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Abstract 
 

This article proposed a new distribution referred to as the transmuted Exponential Lomax distribution as an extension of the popular Lo-

max distribution in the form of Exponential Lomax by using the Quadratic rank transmutation map proposed and studied in earlier re-

search. Using the transmutation map, we defined the probability density function (PDF) and cumulative distribution function (CDF) of 

the transmuted Exponential Lomax distribution. Some properties of the new distribution were extensively studied after derivation. The 

estimation of the distribution’s parameters was also done using the method of maximum likelihood estimation. The performance of the 

proposed probability distribution was checked in comparison with some other generalizations of Lomax distribution using three real-life 

data sets. The results obtained indicated that TELD performs better than the other distributions comprising power Lomax, Exponential-

Lomax, and the Lomax distributions. 
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1. Introduction 

The Pareto II or Lomax (1954) distribution proposed by [21] for 

modeling business failure data moreover it has been widely ap-

plied in a variety of contexts. [16] mentioned that it used for relia-

bility modeling and life testing. The distribution has been used for 

modeling different data, which studied by so many authors, [15] 

used Lomax distribution for income and wealth data, [5] used it 

for modeling business failure data, while [7] used it to model firm 

size and queuing problems. It has also found application in the 

biological sciences and even for modeling the distribution of the 

sizes of computer files on servers, [17]. Some authors, such as [6], 

suggested the use of this distribution as an alternative to the expo-

nential distribution when the data are heavy-tailed. 

A random variable X is said to follow a Lomax distribution with 

parameters   and   if its probability density function (pdf) is 

given by. 
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And the corresponding cumulative distribution function (cdf) is 

given as 
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For 0, 0, 0x      where   and  are the shape and scale pa-

rameters respectively. 

In the literature, there are several extensions of the Lomax distri-

bution; these among others include the Marshall–Olkin, extended-

Lomax by [12] and [14], Beta–Lomax, Kumaraswamy Lomax, 

McDonald-Lomax by [20], Gamma-Lomax by [8] and Exponenti-

ated Lomax by [1]. [8] presented a three-parameter Gamma–

Lomax distribution based on a versatile and flexible gamma gen-

erator proposed by [27] using Stacy’s generalized gamma distribu-

tion and record value theory. [26] Introduced the four parameters 

Weibull Lomax distribution, [3] introduced Poisson-Lomax distri-

bution and also the Power Lomax distribution was introduced by 

[23]. The Extended Poisson-Lomax distribution was introduced by 

[2] and [4] proposed the transmuted exponentiated Lomax distri-

bution. 

Recently, a new extension of the Lomax distribution has been 

proposed in the literature by considering the Exponential distribu-

tion as a based model, where the random variable X is said to have 

follow the Exponential distribution with parameter  . The distri-

bution of X according to [9] is referred to as Exponential Lomax 

distribution.  

The pdf of the Exponential Lomax distribution is defined as; 
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The corresponding cumulative distribution function (CDF) of 

Exponential Lomax distribution is given by 
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Where, , 0, 0, 0x            and   are the shape and scale 

parameters respectively and   is the scale parameter of the expo-

nential distribution. 

The cdf and pdf of the transmuted Exponential Lomax distribution 

are obtained using the steps proposed by [25]. A random variable 
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X is said to have a transmuted distribution function if its pdf and 

cdf are respectively given by; 

 

 ( ) ( ) 1 2 ( )f x g x G x   
                                                          (5)

 

 

And 

 
2
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                                                        (6) 

 

Where; x > 0, and −1 ≤ λ ≤ 1 is the transmuted parameter, G(x) 

is the cdf of any continuous distribution while f(x) and g(x) are the 

associated pdf of  F(x) and G(x), respectively. 

The aim of this paper is to introduce a new continuous distribution 

called the transmuted Exponential Lomax distribution (TELD) 

from the proposed quadratic rank transmutation map by [25]. The 

remaining parts of this paper are presented in sections as follows: 

We defined the new distribution and give its plots in section 2. 

Section 3 derived some properties of the new distribution. The 

estimation of parameters using maximum likelihood estimation 

(MLE) is provided in section 4. In section 5, we carry out applica-

tion of the proposed model with others using some real life da-

tasets. Lastly, in section 6, we make some useful conclusions. 

