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Abstract 
 

Over the past decades, with advanced data collection techniques, a different type of data continues to appear in various biological, sci-

ences, medical, social, and economical studies. Statistical modeling is essential in many scientific research areas because it explains the 

relationship between the response variable of interest and a number of explanatory variables. Generalized linear models (GLMs) are gen-

eralization of the linear regression models, which allow fitting regression models to response variable that is non normal and follows a 

general exponential family. The aim of this study is to encourage and initiate the application of GLMs to predict the maternal and fetal 

blood-lead level. The inverse Gaussian distribution with inverse quadratic link function is considered. Four main effects were significant 

in the prediction of the maternal blood-lead level (pica, smoking of mother, dairy products intake of mother, calcium intake of mother), 

while in the prediction of the fetal blood-lead level, two main effects showed significance (dairy products intake of mother and hemoglo-

bin of mother). 
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1. Introduction 

Generalized linear models (GLMs), as the name implies, are a 

generalizations of the classical linear regression model. The clas-

sical linear model assumes that the mean of the response variable 

y  is a linear function of a set of predictor variables [1-7], and that 

the response variable is continuous and normally distributed with 

constant variance. As a matter of fact, in many applications, the 

response variable is categorical or consists of counts or is continu-

ous but non normal, so the ordinary least square method can't be 

applied to find the regression models [8-15]. Generalized linear 

models were introduced by Nelder and Wedderburn in 1972 [16] 

to address those limitations. GLMs are a family of models devel-

oped for regression models with non normal response variable. In 

the GLMs the mean of the response variable is modeled as a mon-

otonic nonlinear transformation of a linear function of the predic-

tor variables.The inverse of the transformation g  is known as the 

link function.  

Many applications used GLM [15, 17-23]. An example of non 

normal continuous distribution that has many applications is the 

inverse Gaussian distribution. It is skewed, takes on only positive 

values, and its variance is a function of its mean. It is used to 

model a wide variety of response variables that can take on only 

positive values, such as income, insurance, survival time, etc. 

Models with inverse Gaussian distributed response variables can 

be models within a GLM framework. 

This paper focused on the application of the GLM to predict the 

maternal and fetal blood lead level, in which the inverse Gaussian 

distribution with inverse quadratic link function is considered. 

This article has the following structure. The second section con-

tains the description of the exponential family. The elaboration of 

the GLMs is presented in the third section. The used distribution 

for analyzing and predicting maternal and fetal blood lead level 

are considered in the fourth section. In the fifth and sixth sections, 

the application and its results and the conclusions were given re-

spectively. 

2. Exponential family of distributions 

An important concept underlying GLM is the exponential family 

of distributions. Members of the exponential family of distribu-

tions all have probability density functions for a response y  that 

can be expressed in the form 
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Where ( ), ( )a b  , and ( )c  are specific functions. The parameter   is 

a natural location parameter, and   is often called a dispersion 

parameter. The binomial, Poisson, normal, gamma, and inverse 

Gaussian distributions are members of this family [16], [24-30]. 

Here some properties of the exponential family: 
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3. Generalized linear models 

The theory and use of GLMs were introduced by Nelder and 

Wedderburn (1972). They were developed to allow us to fit re-

gression models for univariate response data not normally distrib-

uted. The idea of GLMs is defined in terms of a set of independent 

random variables 
1 2
, ,......,

n
y y y  each with a distribution from the 

(1). 

There are three components specify a GLM. 

1) The random component consists of a response variable y  

with independent observations (
1 2
, ,......,

n
y y y ) from a distri-

bution in the canonical exponential family. 

2) The systematic component relates a vector (
1 2
, ,......,

n
   ) to 

explanatory variables through a linear model. Let 
i

x  denote 

the value of predictor k , then  
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This linear combination of explanatory variables is called the line-

ar predictor. 

