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Abstract 
 

This research deals primarily with the hazard rate function of a class of distributions, and discusses the relation between the hazard rate 

function, and the density function. It was found that the Makeham-Gompertz mortality distribution and the truncated extreme value dis-

tribution had the same hazard rate function. We used the hazard rate function derived from these distributions to find the actuarial func-

tions. 
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1. Introduction 

The statistical and actuarial studies indicate that the mortality rates 

improve continuously in the twentieth century. Also, all of these 

studies indicate that; there is an observable improvement in the 

life expectation in the developing countries. 

Generally, the analyst of mortality examines changes in mortality 

 (x,t) as a function of both age x and time t. It was found in the 

mathematical demographic literature , and in the survival func-

tions studies, that there is a very strong relation between the haz-

ard rate function (H.R.F), which is a conditional density function 

in mortality at age x given living until the age x, mortality rates 

and statistical distributions. There are several mathematical rela-

tions between H.R.F and the survival function. 

The survival function and the mortality rates functions were de-

rived, consequently, the mortality probability functions, from the 

simple statistical distributions, (i.e.) from the Exponential distribu-

tion and the Uniform distribution. Also there are other statistical 

distributions more complicated and need complex derivations to 

these functions like Makeham-Gompertz. 

This study is going to try to present how to obtain actuarial func-

tions which, depend on statistical distributions which, could ena-

ble the company to calculate equitable premiums, and make suita-

ble reserves which do not affect liquidity or the company profit. It 

means that, that the suitable premium must not be very low; be-

cause this result in losses to the company and also, must not be 

very high; because this will result in losses in the insurance market 

in the case of competition. Also, it must be considerable that, the 

whole policy reserve for a group of policies must not be very high 

or very low, if the reserve is higher than desirable, there will be 

access in the money considerable as reserves, consequently, pre-

vent the company from investing this access in investments may 

be with high profit, whereas the reserve is less than the desirable, 

the company may not be able to face all the future. 

2. Literature review 

[12] Introduced Gumbel distribution which has application in 

missiles, rainfall, floods, general phenomenology data, shipping 

the aircraft and survival period. 

It is a unimodel with mode at x =  and has points of inflection 

at:  

 

X =     1
3 5

2
n
 

 
 

                                                          (1) 

 

=    0.96242   

 

The truncated distribution considered in that paper is obtained by 

truncating all values of x less than s and normalizing. As a result, 

the truncated pdf is unimodel with mode  if s <  (which s is 

the observed date and it is usually the date at death or the date of 

withdrawals) and is a strictly decreasing function if s   . 

[15] investigated the Gompertz distribution with hazard function 

(2) over the entire range ( ,   ) and found that the standard 

deviation of the distribution is ( / 6 ) / k. Since very little of the 

density of this distribution over ( ,   ) lies over the negative 

part of the axis for values of B and k (where the constant B indi-

cates the base level of mortality in life table, K shows the increase 

in mortality with age) conflicting with human life tables, the 

standard deviation of the time to death under the Gompertz law of 

a life aged zero is close to ( / 6 ) / k. The mode m and ageing 

parameter k of the following Gompertz law 

 

  exp
x

k x m k                                                                       (2) 

 

Are therefore the two essential parameters summarizing recent 

mortality, providing measures of location and spread respectively. 
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They obtained the cumulant function, exact moments and percen-

tiles for the Gompertz distribution with hazard function (3) 

 
kx

x
B e                                                                                        (3) 

 

Over the range ( ,   ). Their moment and percentile formulae 

can be re-arranged as follows in terms of the mode m and ageing 

constant k: 

 

Mean = m -  / k = m – 0.5772157/ k;                                         (4) 

 

Standard deviation = ( / 6 ) / k = 1.2825498 / k                       (5) 

 

100 percentile = m + [ ln (- ln (1-p))] / k ;                                   (6) 

 

(   is the Euler constant ). Comparison of (4) and (6) reveals that 

the mean should correspond to the 43.0% point of the distribution, 

whilst (6) reveals that the mode must lie at the 63.2% point of the 

distribution. 