2. The transmuted Exponential Lomax distri-

bution (TELD) 

Using equation (3) and (4) in (5) and (6) and simplifying, we ob-

tain the cdf and pdf of the transmuted Exponential Lomax distri-

bution as follows: 
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And 
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Respectively. Where, 0, 0, 0, 0, 1 1x           ,  and  are 

the shape and scale parameters respectively and   is the exponen-

tial parameter while  is called the transmuted parameter. 

The pdf and cdf of the TELD using some parameter values are 

displayed in figures 1 and 2 as follows. 

 

 
Fig. 1: The Graph of PDF of the TELD at Different Parameter Values As 

Displayed on the Key in the Plot Above.
 

 
Fig. 2: The Graph of CDF of the TELD at Some Parameter Values Shown 

in the Key on the Figure Above. 

 

The plot for the PDF reveals that the TELD is positively skewed 

and therefore will be a good model for positively skewed data sets.  

3. Properties 

In this section, we defined and discuss some properties of the 

TELD distribution. 

3.1. Moments 

Let X denote a continuous random variable, the nth moment of X 

is given by; 
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Taking f(x) as the PDF of the transmuted Exponential Lomax 

distribution as given in equation (8), the nth moment of X is ob-

tained using integration by substitution and is given as: 

Hence, 
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The Mean 

The mean of the TELD can be obtained from the nth moment of 

the distribution when n=1 as follows:  
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Also the second moment of the TELD is obtained from the nth 

moment of the distribution when n=2 as 

 

 

 

 

 
 

2 1

2 1

2 22 1

' 2

2

1 2 1 2
2 1 2

2 2

 

 

 
      

 
 

         
      

    (12) 

 

The Variance 

The nth central moment or moment about the mean of X, say μn, 

can be obtained as 

 

 ' ' '

1 1
0

( 1)
nn

i i

n n i
i

n
E X

i
  




 
     

                                              (13) 

 

The variance of X for TELD is obtained from the central moment 

when n=2, that is, 
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Where '

1
 and '

2
 are the mean and second moment of the TELD 

all obtainable from equation (10). 

The variation, skewness and kurtosis measures can also be calcu-

lated from the non-central moments using some well-known rela-

tionships. 

3.2. Moment generating function 

The moment generating is an important shape characteristic of a 

distribution and is always in one function that represents all the 

moments. In other words, the mgf produces all the moments of the 

random variable X by differentiation. 

The mgf of a random variable X can be obtained by 
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3.3. Characteristics function 

This is useful and has some properties which give it a genuine role 

in mathematical statistics. It is used for generating moments, char-

acterization of distributions and in analysis of linear combination 

of independent random variables. 

The characteristics function of a random variable X is given by; 
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Simple algebra and power series expansion proves that 
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Where μ2n
′  and μ2n+1

′ are the moments of X for n=2n and n=2n+1 

respectively and can be obtained from μn
′ .  

Therefore; 
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3.4. Reliability analysis of the TELD 

3.4.1. The Survival function describes the likelihood that a system 

or an individual will not fail after a given time. Mathematically, 

the survival function is given by: 
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Applying the cdf of the TELD in (7), the survival function for the 

TELD is obtained as: 
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The following is a plot for the survival function of the TELD us-

ing different parameter values as shown in Figure 3 below; 

 

 
Fig. 3: Survival Function of the TELD at Different Parameter Values.

 
 

The graph in figure 3 shows that the value of the survival function 

equals one (1) at initial time or early age and it decreases as X 

increases and equals zero (0) as X becomes larger. 

 

3.4.2. Hazard function is the probability that a component will fail 

or die for an interval of time. The hazard function is defined as; 
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Meanwhile, the expression for the hazard rate of the TELD is 

given by 
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Where , , 0     and 1 1   . 

 

The following are some possible curves for the hazard rate at vari-

ous values of the model parameters 

 

 
Fig. 4: Hazard Function of the TELD at Different Parameter Values. 

 

We can see from figure 4 that the value of the hazard function 

increases at the beginning and slowly drop as X increases. This 

means that the TELD may be appropriate for modeling time de-

pendent events, where risk or hazard increases at early stage and 

then drops with time. 
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3.5. Quantile function 

Taking F(x) to be the cdf of the TELD and inverting it as above 

will give us the quantile function as follows: 
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Simplifying equation (24) above, we obtain: 
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This function is derived above is used for obtaining some mo-

ments like skewness and kurtosis as well as the median and for 

generation of random variables from the distribution in question.  

