International Journal of Advanced Statistics and Probability, 5 (1) (2017) 52-56 )

International Journal of Advanced Statistics and Probability

Website: www.sciencepubco.com/index.php/IJASP
doi: 10.14419/ijasp.v5i1.7524
Research paper

SPC

Characterization for Gompertz distribution based on general
progressively type-II right censored order statistics

M. M. Mohie EI-Din %, A. Sadek !, Marwa M. Mohie EI-Din 2, A. M. Sharawy 2*

! Department of Mathematics, Faculty of Science (men), Al-Azhar University, Cairo, Egypt
2 Department of Mathematics, Faculty of Engineering, Egyptian Russian University, Cairo, Egypt
*Corresponding author E-mail: ali.elsharawy82@yahoo.com

Abstract

In this article, we establish recurrence relations for single and product moments based on general progressively Type-II right censored
order statistics (GPTIICOS). Characterization for Gompertz distribution (GD) using relation between probability density function and
distribution function is obtained. Moreover recurrence relations of single and product moments based on GPTIICOS are also used to
characterize the distribution. Further, the results are specialized to the progressively Type-Il right censored order statistics (PTIICOS).

Keywords: Characterization; Gompertz Distribution; General Progressively Type-Il Right Censored Order Statistics; Recurrence Relations.

1. Introduction

In failure data analysis, it is common that some individuals cannot
be observed for the full failure times. GPTIICOS is a useful and
more general scheme in which a specific fraction of individuals at
risk may be removed from the study at each of several ordered
failure times. Progressively censored samples have been consid-
ered, among others, as solved by Davis and Feldstein [7], Aggarwa-
la, and Balakrishnan [3], Balakrishnan et al. [6] and Guilbaud [9].
Mohie EI-Din et al. [13] derived recurrence relations for expecta-
tions of functions of order statistics for doubly truncated distribu-
tions and their applications. Aggarwala and Balakrishnan [3] de-
rived recurrence relations for single and product moments of
PTIICOS from exponential and truncated exponential distribu-
tions. Abd El-Aty and Marwa Mohie EI-Din [1] derived recur-
rence relations for single and double moments of generalized or-
der statistics from the inverted linear exponential distribution and
any continuous function. Mohie EI-Din and Kotb [12] derived
recurrence relation for product moments and characterization of
generalized order statistics based on a general class of doubly
truncated Marshall-Olkin extended distributions. Mohie EI-Din et
al.[11] discussed estimation for parameters of Feller-Pareto distri-
bution from PTIICOS and some characterizations .Abd EI-Hamid
and Al-Hussaini [2] derived Inference and optimal design based
on step-partially accelerated life tests for the generalized Pareto
distribution under progressive Type-1 censoring .Mohie EI-Din et
al. [14] derived characterization for linear failure rate distribution
using recurrence relations of single and product moments based on
general progressively Type-1I right censored order statistics.

This scheme of censoring was generalized by Balakrishnan and
Sandhu [5] as follows: at time X, = 0,n units are placed on test;
the first r failure times, X4, ..., X;, are not observed; at time X; + 0,
where X;is the ih ordered failure time(i=r+1,..,m—1),R;
units are removed from the test randomly, so prior to the (i +
1™ failure there aren; = n- i — Z§=r+1 R; units on test; final-
ly, at the time of the m*™" failure, X,,, the experiment is terminated,

i.e., the remaining R, units are removed from the test. The R;’s,
m and r are prespecified integers which must satisfy the condi-
tions 0<r<m<n 0<R;<n4fori=r+1,.,m-1
with n, =n—r and R, = n,,_; — 1, (See Arturo and Fernandez
[4]).