The distribution for which equations (4)-(6) are exact, lies over the 

range ( ,  ). For values of the parameters m and k typical of 

recent human mortality, however, very little of the density func-

tion lies above the negative axis. Formulae (4)-(6) should there-

fore provide accurate approximations for the expectation of life at 

birth, the standard deviation of the time to death from birth, and 

the percentiles of the age at death random variable. The fact that 

the Gompertz distribution over ( ,  ) has a very small density 

on the negative part of the axis will compensate to some extent for 

higher-than-Gompertz mortality in a normal life table below age 

30. 

They found that the Gompertz law still provides the simplest most 

accurate representation of old age mortality, and its parameters, 

the mode and force of mortality at the mode, provide respectively 

the measures of location and spread. They found also, that the 

Gompertz law of mortality can be a very useful model for obtain-

ing quick accurate approximations for many life table functions. 

[6] discussed the problem of estimating the parameters of the left 

and the right truncated Gompertz distribution when truncation 

points are unknown. He stated that truncated distributions arise 

when sample selection and observation is not possible in some 

subregion of the sample space. This occur as a consequence of 

actual elimination of part of the original data. 

The Gompertz distribution is applicable as a model for survival 

distributions which has an increasing hazard rate for the life of the 

creatures and systems, and it is widely used in actuarial works. 

[14] showed that the mortality of a recent developed population is 

largely the mortality of old age, and most of the information about 

it may be summarized by two parameters, the first indicating the 

age near which most of the deaths occur and the second the spread 

of deaths about that age. The Gompertz law of mortality, still pro-

vides a good general representation of the age pattern of mortality 

at these ages, and its parameters, a model age at death and aging 

parameter (equal to the force of mortality at that model age) pro-

vide direct measures of location and spread. He calculated the two 

Gompertz parameters if the upper and lower quartiles of the curve 

of deaths are known, and accurate approximations to numerous 

life table functions (e.g. 
x

e ) are then immediately available. 

[16] developed methods that allow the calculation of generational 

life annuities and life expectancies from the initial period table, 

obviating the need for sets of generational tables and revision of 

these tables.  

[5] discussed the problem of estimating the parameters of the trun-

cated extreme value distribution. The method of Maximum Like-

lihood Estimating is used to estimate the parameter. Necessary and 

sufficient conditions for the existence and uniqueness of the roots 

of the likelihood equations of the model and censoring data are 

given. 

[17] used methods dependent on four important observations con-

cerning a life table of the Gompertz form. 

a) The force of mortality at the mode of the curve of deaths is 

equal to k, (where k shows the increase in mortality with 

age). 

b) The effect on life table of multiplying the force of mortality 

at every point throughout the life span by the same factor 
Nr (where r, the annual mortality improvement factor, is 

typically in the neighborhood of 1.0) to produce a new 

Gompertz life table in which a life aged x has mortality 

equivalent to a life in the original table aged x + N ln(r) /k. 

c) If a population has a cross sectional (period) life table of the 

Gompertz form with ageing parameter k, and all its mem-

bers are subject to a constant on-going annual improvement 

factor r at every age, then a member of the population aged 

x with force of mortality 
x

  under the period table has a 

Gompertz generational life table with ageing parameter k + 

ln(r). 

d) If the force of the mortality at exact age x is fixed at 
x

  and 

the ageing parameter k is allowed to change, then the 

change in the complete expectation of life at age x corre-

sponding to the change in k is given by the derivative. Fi-

nally, he found that the derivatives essential to calculate 

generational life annuities are easy to compute.  

[1] investigated the customer credit scoring aimed at distinguished 

good payers from bad payers at the time of the loan application. 

Their aim of survival analysis is to estimate the distribution of the 

event times f (t) of a group of subjects. This usually is done by 

specifying two other mathematically equivalent functions, the 

survival function S (t) and the hazard function h(t) defined as fol-

lows [1], [10] : 

 

S(t) = P(T > t) =  
t

f u du


 = 1- F(t) 

 

0

( | )
( ) lim

t

P t T t t T t
h t

t 

    



,                                                   (7) 

 

Whereby F (t) represents the cumulative distribution function. The 

survival function models are the probability that a subject will 

survive at least time period t.  