3.6. Skewness and kurtosis 

This paper presents the quantile based measures of skewness and 

kurtosis due to non-existence of the classical measures in some 

cases.  

The Bowley’s measure of skewness based on quartiles is given by; 
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And the Moores’ (1998) kurtosis is on octiles and is given by; 
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Where Q (.) is obtainable with the help of equation (25). 

3.7. Order statistics 
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Where 
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 and 
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 are the pdf and cdf of the TELD respec-
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Hence, the pdf of the minimum order statistic  1
X

 and maximum 

order statistic  n
X

 of the TELD are given by; 
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Respectively 

4. Estimation of parameter 

Let X1, - - -,Xn be a sample of size ‘n’ independently and identically 

distributed random variables from the TELD with unknown pa-

rameters α, β, Ө, and λ defined previously. The pdf of the TELD is 

given as 
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The likelihood function is given by; 
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Differentiating l partially with respect to α, β, Ө and λ respectively 

gives; 
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Equating equations (34), (35), (36) and (37) to zero and solving 

for the solution of the non-linear system of equations will give us 

the maximum likelihood estimates of parameters , , and    

respectively. However, the solution cannot be obtained analytical-

ly except numerically with the aid of suitable statistical software 

like Python, R, SAS, e.t.c when data sets are given. 

5. Applications 

In this section, we have compared the performance of the TELD to 

those of three generalizations of the Lomax model including the 

power Lomax distribution (PLD), Exponential Lomax distribution 

(ELD), Weibull-Lomax distribution (WLD), and Lomax distribu-

tion (LD). 

Data Set I: This data set is the strength data of glass of the aircraft 

window reported by [10]. Its’ summary is given as follows: 

 
Table 1: Summary Statistics for Data Set I 
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Data set II: This data set represents the relief times (in minutes) of 

20 patients receiving an analgesic reported by [13] and has been 

used by [24]. The summary of the data set is provided as follows; 

 
Table 2: Summary Statistics for the Data Set II 
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Data set III: This data set represents the waiting times (in minutes) 

before service of 100 Bank customers and examined and analyzed 

by [11for fitting the Lindley distribution. The summary statistics 

of this dataset is given below; 

 
Table 3: Summary Statistics for Data Set III 
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From the descriptive statistics in tables 1, 2 and 3 for the three 

data sets respectively, we observed that the three data sets are 

positively skewed, however, the second data set is highly peaked 

with a higher skewness coefficient followed by the third and then 

the first with a very low peak.  

To compare this distribution, we have considered some criteria: 

the value of the log-likelihood function evaluated at the MLEs (ll), 

AIC (Akaike Information Criterion), CAIC (Consistent Akaike 

Information Criterion), BIC (Bayesian Information Criterion), and 

HQIC (Hannan Quin Information Criterion). These statistics are 

given as: 

 

2 2AIC ll k   , 
 2 log ,BIC ll k n    

2

12 kn

n kCAIC ll    
 and

 2 2 log logHQIC ll k n       
 

Where ƖƖ denotes the log-likelihood function evaluated at the 

MLEs, k is the number of model parameters and n is the sample 

size. 

Note: In decision making, model with the lowest values for these 

statistics would be chosen as the best model to fit the data set in 

question. 

 

 
Table 4: Performance Evaluation of the TELD with Some Generalizations of the Lomax Distribution Using the AIC, CAIC, BIC and HQIC Values of the 
Models Evaluated at the MLES Based on Data Set I 

Distributions 
Parameter esti-

mates 

-ƖƖ(minus log-

likelihood 
value) 