1) The link function component connects the random and sys-

tematic component. Let ( ), 1,2,...,
i i

E y i n    , the model 

links 
i

  to 
i

 , so the link function is  
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i i

g i n                                                                 (6) 

 

Where g  is a monotonic differentiable function. The term link is 

derived from the fact that the function is the link between the 

mean and the linear predictor (Myers et al., 2002) .The expected 

response is  
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One way of assessing the adequacy of a model is to compare it 

with a more general model with the maximum number of parame-

ters that can be estimated. This is called a saturated model, which 

is a generalized linear with the same distribution and same link 

function as the models of interest. We define a measure of the fit 

of the model to the data as twice the difference between the log 

likelihoods of the model of interest and the saturated models. 

Since this difference is a measure of the deviation of the model of 

interest from a perfectly fitting model, this measure is called the 

deviance. The deviance, D , is given by 
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In fitting a particular model, we seek the values of the parameters 

that minimize the deviance. A good rule of thumb is that the lack 

of fit be good when deviance/ (n-p) less than 1.0 [6]. 

The maximum likelihood estimates of the parameter   in the 

linear predictor can be obtained by using iterative weighted least 

squares [5]. 

4. Inverse Gaussian distribution 

The inverse Gaussian distribution is a positively skewed continu-

ous distribution having two parameters   and 2 . Several alter-

native parameterization appear in the literature. In our paper, we 

use the following p.d.f. 
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The mean and variance are ( )E y   , 2 3var( )y    where 2 is 

the dispersion parameter [2]. 

From equation (1), the exponential form is  
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Where 
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The log likelihood function of (10) may be derived as:  
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The link function is  
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The sign and coefficient value are typically dropped from (12) [3].  

In GLMs the mean is related to explanatory variables. Thus the 

mean varies with the explanatory variables. As the mean varies, so 

does the variance, through ( )v  . So, the variance function, ( )v  , 

is  
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Now, the ( )v  of the inverse Gaussian distribution is  
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Finally, the deviance function, D  is calculated from the saturated 

model and the model log-likelihood formulas 
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5. Application 

Great attention has been directed to study maternal and fetal blood 

lead levels since pregnant women and young children are the most 

sensitive populations to the lead exposure from various sources 

[1]. 

The data was taken from [1], which are representing 350 pregnant 

women. The obtained data were taken directly from mothers 

themselves through questionnaire form. In this study we have two 

separated response variables, one for the maternal blood lead level 

(MBLL) and the other for the fetal blood lead level (FBLL). Many 

predictor variables are taken for both response variables. 

5.1. Prediction of the maternal blood lead level 

High levels of lead in pregnant women arise from various effected 

variables. These explanatory variables are: 

1
x (Residence, 1 for urban and 0 for rural), 

2
x (Pica, 1 for No and 

2 for yes), 
3

x (Physical activity), 
4

x (Chronic disease, 1 for No and 

2 for Yes), 
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5
x (Smoking of mother), 

6
x (Smoking of father), 

7
x (Diary prod-

ucts intake of mother), and 
8

x (Calcium intake of mother). 

The GLM equation is  

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ
MBLL

y x x x x x x x x                
o

 

Fig. 1 shows that the response variable 
MBLL

y  has a distribution 

with a heavy right tail, and thus an inverse Gaussian distribution 

be appropriate. (The value of 2 =6.893, and 2 (0.05, 8) 

=15.507)  

 

 
Fig. 1: The Histogram of the MBLL Variable. 

 

Using the function glm  in STATA 10 program, the obtained re-

sults showed in Table 1. 

 
Table 1: The GLM Results Using Inverse Gaussian distribution 

No. of Iteration=6 Scale parameter=0.1111 

Optimization : ML Residual df = 341 
Deviance = 

32.656998 

No. of Observation=350 AIC = 5.523189 

Log likelihood = -957.55802  

Coef. 
Coef. 

value 
Std.Err. t  P> t  95% Conf. Int. 