If the failure times are based on an absolutely continuous distribu-
tion function (cdf) F with probability density function (pdf) f, the
joint probability density function based on GPTIICOS failure
times X‘r+1:m:,n' X‘r+2:m:,n! ""Xm:m:,n ’ is given by

er+1:m:,n'Xr+z:m:,n'---'Xm:m:,n (Xr+1, T Xm) = K(n,m—l) [F(Xr+1, 9)]TX

H‘{ZT+1 f(xi' &1 - F(xi' 9)]Ri' Xrp1 < Xpaz <0 <Xy, (L)
where,
m-1 i
n! )
K(n'm_l)zrl(—n—r)l 1_[711' , np=n—i-— Z Rj,
’ ’ j=r j=r+1

i=r+1,..,m-—1.

Through out this paper, we introduce recurrence relations among
single and product moments based on GPTIICOS. Also
characterization for GD using recurrence relations of single and
product moments based on GPTIICOS, are obtained.

Let

(Rr+1.Rr42,-Rm) (Rr+1,Rr+2,-Rm) (Rr+1,Rr+2,Rm)
Xr+1:m:n < Xr+2:m:n << Xmmen

Be the m ordered observed failure times in a sample of size (n —
r) under GPTIICOS scheme from the GD with probability density
function (pdf) given by

_GoBx_
f(x,a,/?)=aeﬁx S 1),a>0,/?>0, x>0
1.2
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And the corresponding cumulative distribution function(cdf) is
given by

_(ghx_
Foap)=1-e i D a508>0 x=0. (13)
The GD was introduced by Gompertz [8].

It may be noticed that from (1.2) and (1.3) the relation between
pdf and cdf is given by,
f(x) = aeP*[1 - F(x)]. (1.4)
For any continuous distribution, we shall denote the it'single mo-
ment of the GPTIICOS in view of Eq. (1.1) as

(Rr41.Rr42,-

ﬂqmn

RO _ (Rr+1,Rr 420
" =E [qurlrrl:n "

.Rm)]i _

Kmm-1) I f0<xr+1<---<xm<oo xzi; [F Qe )] f (Gerya) %

[1 = FQtry DI+ f (i 2)[1 = F Qg ) 1Rr+2 o f ()

[1 = FCon)]fmdxyy ... dxm, (1.5)
And the ith and jth product moments as

(Rr+1.Ry Rm)(i'j) (Rr+1.Ry Rm) (Rr+1.Ry Rm)]
Hg,s: :n n e =E [Xq:mtn i X, m+n i ]
Kmm-1) I f0<xr+1<---<xm<oo lezxé [F Gy DI f (1) X

[1 - F(xr+1)]Rr+1f(xr+2)[1 - F(X1“+2)]Rwr2 f(xm)
(1= FCen)]fmdxysy ... dxp. (1.6)

2. Recurrence relations of single and product
moments

In this section, we introduce the recurrence relations for single and
product moments based on GPTIICOS.

In the next theorem we introduce the recurrence relations for sin-
gle moments based on GPTIICOS.

Theorem 2.1: If Xr+1:n< Xr+2:n<".. < Xn:n be the order stasistics of
a random sample of size (n — r) following GD, for r+2 < q <
m—1m<nandi = 0,then

Ra)® apk

‘Z-—X
kzok!(z+k+1)

(Rr+1.Rr+2)0
qmmn

Ry4 1Ry 2Ry AHRHD)
((Rq + Vg ezt
R R (RT+1,...,(Rq+Rq+1+1),Rq+2,...,Rm)(l+k+1)
+ (n T Rryr T T Rg T q)#q:m—l:n
—(n—Ryp1 ——Rg-1 —q +1)X
(Ry41,-+(Rq—1+Rq+1),R H,...,Rm)mkﬂ)
g-tmotm }. (1.2)

Proof
From Eq. (1.4) and Eq. (1.5), we get

— afk
k! K(nm 1)><
k=0

ff fo<xr+1<"'<xq—1<xq+1<"'<xm<°° YI(xq—lr xq+1)[F(xT+1)]r X

(Rr+1.Rr42,--Rm) (i)

:uqmn

[ Qs D[1 = F ()R ---f(xq—l)[l - F(xq—l)]Rqﬂf(xcHl)

[1 = Fqen)] ™ o fGom)[1 = F Ge)]Fm

AXyyq o dxgqdxgyq o dxpy, (2.2)

where

¥1(%xg-1,%q+1) = f;;q: xgk[1- F(xq)]RqH dxgq. (23)

Now, integrating by parts gives

Vl(xq—lrxq+1) =

Ry+1
l+k+1[1 q

Xq+1 — a1 - F(xq—l)]RqH

i+k+1

(B e et ()1 - F ()] dixg.