This paper deals primarily with a class of distributions with hazard 

rate h(x) = a(x) b ( ) and the parameters (
1
 … ) where 

j
 > 0, j 

= 1…  of the class of distributions with hazard rate  

 

h(x) = 
1

( )
j

j

h x


                                                                               (8) 

 

Where ( )
j

h x = ( )
j

a x ( )
j

b  is the cause of death specific hazard 

rate associated with the jth cause. The functions b( ) and ( )
j

b  are 

positive, differentiable and strictly monotonic functions of  . This 

class of distributions includes the following distributions as well 

as their corresponding compound distributions, i.e., distributions 

with several hazard rates corresponding to independent causes, see 

Dick London (1988). 

•  The relation between the hazard rate function 
x

 , the 

survival function S(x) and the density function f(x):  

 

( )

( )
x

f x

S x
                                                                                       (9) 

 

( )

ln ( )
( )

x

d
S x

ddx S x
S x dx






                                                       (10) 

 

Where 

 

S(x) = exp  
0

x

y
dy                                                                  (11) 
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= 1 – F(x) 

 

f(x) = ( )
( )

d
F x

d x
 = (1 ( ))

( )

d
S x

d x
 = ( )

( )

d
S x

d x


                       (12) 

3. Gompertz distribution 

Consider the law of human mortality described by [7] where the 

force of mortality has the form 
x

  = B xC with B > 0, 1C  .It is 

well known that this model is an excellent description of the pat-

tern of mortality at the adult ages. Nevertheless, actuaries rarely 

use it to calculate the value of annuities and insurances, as evi-

denced by the textbooks written by [9], [2]. The probable reason 

for this is the intractability of the mathematical expectations that 

emerge from the analysis. 

The purpose of this section is to elevate the Gompertz law and 

compile a set of facts that are accessible to the practicing actuary. 

It was found that many of the actuarial functions can be expressed 

in terms of the left-truncated gamma function, as [13] demonstrat-

ed. Hopping that future actuaries will adopt the model for calculat-

ing the net single premiums of life insurances and annuities. 

First, a few definitions and background facts about the Gompertz 

law are introduced. A parameterization of the law that is statisti-

cally informative are present. Next, this law readily explains the 

pattern of mortality for a valuation mortality table are showed and 

the Gompertz parameters with the valuation mortality rates are 

estimated. Next, explicit expressions are derived for continuous 

life insurances, annuities, net level premiums and reserves by 

using the left-truncated gamma function which can easily be ap-

proximated. 

4. Definitions and basic results 

This section presents some notation and basic results. It is started 

by giving an informative representation of the Gompertz law. [3] 

expresses the force of mortality as: 

 

  
1

exp / , 0,
x

x m m  


                                               (13) 

 

Note that c = 1/e   and B = 1 /me     . This representation is informa-

tive because m is a location parameter approximately equal to the 

mean and   is a scale parameter proportional to the standard 

deviation. In human populations we usually find that m >   > 0. 

For the United States population, Carriere (1992) found that these 

parameters were m = 82.3 and  =11.4. 

Using the relation S(x) = exp  
0

x

t
dt , we find that the survival 

function for the Gompertz law is equal to 

 

S(x)   exp   // x mme e
                                                             (14) 

 

The new parameter can be interpreted as a dispersion parameter 

because if m > 0, then  

 

    
0

lim S m S m


 


   =1, 0                                           (15) 

 

This limit suggests that all the mass concentrates about m when   

is small and so m can also be interpreted as a location parameter 

when m > 0. Using the relation f(x) = ( ) ( )
x

d
S x S x

dx
   we find 

that the density is equal to  

 

f(x) = 
1


 exp     // /

x mme e x m
 

     , x 0                       (16) 

It is easy to verify that the mode of the density is equal to when m
0  and that the mode is m when m > 0. 

[15] defined a Gompertz law for all x   and found explicit 

formulas for the moments. Using our notation, they analyzed the 

distribution function 

 

G(x)   /
1 exp

x m
e


    , x                                                 (17) 

 

[15] fail to mention that this extended Gompertz distribution is 

simply the Gumbel distribution for minima, an extreme value 

distribution. For an extensive discussion about extreme-value 

distribution, consult [8]. For a specific discussion about the Gum-

bel distribution, see [10]. 

