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Abstract 
 

A new distribution called the beta-Burr type V distribution that extends the Burr type V distribution was defined, investigated and estab-

lished. The properties examined provide a comprehensive mathematical treatment of the distribution. Additionally, various structural 

properties of the new distribution verified include probability density function verification, asymptotic behavior, Hazard Rate Function 

and the cumulative distribution. Subsequently, we used the maximum likelihood estimation procedure to estimate the parameters of the 

new distribution. Application of real data set indicates that this new distribution would serve as a good alternative distribution function to 

model real- life data in many areas. 
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1. Introduction 

Burr's type V is one of the twelve distributions introduced in 1942 

by [5], which can be used to fit basically any given set of unimod-

al data [7]. So many researchers have established beta –G distribu-

tion; these include among others: Nadarajah and Gupta [20] de-

fined the beta-Frechet distribution; Famoye, et al. [5] defined the 

beta-Weibull; Nadaraja and Kotz [19] defined the beta-

exponential distribution; Kong et al. [15] proposed the beta-

gamma distribution. Fischer and Vaughan [12] introduced the 

beta-hyperbolic secant distribution; beta-Gumbel (BGU) distribu-

tion was introduced by Nadarajah and Kotz [18]; the beta-Pareto 

distribution was defined and studied by Akinsete et al. [4]; the 

beta-Rayleigh distribution was proposed by Akinsete and Lowe 

[3]; beta-Burr XII by Paranaiba et al. [21]; and very recently, 

Merovci et al. [17] developed the beta-Burr type X distribution 

leaving the rest types of Burr distributions with little or no interest 

from researchers. This is the case with Burr type V distribution. It 

is clear therefore, that this distribution is yet to catch the eyes of 

researchers. Burr Type V distribution can be used to model real 

lifetime data.  

Ever since the introduction of the Burr distribution, it has some-

what been neglected as an option in the analysis of lifetime data. 

Even though there are researchers that indicate that this distribu-

tion possesses sufficient flexibility to make it a possible model for 

various types of data; for example, it was used to examine the 

strengths of 1.5 cm glass fibers [17], Paranaiba et al. [21] studied 

cancer recurrence by using the real data set. 

Burr's type V distribution extension with two parameters is 

through the beta-G generator pioneered by Eugene et al. [8]. We 

investigate and discern the properties of the proposed distribution 

from G(x) which was used by Eugene et al [8]. It is known as the 

beta generalized class of distribution, and it has two shape pa-

rameters in the generator, and it is given in equation 3. 

The probability density function of Burr type V distribution is: 
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The cumulative distribution function of Burr type V distribution is: 
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 (2) 

 

Where α and β are the location parameters of the distribution. 

The rest of the paper is organized as follows: in section two, we 

briefly introduce the beta-burr type V (BBV) distribution, its 

properties is studied in section 3 while estimates of the parameters 

of the distribution using the maximum likelihood estimation tech-

nique is obtained in section 4, in section 5 we look at the compari-

son of our new distribution with other known distributions and we 

finally conclude in section 6. 

2. Beta- burr type V (BBV) 

Beta distribution takes on several problems in reliability analysis 

since it has been widely acclaim to be very powerful and applica-

ble probability distribution. In recent years, development focuses 

on new techniques for building meaningful distributions, which 

include the use of the logit of beta (the link function of the beta 

generalized distribution which was introduced by Jones [14] and 

elsewhere [10]). The logit of beta introduced by Jones has proba-

bility density function (pdf). 