Xg-1

F(xq+1)]

(2.4)

Substituting by Eq. (2.4) in Eqg. (2.2) and simplifying, yields Eq.
(2.1).
This completes the proof.

Special case: Theorem 2.1 will be valid for the PTIICOS as a
special case from the GPTIICOS when r = 0,

(RyRz,sRi)® _ (Ry, Ry Ry D)
q:‘r%‘L:n2 - Zk 0 k‘(l+k+1) {(R + 1) q rlnrf
(i+k+1)
(= Ry — = Ry_y — q + Dl Be Rt Dl fin)
(i+k+1)
R1,Rz,.(Rq+Rg+1+1),Rgs2,-Rm
+(n = Ry = o= Ry — @)l T D v lin) 0

In the next two theorems, we shall introducerecurrence relations
for product moments based on GPTIICOS.

Theorem 2.2: If Xr+1:n<... < Xn:n be the order stasistics of a

random sample of size (n —r) following GD, for r+1<¢g <
s<m—1m<nandi,j=0,then

(e}
af®

'Rm)(i’j) — Z X
= e
LK +k+ D)

Ryy) (EHK+LI)

(Rr+1.Rr42me
q,sm:n

{(Rq + 1)z

q,sm:n
+(n—Rpyy == Ry - q)ug‘,?_*;;;,';(_‘?ﬁ;‘?"“*“‘Rq”"""?m)mw

—(n—Rpy1——Rg —q+1)X
(RTH,RH.Z,...,(Rq_l+Rq+1),Rq+1,...,Rm)(i+k+1'j)}. 2.5)

q-1,s-1:m-1:n

Proof
Similarly as proved in theorem 2.1.

Special case: This theorem will be valid for the PTIICOS as a
special case from the GPTIICOS whenr = 0,

(RyRz, R _ (RyRp,...Rpy) (FKFLD)
I‘lqs m:n - Zk 0k'(1+k+1) {(R + 1) uq s:m:n
(i+k+1,j)
+(n—Ry - —q) (RuRz.(Rg+Rqs1+ 1) Rqsz-Rm)
n 1 q,s—1:m—-1:n
—(n—Ry =+ —Rgy —q+1)x
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(Ryv(Rg1 +Rq+ 1) RgamoRp) T

g-1,s-1:m-1n } Necessity:

From Eq. (1.2) and Eq. (1.3) we can easily obtain Eq. (3.1).
Theorem 2.3: If Xr+1:n<l.. < Xan be the order stasistics of a  Sufficiency:
random sample of size (n —r) following GD, for r+1 < g <  Suppose that Eq. (3.1) is true. Then we have:
s<m—1,m<nandi,j = 0,then
B ZAB-FOIL _ o eBxgy.
..,Rm)(‘rl*'k“) 1-F(x)

Ry 1sesRi) ) o k Ry+1.Rri2,-
ﬂ( +1 ) zzk=0k!(aﬁ {(RS+1)M( +1Rr42

q,sm:n i+k+1) q,sm:n

(Ry41y-n(Rg+Rs41+1),Rg i 2nnRpy) I HEHD)
q,sm—-1.n

+(M—Rryy = —Rs— S

—(M—=Rpp1— " —Rs_y —s+ X

(Rr+1.Rr42,0(Rs—1+Rs+1),Rs 0o Rpy) B HRAD)
q,s—1:m—-1:n }

(2.6)

Proof
Similarly as proved in theorem 2.1.

