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Abstract 

 

In many of the studies concerning Accelerated life testing (ALT), the log linear function between life and stress which 

is just a simple re-parameterization of the original parameter of the life distribution is used to obtain the estimates of 

original parameters but from the statistical point of view, it is preferable to work with the original parameters instead of 

developing inferences for the parameters of the log-linear link function. In this paper the geometric process is used for 

the analysis of accelerated life testing under constant stress for Pareto Distribution. Assuming that the lifetimes under 

increasing stress levels form a geometric process, estimates of the parameters are obtained by using the maximum 

likelihood method for complete data. In addition, asymptotic interval estimates of the parameters of the distribution 

using Fisher information matrix are also obtained. The statistical properties of the parameters and the confidence 

intervals are illustrated by a Simulation study. 
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1 Introduction 

Due to the global competition for the development of new products in a short time and to achieve customer’s 

satisfaction manufacturing industries continuously improving their manufacturing design which makes today’s products 

and materials highly reliable. Since, in life testing experiments, time-to-failure data is used to quantify the product’s 

failure-time distribution and its associated parameters under normal operating conditions, Therefore, Testing under 

normal operating conditions require a very long period of time and need an extensive number of units under test. So it is 

usually costly and impractical to perform reliability testing under normal conditions. Under these circumstances 

Accelerated life testing (ALT) is the best choice to test the products. ALT is a quick way to obtain information about 

the life distribution of a material, component or product in which products are tested at higher than usual level of stress, 

which yields shorter life but, hopefully, do not change the failure mechanisms. Three types of stress loadings are usually 

applied in accelerated life tests: constant stress, step stress and linearly increasing stress. The constant stress loading, 

which is a time-independent test setting, has several advantages over the time-dependent stress loadings. For example, 

most products are assumed to operate at a constant stress under normal use. Therefore, a constant stress test mimics 

actual use. Failure data obtained from ALT can be divided into two categories: complete (all failure data are available) 

or censored (some of failure data are missing). Complete data consist of the exact failure time of test units, which means 

that the failure time of each sample unit is observed or known. In many cases when life data are analyzed, all units in 

the sample may not fail. This type of data is called censored or incomplete data. 

Constant stress ALT with different type of data and planning has been studied by many authors. For example, Yang [1] 

proposed an optimal design of 4-level constant-stress ALT plans considering different censoring times. Pan et al. [2] 

proposed a bivariate constant stress accelerated degradation test model by assuming that the copula parameter is a 

function of the stress level that can be described by a logistic function. Chen et al. [3] discuss the optimal design of 

multiple stress constant accelerated life test plan on non-rectangle test region. Watkins and John [4] considers constant 

stress accelerated life tests based on Weibull distributions with constant shape and a log-linear link between scale and 

the stress factor which is terminated by a Type II censoring regime at one of the stress levels. Fan and Yu [5] discuss 

the reliability analysis of the constant stress accelerated life tests when a parameter in the generalized gamma lifetime 

distribution is linear in the stress level. Ding et al. [6] dealt with Weibull distribution to obtain accelerated life test 

sampling plans under type I progressive interval censoring with random removals. Ahmad et al. [7], Islam and Ahmad 
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[8], Ahmad and Islam [9], Ahmad, et al. [10] and Ahmad [11] discuss the optimal constant stress accelerated life test 

designs under periodic inspection and Type-I censoring. 

The concept of geometric process is introduced by Lam [12], in repair replacement problems. Since then a large amount 

of studies in maintenance problems and system reliability have been shown that a geometric process model is a good 

and simple model for analysis of data with a single trend or multiple trends. For example Lam and Zhang [13] apply the 

geometric process model in the analysis of a two-component series system with one repairman. Lam [14] studied the 

geometric process model for a multistate system and determined an optimal replacement policy to minimize the long 

run average cost per unit time. Zhang [15] used the geometrical process to model a simple repairable system with 

delayed repair. So far, there are only three studies that utilize the geometric process in the analysis of accelerated life 

test. Huang [16] introduced the GP model for the analysis of ALT with complete and censored exponential samples 

under the constant stress. Kamal et al. [17] extended the GP model for the analysis of ALT with complete Weibull 

failure data under constant stress. Zhou et al. [18] implemented the Geometric Process in the constant stress accelerated 

life test model based on the progressive Type-I hybrid censored Rayleigh failure data. 

In this paper, the use of geometric process model is considered in the analysis of constant stress accelerated life testing 

for the Pareto distribution with complete data. Maximum likelihood estimates of parameters and their asymptotic 

confidence intervals are obtained. The performance of the estimates is evaluated by a simulation study. 