 

g(x) =
f(x)

B(a,b)
[F(x)]a−1[1 − F(x)]b−1                                           (3) 
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Where 

F(x)is the cumulative distribution function of the baseline distri-

bution and  

f(x)is the probability density function of the baseline distribution 

Many researchers have used this technique to come up with many 

compound distributions which include: 

[1],[3],[4],[6],[8],[9],[12],[15],[16],[17],[18],[19],[20],[21],[23] 

and many others. The aim of this paper is to propose a new model 

called beta- Burr type V distribution. Using the logit defined in (3), 

the pdf of the proposed distribution is given by equation (4): 

 

f(x) =
αβe− tan xsec2x

β(a,b)
[1 + βe− tan x]−αa−1[1 − (1 +

βe− tan x)−α]b−1                               (4) 

3. Properties 

We will examine the statistical properties of the distribution we 

have put forth in the previous section. It will be scrutinized by 

verifying the asymptotic behaviour, true probability function, 

cumulative density and hazard rate function. 

3.1. Investigation of proper PDF 

To verify that the proposed density function is a proper pdf, we 

integrate (4) with respect to x and see whether the integral is equal 

to unity or otherwise. If it is equal to unity, the density function is 

a proper pdf otherwise it is not.  

 

∫ f(x)dx = ∫
αβ

β(a,b)
e− tan xsec2x[1 + βe− tan x]−αa−1[1 −

π

2

−
π

2

π

2

−
π

2

                        (1 + βe− tan x)−α]b−1dx          (5) 

 

To integrate (5),  

 

Letp = βe− tan x, then dp =  −psec2x dxand dx =
dp

−psec2 x
 

 

Hence, 

 

∫ f(x)dx =  ∫
α

β(a, b)
psec2x [1 + p]−αa−1

∞

0

π

2

−
π

2

[1

− (1 + p)−α]b−1
dp

psec2 x
 

 

= ∫
α

β(a, b)
(1 + p)−αa−1

∞

0

[1 − (1 + p)−α]b−1 dp 

 

let R = (1 + p)−αThenR−
1

α = 1 + p 

 

This implies 

 

dR = −α(1 + p)−α−1dpAnddp =
dR

−αR1+
1
α

 

 

Therefore, 

 

∫ f(x)dx =
1

β(a, b)
∫ Ra−1(1 − R)b−1 dR

1

0

=
β(a, b)

β(a, b)
= 1

π

2

−
π

2

 

 

Hence, f(x) is a proper pdf? 

The graph of the BBV distribution for various parameter values (a, 

b, α and β) is given in fig. 1 

 
Fig 1: Graph of Beta-Burr Type V Distribution for Various Parameter 

Values. 

3.2. Asymptotic behaviour 

In order to investigate the asymptotic behavior of the proposed 

model (Beta –Burr type V), we find limit as x →  
π

2
and limit as 

x →  −
π

2
 of the BBV distribution. 

 

lim
x→−

π

2

f(x) = lim
x→ −

π

2

αβe− tan xsec2x

β (a, b)
(1 + βe− tan x)−αa−1 [1

− (1 + βe− tan x)−α]b−1 

 

This is equal to zero, since  

 

𝑙𝑖𝑚
𝑥→ −

𝜋

2

𝛼𝛽𝑒− 𝑡𝑎𝑛 𝑥𝑠𝑒𝑐2𝑥(1 + 𝛽𝑒− 𝑡𝑎𝑛 𝑥)−𝛼−1 = 0 

 

Similarly, 𝑙𝑖𝑚
𝑥→

𝜋

2

𝑓(𝑥) = 0  

 

Since 𝑙𝑖𝑚
𝑥→

𝜋

2

𝑠𝑒𝑐2𝑥 = 0 

3.3. Cumulative density function (CDF) of BBV distri-

bution 

In this section, the cumulative density function of the BBV distri-

bution will be obtained 

 

𝐹(𝑥) =  ∫
𝛼𝛽

𝛽(𝑎,𝑏)
𝑒− 𝑡𝑎𝑛 𝑦𝑠𝑒𝑐2𝑦[1 + 𝛽𝑒−𝑡𝑎𝑛𝑦]–𝛼𝑎−1𝑥

−
𝜋

2

[1 −

                        (1 + 𝛽𝑒−𝑡𝑎𝑛𝑦)−𝛼]𝑏−1𝑑𝑦           (6) 

 