AIC CAIC BIC HQIC Ranks 

 TELD 

α̂=2.8243 

β̂=5.4825 

θ̂=0.0052 

λ̂=-0.9025 

109.0717 226.1433 227.6818 231.8793 228.0131 3 

PLD 

α̂=0.5103 

β̂=1.1628 

θ̂=9.1841 

156.9083 319.8166 320.7055 324.1186 321.219 5 

ELD 

α̂=0.2029 

β̂=0.1873 

θ̂=1.0511 

-102.0569 -198.1139 -197.225 -193.8119 -196.7115 1 

WLD 

α̂=0.4109 

θ̂=7.8208 

â=1.0901 

b̂=6.7338 

105.2365 218.4731 220.0115 224.209 220.3428 2 

LD 
α̂=0.6941 

θ̂=9.8149 
155.9237 315.8474 316.2759 318.7153 316.7822 4 

 

In table 4, we have the MLEs to each of the five fitted distribu-

tions including the TELD for the first dataset. The table also pro-

vides the corresponding values of the AIC, CAIC, BIC and HQIC 

for each of the models. The values of the test statistics in the table 
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above are lower for the ELD followed by the WLD and TELD 

which is an indication that the TELD performed better than the 

other two models (PLD and LD) considered in the analysis and 

could be chosen as the best model compared to the two distribu-

tions. Hence, our proposed model (TELD) is better than the PLD 

and the conventional Lomax distribution (LD). This also provides 

additional evidence to the fact that generalizing probability distri-

butions provides compound distributions that are more flexible 

compared to the parent distributions. 

We have also considered a goodness-of-fit test in order to know 

which distribution fits the data better we apply the Kolmogorov-

Smirnov (K-S) statistics. This statistic can be computed as: 

 

   0
sup

n
K S D F x F x     

 

Where  n
F x  is the empirical distribution function and n  is the 

sample size. 

Note: In decision making, any distribution or model with the low-

est values for this statistic (K-S) or highest p-value would be cho-

sen as the best model to fit the data set in question. 

 
Table 5: Performance Evaluation of the TELD with Some Generalizations 

of the Lomax Distribution Using the K-S Values of the Models with Their 
Corresponding P-Values in Parenthesis Based on Datasets I, II and III 

Distributions Dataset I Dataset II Dataset III Ranks 

 TELD 
D = 0.1898 

(0.1882) 

D =0.32938 

(0.02608) 

D =0.22638 

(7.1e-05) 
2 

ELD 

 

D =0.93178 

(2.2e-16) 

D =0.40391 

(0.00293) 

D =0.52598 ( 

2.2e-16) 
5 

PLD 
 

D =0.52531 
(1.7e-08) 

D =0.14239 
(0.8122) 

D =0.2602 
(2.6e-06) 

3 

WLD 
 

D =0.15406 
(0.412) 

D =0.16597 
(0.6402) 

D =0.046866 
(0.9806) 

1 

LD 

 

D =0.52453 

(1.8e-08) 

D =0.4471 

(0.000674) 

D =0.23758 

(2.5e-05) 
4 

 

From the Table above, we can observe the K-S test values of the 

distributions with their corresponding p-values in parenthesis 

based on datasets I, II and III. From the table, it is clear and we 

confirmed that the TELD has smaller or lower values of the K-S 

statistic with higher P-values for all the datasets compared to the 

ELD, PLD and LD which is an indication that it has a better per-

formance compared to the three models. Hence, we can confident-

ly conclude that the TELD is better than the ELD, PLD and LD. 

However, we also confirmed that the WLD performs better than 

all the distributions considered in the analysis though it is not far 

different from the TELD in performance. 

6. Conclusion 

A new distribution, TELD has been proposed. Some mathematical 

and statistical properties of the proposed distribution have been 

studied appropriately. The derivations of some expressions for its 

moments, moment generating function, characteristics function, 

survival function, hazard function, and ordered statistics have been 

done appropriately. Some plots of the distribution revealed that its 

shape was skewed to the right or left depending on values of the 

parameters. The model parameters have been estimated using the 

method of maximum likelihood estimation. The implications of 

the plots for the survival function indicate that the transmuted 

Exponential Lomax distribution could be used to model age-

dependent events or variables whose survival decreases as time 

grows or where survival rates decrease with time. The results from 

the application showed that the proposed distribution (transmuted 

Exponential Lomax distribution) performs better than the power 

Lomax, Exponential Lomax and the Lomax distributions based on 

the three data sets considered. This implies that the proposed dis-

tribution (TELD) is best and can be used in placed of these three 

models (Exponential Lomax, power Lomax and the Lomax distri-

butions) when we have a positively skewed data set. 
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