Const. 0.08289 0.0608 1.36 0.173 
-

0.036276 
0.202 

1
x  -0.00172 0.0068 -0.25 0.8 -0.015 0.0466 

2
x  0.03079 0.00808 3.81 0.00 -0.0289 0.007 

3
x  -0.01095 0.00916 -1.19 0.232 -0.0166 0.058 

4
x  0.02068 0.019 1.08 0.278 -0.00012 0.01715 

5
x  0.008515 0.0044 1.93 0.05 -0.00641 0.0147 

6
x  0.004158 0.0053 0.77 0.441 0.00562 0.02449 

7
x  0.01505 0.00481 3.13 0.002 -0.1116 -0.0515 

8
x  -0.08158 0.0153 -5.32 0.000 -0.0362 0.202 

 

The predicted equation is 

2 3 7 8
ˆ 0.08289 0.03079 0.008515 0.015 0.08158

MBLL
y x x x x      

From Deviance = 32.656998/( Residual df = 341) the lack of fit 

for this equation is good since it equal to 0.0957 < 1. The normal 

probability plot of the residuals and the scatter plot between the 

deviance residual and the fitted value are shown in Figs. 2 and 3. 

 

 
Fig. 2: Normal Probability Plot of the Residuals. 

 

 
Fig. 3: Scatter between Deviance and Fitted Value. 

5.2. Prediction of the fetal blood lead level 

Maternal blood is one of the important sources of the lead expo-

sure for fetus and infant. There is no apparent maternal -fetal bar-

rier to lead, therefore fetal blood lead level (FBLL) are nearly 

equal to MBLL. The explanatory variables are: 
1

x  (smoking of 

mother), 
2

x (dairy products intake of mother), 
3

x (blood pressure 

of mother), and 
4

x (hemoglobin of mother).  

The GLM equation is 

 

1 1 2 2 3 3 4 4

ˆ ˆ ˆ ˆ ˆˆ
MBLL

y x x x x        
o

  

 

Fig. 4 shows the histogram of the response variable 
FBLL

y , thus an 

inverse Gaussian distribution be appropriate (The value of 2

=14.9, and 2 (0.05, 8) =15.507). Using the function glm  in 

STATA 10 program, the obtained results showed in Table 2. 
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Fig. 4: The Histogram of the MBLL Variable. 

 
Table 2: The GLM Results Using Inverse Gaussian distribution 

No. of Iteration=4 Scale parameter=0.24708 

Optimization : ML Residual df = 341 
Deviance = 

74.37703 

No. of Observation=350 AIC = 4.56926 

Log likelihood = -794.7019908  

Coef. 
Coef. 

value 
Std.Err. t  

P>

t  
95% Conf. Int. 

Const

. 
-0.32515 0.09569 

-

3.4

0 

0.00

1 
-0.5127 -0.1376 

1
x  0.03269 0.0104 

1.6
6 

0.09
8 

0-
0.00601 

0.0623 

2
x  

0.04191

9 
0.02707 

4.0

3 

0.00

0 
0.02153 0.0623 

3
x  -0.04032 0.006781 

-

1.4

9 

0.13
6 

-0.0933 0.01273 

4
x  

0.02864

6 
0.09569 

4.2

2 

0.00

0 

0.01535

5 

0.041936

6 

 

The predicted equation is 

 

2 4
ˆ 0.325 0.0419 0.0286

MBLL
y x x      

 

From Deviance = 74.37703/( Residual df = 341) the lack of fit for 

this equation is good since it equal to 0.281< 1. The normal prob-

ability of the residuals and the scatter plot between the deviance 

residual and the fitted value are shown in Figs. 5 and 6, respective-

ly. 

 

 
Fig. 5: Normal Probability Plot of the Residuals. 

 

 
Fig. 6: Scatter between Deviance and Fitted Value. 

6. Conclusion 

The generalized linear regression models for the predicting MBLL 

and FBLL assuming the inverse Gaussian distribution as the re-

sponse distribution are considered. From Table 1, four explanatory 

variables (pica, smoking of mother, dairy products intake of moth-

er, calcium intake of mother) shown significant effects, while 

from Table 2, dairy products intake of mother and hemoglobin of 

mother, show main effects. The normal probability plots for the 

residuals for both response variables are represented on Figs. 2 

and 5 which show that the residuals have normal distribution. The 

scatter plot between deviance residuals and fitted values for both 

MBLL and FBLL are shown in Figs. 3 and 6, which point out that 

the variance is not constant. 
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