To integrate (6), 𝑙𝑒𝑡   𝑝 =  𝛽𝑒𝑡𝑎𝑛 𝑦, then  

 

𝑑𝑝 =  −𝑝𝑠𝑒𝑐2𝑦𝑑𝑦And𝑑𝑦 =  
𝑑𝑝

−𝑝𝑠𝑒𝑐2𝑦
 

 

Therefore,  

 

𝐹(𝑥) =  ∫
𝛼

𝛽(𝑎, 𝑏)
𝑝𝑠𝑒𝑐2𝑦[1 + 𝑝]−𝛼𝑎−1[1

∞

𝛽𝑒− 𝑡𝑎𝑛 𝑥

− (1 + 𝑝)−𝛼]𝑏−1
𝑑𝑝

𝑝𝑠𝑒𝑐2𝑦
 

 

= ∫
𝛼

𝛽(𝑎, 𝑏)
[1 + 𝑝]−𝛼𝑎−1

∞

𝛽𝑒− 𝑡𝑎𝑛 𝑥

[1 − (1 + 𝑝)−𝛼]𝑏−1𝑑𝑝 

 

Let𝑅 = (1 + 𝑝)−𝛼then, 

 

𝑑𝑅 =  −𝛼𝑅
𝛼+1

𝛼 𝑑𝑝 And 𝑑𝑝 =  
𝑑𝑅

−𝛼𝑅
𝛼+1

𝛼

 

 

Hence, 
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𝐹(𝑥) =  ∫
𝛼

𝛽(𝑎, 𝑏)
𝑅

𝛼𝑎+1

𝛼 [1 − 𝑅]𝑏−1
𝑑𝑅

𝛼𝑅
𝛼+1

𝛼

(1+𝛽𝑒− 𝑡𝑎𝑛 𝑥)
−𝛼

0

 

 

𝐹(𝑥) =  ∫
𝛼

𝛽(𝑎, 𝑏)
𝑅

𝛼𝑎+1−𝛼−1

𝛼 (1 − 𝑅)𝑏−1
𝑑𝑅

𝛼

(1+𝛽𝑒− 𝑡𝑎𝑛 𝑥)−𝛼

0

 

 

𝐹(𝑥) =
1

𝛽(𝑎, 𝑏)
∫ 𝑅𝑎−1(1 − 𝑅)𝑏−1𝑑𝑅

(1+𝛽𝑒− 𝑡𝑎𝑛 𝑥)
−𝛼

0

 

 

Therefore,  

 

𝐹(𝑥) =
𝛽[{1+𝛽𝑒− 𝑡𝑎𝑛 𝑥}−𝛼,𝑎,𝑏]

𝛽(𝑎,𝑏)
    (7) 

 

Where𝛽[{1 + 𝛽𝑒− 𝑡𝑎𝑛 𝑥}−𝛼 , 𝑎, 𝑏] is an incomplete beta function? 

3.4. Hazard rate function 

The Hazard Rate Function denoted by ℎ(𝑥) is defined by:  

 

ℎ(𝑥) =  
𝑔(𝑥)

1−𝐺(𝑥)
    (8) 

 

Substituting equations (4) and (7) in (8) gives the expression for 

the hazard function as: 

 

 
 

 
 

b 1
a 1

1 1
tan x 2e sec x 1

tan x tan xe e

B a, b
h x

tan xB 1 e ,a, b

1
B a, b




                       


  
  

 

 

 

   

b 1
a 1

1 1
tan x 2e sec x 1

tan x tan xe e

h x

1
B a,b B a,b B ,a,b

tan xe


                       

           

 (9) 

 

It is also known as failure rate or force of mortality. 

