se-

ries model as the seasonal quotients were all less than the seasonal 

differences (see Table 3). The results for multiplicative series (5-

99) not shown in Table 3 also gave similar results.  

6.2. Using real life data 

Below is the descriptive analysis of time series applied to the 

quarterly sales of petroleum products from 2004-2013 (million 

naira). These data were collected from NNPC, River State as giv-

en in column 1 and 2 of Table 5. 

The plot above shows that the seasonal variation stays roughly the 

same size regardless of the mean level. Hence the appropriate 

model for decomposition is the multiplicative model. 

Applying the Buys-Ballot method, the column mean and standard 

deviation is shown in Table 8 

 
Table 4: Column Means and Standard Deviation 

s/n Column Mean Column Standard deviation 

1 198.78 7.77 

2 187.3 10.05 

3 191.45 14.66 
4 195.01 17.76 

 

We can also see from the graphical representation of the column 

mean and standard deviation in Figure 6 show that the seasonal 

standard deviation shows applicable increase in relative to an in-

crease in the seasonal means. Hence, the suitable model for de-

composition is the multiplicative mode. 
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Fig. 5: Time Plot of the Original Series of Sales of Petroleum Product in River State. 

 

 
Fig. 6: Plot of Column Mean and Standard Deviation. 
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TheX-12 Method solution of same data is given by 

D 8.AF-tests for seasonality (Additive Model) 

Test for the presence of seasonality assuming stability. 

                                Sum of      Dgrs.of      Mean 

                                Squares     Freedom    Square    F-Value 

Between quarters     873.53          3            291.18     2.595 

Residual                  4039.60        36           112.21 

Total                        4913.13        39 

**Seasonality present at the 0.1 per cent level. 

 

D 8.AF-tests for seasonality (Multiplicative Model) 

Test for the presence of seasonality assuming stability. 

 

 

 

 

 

                               Sum of       Dgrs.of       Mean 

                               Squares      Freedom     Square      F-Value 

Between quarters     239.02           3             79.67        2.64 

Residual                   1085.38        36            30.15 

Total                         1324.39        39 

**Seasonality present at the 0.1 per cent level. 

 

The X-12 method also review a multiplicative model as the F-

value for the multiplicative model is larger than that of the addi-

tive model. 

Finally, applying the method of coefficient of variation of the 

seasonal differences and quotients, the result of the ratio of the 

absolute value of the standard deviation and average for the sea-

sonal differences was greater than that of the seasonal quotients, 

thus indicating that the appropriate model for decomposition of 

the series is the multiplicative model. 

The Seasonal quotient and difference is computed as followed 

 
Table 5: Quarterly Sales of Petroleum Product 

Month/year Price in Millions Seasonal Difference Seasonal quotient 

2004/T1 

T2 
T3 

T4 

200.48 

194.43 
202.5 

189.42 

  

2005/T1 
T2 

T3 

T4 

211.83 
193.16 

179.12 

 200.52 

11.35 
-1.27 

-23.38 

11.1 

1.06 
0.99 

0.88 

1.06 
2006/T1 

T2 

T3 
T4 

192.6 

174.83 

216.04 
186.35 

-19.23 

-18.33 

36.92 
-14.17 

0.91 

0.91 

1.21 
0.93 

2007/T1 

T2 
T3 

T4 

203.63 

196.34 
191.26 

175.55 

11.03 

21.51 
-24.78 

-10.8 

1.06 

1.12 
0.89 

0.94 

2008/T1 
T2 

T3 

T4 

201.81 
192.50 

162.60 

175.55 

-1.82 
-3.84 

-28.66 

0 

0.99 
0.98 

0.85 

1.00 
2009/T1 

T2 

T3 
T4 

186.61 

170.74 

196.46 
179.56 

-15.2 

-21.76 

33.86 
4.01 

0.92 

0.87 

1.21 
1.02 

2010/T1 

T2 
T3 

T4 

200.52 

185.30 
202.8 

205.33 

13.91 

14.56 
6.34 

25.77 

1.07 

1.09 
1.03 

1.14 

2011/T1 
T2 

T3 

T4 

191.12 
175.07 

186.31 

216.92 

-9.4 
-10.23 

-16.49 

11.59 

0.95 
0.94 

0.92 

1.06 
2012/T1 

T2 

T3 
T4 

206.24 

193.95 

192.39 
228.38 

15.12 

18.88 

6.08 
11.46 

1.08 

1.11 

1.03 
1.05 

2013/T1 

T2 
T3 

T4 

192.97 

196.64 
184.99 

192.56 

-13.27 

2.69 
-7.4 

-35.82 

0.94 

1.01 
0.96 

0.84 

Total 
 

-19.52 
36.02 
 

Standard deviation 
 

17.78276 

 

0.094686 

 

Average 
 

-0.54222 

 

1.000556 

 

Stand./Average 
 

-32.7961 
 

0.094633 
 

 

7. Conclusion 

From the foregoing, it is important to check the characteristic of 

data before appropriate model is chosen for decomposition. The 

selection of a proper model is extremely important as it reflects 

the underlying structure of the series because the fitted model in 

turn is used for future forecasting. Three methods for the choice of 

model in descriptive time series were considered and used to iden-

tify the appropriate model for decomposition. The results of the 

three methods for choice of model for both real life and simulated 

data identified the appropriate model for decomposition. These 

methods are subjective and no test was provided to justify the 
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decision rule. Hence there is need to provide alternative method 

that uses a statistical test to justify the reason for choice of model 

in descriptive time series. 
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