5. Estimation of the gompertz parameters 

In this section, we estimate the parameters of the Gompertz law 

using the AM92 and EG96 ultimate mortality rates. The Gompertz 

law is only applicable at the older ages and so we focus our analy-

sis on the rates ˆ
x

q , for the ages x = 40, …, 100. 

5.1. Estimation using the crude rates 

Using the relation 
x

q  = 1- 
 
 

1S x

S x


, we find that Gompertz law 

yields the identity 

 

x
q (m,   exp     1/

1
x m

e e 
 .                                   (18) 

 

Let 
x

D denote the total amount of death claims associated with the 

crude rate ˆ
x

q . [4] suggests that a good way of estimating m and 

is to minimize the robust loss function 

 

L(m,
100

40

( , )
1

ˆ
x

x
x

x

q m
D

q





 .                                       (19) 

 

The function L (m,was minimized using the nonlinear module 

of the statistical computer software Mathcad 2000. We found that 

the nonlinear simplex or polytope algorithm was very successful 

at minimizing the non-differentiable loss function L (m,using 

the AM92 data we found that the parameters ˆ
x

m = 82.153 and    

̂ = 10.304, minimized (19) the EG96 data yielded the parameters 

ˆ
x

m = 87.281 and ̂ = 10.478 

4.2 Estimation using the graduated rates 

Using the relation 
| 0t
q  = S(x) - S(x+1), we find that the Gompertz 

law yields the identity 

 

| 0t
q  exp  /me  .     1

exp exp
x x

 


                                  (20) 

 

Let 
| 0
ˆ

t
q denote a graduated probability from the Basic Tables. An-

other way of estimating m and is to minimize the function 

 

L(m,   
99 2

| 0 | 0
40

ˆ,
t t

t

q m q


                                                    (21) 

 

Using the AM92 data we found that the parameters m̂ = 81.022 

and ̂ = 10.379 minimized the previous formula. The EG96 data 

yielded the parameter estimates m̂ = 86.235 and ̂ = 9.593. Note 

that these parameter estimates are similar to those given in part A.  
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6. Continuous insurance and annuities 

In this section, we give explicit expressions for continuous life 

insurances, annuities, net level premiums and reserves by using 

the left-truncated gamma function. Some of these expressions may 

be found in London (1988). Let T(x)  0 denote the time at death 

of a life aged x  0 and let 
t x
p 

 
 

1S x

S x


 denote the probability of 

surviving to time t  0. For the Gompertz law, we can write  

 

t x
p = exp     / /1

x m te e
 

  = exp   /1 t

x
e                           (22) 

 

Let  T
M u  E[exp{uT(x)}] denote the moment generating func-

tion of T(x). the density of T(x) is 
t x
p

x t



and so  x

M u  is equal 

to  

 

x
M (u) = 

0

ut

t x x t
e p dt



  = 
0

ute


 exp   /1 t

x
e  

x
 /te  dt.       (23) 

 

Applying the transformation z = 
x

 /te  yields 

 

x
M (u) = exp{

x
 -u(x-m)}

x

uz 





  ze  dz                                 (24) 

 

It is fairly easy to show that 
x

M (u) <  fall u   . Let us denote 

the integral in (12) as  ,1
x

u    and introduce the left-

truncated gamma function. This is defined as: 

 

 ,t  
1 z

t

z e dz


 

 , t > 0 ,    .                                          (25) 

 

Note that  ,t   <  . Next, the cumulant generating function, 

denoted as 
x

 (u), is defined as 

 

x
 (u)    ln

x
M u = um – ux + 

x
 +   ln ,1

x
u   .        (26) 

 

Let   0 be the force of interest and let 
x

A denote the net single 

premium for a continuous whole-life insurance. Let u = -  in (12), 

then we get 

 

x
A  = exp   x

x m   .  ,1
x

   .                                (27)   

 

Consider the continuous life annuity, expressed as a Stieltjes inte-

gral, 

 

x
a   

0 0

t
x

t x
e dx d q




  = 
0

t

t x
e p




 dt                                              (28) 

 

The last identity for 
x

a is true regardless of any continuity assump-

tions on
t x
p . Calculating further, we find that 

 

x
a =  exp   x

x m   .  ,
x

   .                              (29) 

 

Once again, we get an expression that is based on the left-

truncated gamma function. Next, consider the level premium 
x

P 

x
A /

x
a . Using (29) and (27) we find that  

 

x
P  =  ,1

x
   /  ,

x
   .                                         (30) 

 

Also, consider the net level premium reserve 
t
V (

x
A ) = 1- x t

x

a

a

 . 