4. Maximum likelihood estimation of the pa-

rameters of the proposed model 

Let 𝑥1, 𝑥2, … , 𝑥𝑛  be a random sample from a population X with 

probability density function 𝑓(𝑥;  𝑎, 𝑏, 𝛼, 𝛽) , where 𝑎, 𝑏, 𝛼, 𝛽  are 

unknown parameters. The likelihood function𝐿(𝑎, 𝑏, 𝛼, 𝛽), is de-

fined [11, 13, 22] to be the joint density of the random varia-

bles𝑥1, 𝑥2, … , 𝑥𝑛. That is,  

 

 
n

L a,b, , f (x ;a,b, , )i
i 1

    


                (10) 

 

Hence, the likelihood of BBV distribution is given by: 

 

𝐿(𝑥; 𝑎, 𝑏, 𝛼, 𝛽) = ∏
𝛼𝛽𝑒−𝑡𝑎𝑛𝑥𝑖𝑠𝑒𝑐2𝑥𝑖

𝛽(𝑎, 𝑏)
(1

𝑛

𝑖=1

+  𝛽𝑒−𝑡𝑎𝑛𝑥𝑖)−𝛼𝑎−1[1
− (1 + 𝛽𝑒− 𝑡𝑎𝑛 𝑥𝑖)−𝛼]𝑏−1 

 

=
𝛼𝑛𝛽𝑛𝑒− ∑ 𝑡𝑎𝑛 𝑥𝑖

𝑛
𝑖=1

(𝛽(𝑎,𝑏))
𝑛 ∏ 𝑠𝑒𝑐2𝑥𝑖(1 + 𝛽𝑒−𝑡𝑎𝑛𝑥𝑖)−𝛼𝑎−1[1 −𝑛

𝑖=1

          (1 + 𝛽𝑒− 𝑡𝑎𝑛 𝑥𝑖)−𝛼]𝑏−1          (11) 

 

Taking log of (11), we have the log-likelihood given by: 

 

𝑙(𝑥; 𝑎, 𝑏, 𝛼, 𝛽) = 𝑛 𝑙𝑜𝑔 𝛼 + 𝑛 𝑙𝑜𝑔 𝛽 − ∑ 𝑡𝑎𝑛𝑥𝑖
𝑛
𝑖=1 −  𝑛 𝑙𝑜𝑔(⌈𝑎) −

𝑛 𝑙𝑜𝑔(⌈𝑏) + 𝑛 𝑙𝑜𝑔(⌈𝑎 + 𝑏) +  ∑ 𝑙𝑜𝑔(𝑠𝑒𝑐2𝑥𝑖) −  (𝛼𝑎 +𝑛
𝑖=1

1) ∑ 𝑙𝑜𝑔(1 +  𝛽𝑒𝑡𝑎𝑛𝑥𝑖) + (𝑏 − 1) ∑ 𝑙𝑜𝑔[1 − (1 +𝑛
𝑖=1

𝑛
𝑖=1

𝛽𝑒− 𝑡𝑎𝑛 𝑥𝑖)−𝛼]           (12) 

 

Differentiating (12) partially with respect to 𝑎, 𝑏, 𝛼𝑎𝑛𝑑𝛽  gives 

(13), (14), (15) and (16): 

 
𝜕𝑙(𝑥:𝑎,𝑏,𝛼,𝛽)

𝜕𝑎
= 𝑛𝜓(𝑎) + 𝑛𝜓(𝑎 + 𝑏) − 𝛼        (13) 

 
𝜕𝑙(𝑥: 𝑎, 𝑏, 𝛼, 𝛽)

𝜕𝑏
 

 

= −𝑛𝜓(𝑏) + 𝑛𝜓(𝑎 + 𝑏) + ∑ 𝑙𝑜𝑔[1 −  (1 + 𝛽𝑒−𝑡𝑎𝑛𝑥𝑖)−𝛼]𝑛
𝑖=1 (14) 

 
𝜕𝑙(𝑥:𝑎,𝑏,𝛼,𝛽)

𝜕𝛼
=

𝑛

𝛼
− 𝑎 ∑ 𝑙𝑜𝑔(1 + 𝛽𝑒−𝑡𝑎𝑛𝑥𝑖) + (𝑏 −𝑛

𝑖=1

 1) ∑
(1+𝛽𝑒−𝑡𝑎𝑛𝑥𝑖)