 

2 The model and test procedure 

2.1   The geometric process 
 

A geometric process describes a stochastic process{ , 1,2,...}nX n  , where there exists a real valued 0   such that 

1{ , 1,2,...}n

nX n    forms a renewal process. The positive number 0   is called the ratio of the GP. It is clear to see 

that a GP is stochastically increasing if 0 1   and stochastically decreasing if 1  . Therefore, the GP is a natural 

approach to analyze data from a series of events with trend. 

It can be shown that if { , 1,2,...}nX n   is a GP and the pdf of 1X  is ( )f x  with mean   and variance 2  then the pdf 

of nX  will be given be 1 1( )n nf x    with 1( ) / n

nE X     and 2 2( 1)( ) / n

nVar X    . Thus  ,  and 2  are three 

important parameters of a GP. 

 

2.2   The pareto distribution 
 

The probability density function, cumulative distribution function and survival function of the Pareto distribution with 

scale parameter   and shape parameter   are given respectively by 
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2.3   Assumptions and test procedure 

 

I. Suppose that an accelerated life test with s  increasing stress levels in which a random sample of n  identical 

items is placed under each stress level and start to operate at the same time. Let 

, 1,2,..., , 0,1,2,...,kix i n k s  denote observed failure time of thi  test item under 
thk  stress level. Whenever an 

item fails, it will be removed from the test and test is continue till all the test items failed (complete data) and the 

exact failure time kix of item is observed. 

II. The product life follows a two parameter Pareto distribution given by (1) at any stress. 

III. The shape parameter   is constant, i.e. independent of stress. 

IV. The scale parameter is a log-linear function of stress. That is, log i ia bS   , where a and b are unknown 

parameters depending on the nature of the product and the test method. 
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V. Let random variables
0 1 2, , ,..., sX X X X , denote the lifetimes under each stress level, where 

0X denotes item’s 

lifetime under the design stress at which items will operate ordinarily and sequence , 0,1,2,...,kX k s
 
forms a 

geometric process with ratio 0  . 

 

The assumption (V) which will be used in this study may be stronger than the commonly used Assumptions (I-IV) in 

usual discussion of ALTs in literature without increasing the complexity of calculations. The next theorem discusses 

how the assumption of geometric process (assumption V) is satisfied when there is a log linear relationship between a 

life characteristic and the stress level (assumption IV). 

 

Theorem 2.1: If the stress level in an ALT is increasing with a constant difference then the lifetimes under each stress 

level forms a Geometric Process. That is, If 1k kS S  is constant for 1,2,..., 1k s  , then  , 0,1,2,...,kX k s  forms a 

Geometric Process. Or Log Linear and GP model are equivalent when the stress increases arithmetically. 

 

Proof: From assumption (IV), it can easily be shown that 
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Now (2) can be rewritten as 
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This shows that the increased stress levels form an arithmetic sequence with a constant difference S . Now assume 

that 
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It is clear from (3) that 
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This implies that 

0
( ) ( )

k
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Now, the definition of GP and (4) have the evidence that, if density function of 0X is
0
( )Xf x , then the probability 

density function of kX will be given by ( ), 0,1,2, ,k kf x k s   . Therefore, it is clear that lifetimes under a 

sequence of arithmetically increasing stress levels form a geometric process with ratio  . 

Therefore the probability density function of a test item at the thk  stress level by using theorem 2.1 can be written by 
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3 The maximum likelihood method of estimation 

Here the maximum likelihood method of estimation is used because ML method is very robust and gives the estimates 

of parameter with good statistical properties. In this method, the estimates of parameters are those values which 

maximize the sampling distribution of data. However, ML estimation method is very simple for one parameter 

distributions but its implementation in ALT is mathematically more intense and, generally, estimates of parameters do 

not exist in closed form, therefore, numerical techniques such as Newton Method and some computer programs are used 

to compute them. 

The likelihood function using geometric process for the Pareto distribution under constant stress accelerated life testing 

for complete data is given by 

 

1
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The log-likelihood function corresponding (5) can be rewritten as  
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Obviously, it is difficult to obtain a closed form solution to nonlinear equations (7), (8) and (9). So, Newton-Raphson 

method is used to solve these equations simultaneously to obtain ˆˆ ,   and ̂ . 

 

4 Asymptotic confidence interval estimates 

According to large sample theory, the maximum likelihood estimators, under some appropriate regularity conditions, 

are consistent and normally distributed. Since ML estimates of parameters are not in closed form, therefore, it is 

impossible to obtain the exact confidence intervals, so asymptotic confidence intervals based on the asymptotic normal 

distribution of ML estimators instead of exact confidence intervals are obtained here. 