Using (29) we find that 

t
V (

x
A ) = 1- exp   x t x

t   

 

 
 

,

,

x t

x

 

 


 

 
.                   (31) 

 

Let us prove that 
x

A  1 as x   . This will imply that 
x

P  0 

and 
t
V (

x
A )  1 as x   . It is sufficient to prove that 

x
a  0 

as x    because 
x

A = 1- 
x

a . Note that 

 

0  x
a  = 

0

t

t x
e p




 dt 
0

t x
p



 dt 

 

And that 
t x
p = exp     / /1

x m te e
 

  0 as x    for all t > 0. 

Therefore, by the monotone Convergence Theorem (Royden, 

1986), 
0

t x
p



 dt  0 as x   and the result follows. 

7. Makeham-gompertz distribution 

The Makeham hazard rate (force of mortality) as presented in [9] 

is a generalization of the Gompertz hazard rate and is written as 

 

h(x) = xBc  = 
1

exp
x 


 

 
  

 
, ,  > 0,           (32) 

 

It has wide usage in actuarial applications, the constant  , adds a 

hazard that acts with equal intensity at all ages under considera-

tion. [5], [11] studied a variety of methods for estimating the 

Makeham parameters including the method of Maximum Likeli-

hood. 

In studies of insured lives it may be possible to identify a single 

cause of death associated with the parameter  . One such cause 

is accidental means. For lives insured with accidental death bene-

fits only or in conjunction with regular insurance, accidental death 

is established for each death claim.  

When proposing an analytic function that would closely reproduce 

the typical 
x

curve, [7] stated, “It is possible that death may be 

the consequence of two generally coexisting causes: the one, 

chance, without previous disposition to death or deterioration; the 

other, a deterioration, or increased inability to withstand destruc-

tion.” However, his law of mortality only takes account of the 

second cause. [7] combined the two causes additively and derived 

the Makeham-Gompertz of mortality, 

 

x
  = A + B xC                                                                            (33) 

 

Where 
x

 is the force of mortality (a measure of the mortality at 

the precise moment of attaining age x). 

 

x
  = ( ) /

x x
D                                                                         (34) 

 

Where D
x

 denotes the derivative of 
x

with respect to x, so an 

expression for 
x

may be derived from the expression for 
x

  

8. Extreme value distribution 

Extreme value distributions are generally considered to consist of 

the three following families: 

1) Type 1: 

 

pr [X   x] = exp {- ( )/xe    }                                                      (35) 

 

2) Type 2: 
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pr [X   x] =

0

exp{ ( ) }k

x

x
x












 

 


             (36) 

 

3) Type 3: 

 

pr [X   x] = 

exp{ ( ) }

1

kx
x

x









 



 

              (37) 

 

Where (  ,> 0) and (k > 0) are parameters. 

The corresponding distributions of (-x) are also called extreme 

value distributions. 

Of these three families of distributions, Type 1 is by far the one 

most commonly referred to in discussions of ‘extreme value’ dis-

tributions. Indeed, some authors call (1) “the” extreme value dis-

tribution. In view of this, and the fact that distributions (2) and (3) 

can be transformed to type 1 distributions by the simple transfor-

mations  

 

Z = log (x -  Z = -log (- x) 

 

Respectively, we will confine ourselves to discussion of Type 1 

distributions. We may also note that the Type 3 distribution of (-x) 

is a Weibull distribution. Of course, Types 1 and 2 are also closely 

related to the Weibull distribution Type 1 is sometimes called the 

Log-Weibull distribution. 

The (p.d.f) of this distribution is given by: 

 

f(x) = 
1


 exp exp

x x 

 

    
  

  
                                      (38) 

 

-   < x <  ,   > 0 ,  -   <  <   

 

It is called The Second Double Exponential Distribution, and the 

type 1 extreme value distribution of the smallest value by [8]. 