−𝛼
𝑙𝑜𝑔(1+𝛽𝑒−𝑡𝑎𝑛𝑥𝑖)

1−(1+𝛽𝑒−𝑡𝑎𝑛𝑥𝑖)

𝑛
𝑖=1          (15) 

 
∂l(x:a,b,α,β)

∂β
=

n

β
− (αa − 1) ∑

e−tanxi

1+βe−tanxi
+ (b −n

i=1

                      1) ∑
αe−tanxi(1+βe−tanxi)−α−1

1−(1+βe−tanxi)
−α

n
i=1        (16) 

 

Equating (13), (14), (15) and (16) to zero and solving for a, b, α 

and β gives the MLEs of the respective parametersâ, b̂, α̂ and β̂. 

5. Application 

A survival data set is applied to demonstrate that the proposed 

distribution is flexible and better to fit lifetime data in this section. 

The data used represent the remission times (in months) of a ran-

dom sample of 128 bladder cancer patients. The data will be used 

to fit our proposed distribution (BBV) and some other distribu-

tions. The data are: 0.08, 2.09, 3.48, 4.87, 6.94 , 8.66, 13.11, 23.63, 

0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 

7.09, 9.22, 13.80, 25.74, 0.50, 2.46 , 3.64, 5.09, 7.26, 9.47, 14.24, 

25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 

3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 

14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 

2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 

7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 

1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 

11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 

6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 

3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69  

In order to compare the models above with the proposed BBV, we 

consider criteria like log likelihood (LL), Akaike Information 

Criterion (AIC) ([2]), Consistent Akaike Information Criterion 

(CAIC) and Bayesian information criterion (BIC) for the data set. 

The better distribution corresponds to smaller LL, AIC, AICC and 

BIC values of these statistics. 

Table 1 lists the MLEs, their standard errors (SE) in parentheses 

and the statistics and p values for the bladder cancer patients’ data. 

The table indicates that the BBV distribution has the lowest values 

for the AIC; BIC and CAIC statistics among the fitted models, and 

therefore it could be chosen as the best model. Moreover, the 

standard errors are much smaller compared with their estimates 

for the BBV distribution. Additionally, it is evident that the worst 

fit model was BDa distribution according to the data. 
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Table 1: Mles of the Model Parameters for the Bladder Cancer Patients Data, the Corresponding SE (Given in Parentheses) and the Measures AIC, BIC 

and CAIC 

Model  MLE Loglikelihood AIC BIC CAIC 

Beta-Power Exponen-
tial 

a = 1.174473  

 (0.131994)  

b = 5.974162  
 (1.347064)  

α = 0.017775  

 (0.004285)  

-413.3579 832.7158 841.2719 832.9093 

Beta-Dagun 

a = 15.83986  

 (1.26161) 
b = 19.14655  

 (2.74046) 

α = 0.56186  
 (0.08727) 

β = 6.67282 (1.82561) 

λ = 0.42873  
 (0.03835) 

-412.4005 834.801 
849.0612 

 

835.2928 

 

 
 

Beta-Burr V 

a = 6.7091  

 (2.2773) 
b = 10.1948  

 (2.8099) 

α = 10.3665  
 (1.4322) 

β = 0.1126  

 (0.0289) 

-25.98339 59.96678 
71.3749 

 

60.29198 

 
 

Burr V 

α = 1.029e+03  

 (8.424e+00) 

β = 1.131e-03  
 (1.006e-04) 

-124.3364 252.6728 
258.3769 

 
252.7688 

 

6. Conclusions 

The beta –Burr type V distribution was introduced and investigat-

ed in this article. Some features of the distribution such as asymp-

totic behaviors, Cumulative density function and hazard function 

of the distribution were discussed. We also estimated the parame-

ters of the proposed distribution via the method of maximum like-

lihood estimation technique. An application of the BBV distribu-

tion to a real data set indicates that this distribution outperforms 

both the burr type V and other generalized distributions. 
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