The Fisher-information matrix composed of the negative second partial derivatives of log likelihood function can be 

written as 
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Elements of Fisher Information matrix are 
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Now, the variance covariance matrix can be written as 
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The  100(1 )%  asymptotic confidence interval for ,   and   are then given respectively as 
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5 Simulation study 

The performance of the estimates can be evaluated through some measures of accuracy which are the standard error 

(SE), the mean squared error (MSE) and the coverage rate of asymptotic confidence intervals for different sample sizes 

and stress levels. 

To conduct a simulation study to evaluate the performance of the methods for complete data, first a sample 

, 1,2,..., , 1,2,...,kix k s i n   is generated from Pareto distribution. The values of the parameters and number of 

stress levels are chosen to be 0.5, 1.5   , 1.02   and 3,5s  . For different sample sizes 20,40,...,100n   and 

stress levels, ML estimates, the asymptotic standard error (SE), the mean squared error (MSE), lower and upper 

asymptotic CI limits and the coverage rate of the 95% confidence interval of parameters based on 400 simulations are 

obtained by our proposed model and summarized in Table 1 and 2. 
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Table1:  Simulations results based on complete data from GP Pareto with 1.02, 1.5,   0.5  and 4s   

Sample 

Size n 
Parameter MLE SE MSE LCL UCL 

95% 

Asymptotic 

CI 

Coverage 

   1.0117 0.0102 0.0103 0.76482 1.1161 0.9361 

20   1.6331 0.2127 0.2250 0.8257 2.5853 0.9680 

   0.5443 0.0241 0.0250 0.2752 0.8617 0.9680 

   1.0271 0.0052 0.0051 0.9169 1.2164 0.9795 

40   1.5206 0.0889 0.0738 0.8358 1.8764 0.9591 

   0.5068 0.0098 0.0082 0.2786 0.6254 0.9591 

   1.0292 0.0035 0.0028 0.9449 1.1945 0.9795 

60   1.5027 0.0573 0.0432 0.9280 1.7933 0.9693 

   0.5009 0.0064 0.0048 0.3093 0.5977 0.9693 

   1.0199 0.0025 0.0024 0.9116 1.1029 0.9700 

80   1.5218 0.0438 0.0367 1.1301 1.7545 0.9510 

   0.5072 0.0048 0.0040 0.3767 0.6433 0.9500 

   1.0192 0.0020 0.0018 0.9655 1.1516 0.9700 

100   1.5197 0.0351 0.0329 1.0676 1.7441 0.9640 

   0.5065 0.0039 0.0036 0.3558 0.5813 0.9600 

 

Table2:  Simulations results based on complete data from GP Pareto with 1.02, 1.5,   0.5  and 6s   

Sample 

Size n 
Parameter MLE SE MSE LCL UCL 

95% 

Asymptotic 

CI 

Coverage 

   1.0150 0.0029 0.0028 0.9318 1.1566 0.9587 

20   1.5693 0.1093 0.1035 0.8005 1.9462 0.9588 

   0.5179 0.0132 0.0139 0.2668 0.6487 0.9587 

   1.0244 0.0015 0.0011 0.9676 1.1231 0.9898 

40   1.5068 0.0501 0.0353 0.9990 1.8124 0.9790 

   0.5022 0.0057 0.0039 0.3330 0.6041 0.9797 

   1.0221 0.0011 0.0012 0.9520 1.0860 0.9400 

60   1.5163 0.0403 0.0373 1.1236 1.8982 0.9750 

   0.5054 0.0044 0.0041 0.3745 0.6327 0.9730 

   1.0182 0.0008 0.0008 0.9928 1.1128 0.9700 

80   1.5227 0.0290 0.0290 1.0869 1.7042 0.9720 

   0.5075 0.0032 0.0032 0.3623 0.5680 0.9732 

   1.0178 0.0006 0.0005 0.9636 1.0604 0.9600 

100   1.5175 0.0223 0.0194 1.2456 1.8200 0.9810 

   0.5058 0.0024 0.0021 0.4152 0.6066 0.9800 

 

6 Discussion and conclusions 

This paper deals with use of GP model in the analysis of constant stress ALT plan for Pareto distribution with complete 

data. The MLEs, SEs and MSEs of the model parameters were obtained. Based on the asymptotic normality, the 

coverage rate of 95% confidence intervals of the model parameters were also obtained. 

Results in Table 1 and 2 indicate that ˆ ˆ,   and ̂ estimates the true parameters ,   and  quite well with relatively 

small mean squared errors. For fixed ,   and   we find that as n and s increases, the mean squared errors and the 

asymptotic standard error (SE) of ,   and  decreases. It is also notice that the coverage probabilities of the 

asymptotic confidence interval are close to the nominal level and do not change much as sample size increases. From 

these results It may be concluded that the present model work well under complete data. 
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