Thus we could refer the distribution whose pdf is given above as 

the extreme value distribution. It is unimodel with mode at x =  

and has points of inflection at 

 

x =    ln (
1

2
(3  5 ))                                                   (39) 

 

   =    0.9624  

 

The p.d.f of y = 
x 




 is shown in the following figure F(y) 

 

 
Fig. 1: Probability Density Function. 

 

The truncated distribution considered here is obtained by truncat-

ing all values of x less than s and normalizing. 

As a result, the truncated p.d.f is unimodel with mode  if s <  

and is a strictly decreasing function if s < The inflection points 

occur at the same points as truncated distribution if such points 

have been truncated. The (pdf) of the truncated random variable x 

is: 

 

f(x) = 
1


 exp exp exp

x S x  

  

       
     

    
               (40) 

 

X > S,  > 0 , -  <  <   

 

And the cumulant distribution function (c.d.f) of the truncated 

random variable x is  

 

F(x) = 1 - exp exp exp
S x 

 

      
    

    
                           X > S 

        = 0                                                                                   X   S 

 

The hazard rate function (or the force of mortality) is 

 

h(x) = 
( )

1 ( )

f x

F x
 = 

1


exp

x 



 
 
                                    

X > S 

          = 0                                                                                 X   S 

 

[6] Discussed the problem of estimating the parameters of the left 

and the right Truncated Gompertz distribution when truncation 

points are unknown. Maximum likelihood estimators and estima-

tors involving expected values of appropriate order statistics are 

derived. Asymptotic sampling errors of estimates are also given. 

[5] Proved that the MLE for the truncated extreme value distribu-

tion exists and unique. 

Conclusions 

Finally we conclude in this research that Gompertz distribution or 

modified Gompertz distribution or truncated extreme value distri-

bution has the same hazard rate, 
x

  = A + B xC  (33). 
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Appendix 

Relation between the hazard rate function 
x

 , the survival func-

tion S(x) and the density function f(x). 

 

( )

( )
x

f x

S x
 

 
 

( )

ln ( )
( )

x

d
S x

ddx S x
S x dx






 

 
 

Where 

 

S(x)  = exp 
 

0

x

y
dy 

 

 

= 1 – F(x) 

 

f(x) = ( )
( )

d
F x

d x
 = (1 ( ))

( )

d
S x

d x
 = ( )

( )

d
S x

d x


 

 

Some easy hazard rate functions: 

1) Exponential: 

 

f(x) =   exp{- (x-s)}, x > s 

 

x
 =   

 

2) Rayleigh: 

 

f(x) = 


x exp{-


( 
2x
- 

2s
) / 2 } , x > s > 0, 

 

x


 = 


x  

 

3) Extreme Value (when   is known): 

 

f(x) = 
1


exp

x-
exp exp

x s  

  

      
     

    
, x > s 

 

x
  = 

1


exp

x 



 
 
 

, 

 

4) Pareto 

 

f(x) =  s  / 1x    , x > s > 0 , 

 

x
  =  / x.  

 

Any pdf with hazard rate 
x

 is of the form 

 

f(x) = 
x

 exp  
x

t
s

dt  , x > s . 

 

The corresponding compound pdf is of the form 

 

f(x) = 
1

jx
j




 exp  
1

x

jt
j s

dt


 

 
 

Which includes combinations of the above distributions. As an 

example, the p.d.f 

 

f(x) = (
1
 x + 

2
 / x )

2

s

x



 
 
 

exp   2 2

1
/ 2x s  , x > s > 0 , 

 

Is a combination of the Pareto and the Rayleigh densities where 

1x
 = 

1
 x and 

2x
 = 

2
 / x are the cause specific hazard rates. 

The distributions described above are not generally used in actuar-

ial mortality studies. However, the Exponential, Rayleigh and 

Extreme-Value Distributions have been used to describe failure-

time distributions in life testing, the study of inanimate system life 

length. The Pareto Distribution has been used to describe the dis-

tribution of incomes over a certain level, an application where the 

data is often coarsely grouped. 