Special cases: Forr = 0, we obtain the recurrence relations of
PTIICOS.

(RyRzp s R) ) Qoo apk (Ry,RpyRy) BT HKHD)
q,s:m:mn - 2k=0 Kl(i+k+1) {(RS + 1) ﬂq,s:m:n

—(n—Rl—---—RS_1 i 1))(

(RyRz,.r(Rs—1+Rs+1),Rgyq,nnrRpy) WAL
q,s—1:m—-1:n

(Ry.Rz,-o(Rs+Rg41+1),Rs 2, Rpy) WA AL
q,sm—1:n ’

+(n—Ry——Rs—s)u
andfori =0

apk (R1,Rzs Ry )UHKHD)
= k=0 gy (Rs + 1) Hgamin”™ "

(Ry,RzyeeRy) P
ssm:n

_(n_Rl_"‘_RS_l —Ss+ 1))(

(Ry.Rz, ..o (Rs—1+Rs+1) Ry yq,men Ry ) U THHD
s—1m-1:n

Ry,Rp,e(Rs+Rs41+1),Rg 12,00 Ryp ) U HEHD)
+(”_R1_"‘—Rs—5)#§:7§,_21m( s+Rs+111).Rs42 'm) ,
and fors =m

(Ry,Rzp Rm)P) _ 5100 apk (RyRgp.mRpy) U HHKHD
.um:lm:il - ZkZO m{(Rm + 1) /"tm%mil

(R1,Rz,(Rm—1+Rm+1))U+k+1)
—(Tl - Rl -t Rm—l —-m+ 1)I'lmil:zrrl—(l:n ! ) }

3. The characterization

In this section, we introduce the characterization of the GD using
the relation between pdf and cdfand using recurrence relations for
single and product moments based on GPTIICOS.

3.1. Characterization via differential equation for the
GD distribution

In the next theorem, we introduce the characterization of the GD
using relation between pdf and cdf.

Theorem 3.1: Let X be a continuous random variable with pdf f (-
), cdf F(-) and survival function [1 — F(-)]. Then X has GD iff
f(x) = aef*[1 - F(x)]. (3.1)

Proof

By integrating, we get

—ln|1—F(x)|=%eﬁx+C (3.2)

Where C is an arbitrary constant.
Now, since[1 — F(u)] = 1, then putting x = 0 in Eq. (3.2), we

-a

getC = ?
Therefore,

— = T px &
In|[1 = F()]| 5 +ﬁ,

Or
[1-F(x)] = exp{—>ef* +2}.
B B
Hence,
-1— a _ % Bx
F(x)=1 exp{ﬂ Be }

That is the distribution function of GD.
This completes the proof.

3.2. Characterization via recurrence relations for single
moments

In the next theorem, we will introduce the characterization of the
GD using recurrence relations for single moments based on
GPTIICOS.

Theorem 3.2: LetXr+1:n< Xr+2:n<... < Xn:n be the order stasistics
of a random sample of size (n —r). Then X has GD iff, forr +
2<qg<m-1m<nandi =0,

i k
(Rr4+1.Rr42,Ry) @ — z ap %
Haimn LK+ k+1)

..,Rm)(i+k+1)

((Rq + Dugiria™

(Rr+1u--'(Rq+Rq+1+1)1Rq+2'---'Rm)(Hkﬂ)
+ (n “Rry1— = Rg— q)'uq:m—l:n
—(M=Rpy1—— Ry —q +1)x
(Rr+1.Rr42,-+(Rg—1+Rq+1),R +1,...,Rm)(i+k+1)
q—1m-1n ! ! ‘ } (33)
Proof
Necessity:
Theorem 2.1: proved the necessary part of this theorem.
Sufficiency:
Assuming that Eq.(3.3)holds, then we have:
Rrs1Rm)P _ ©oo apk (Ry41,Ry 427 Ri) GHEHD
Hg:mn = 2o tmras (Re + ) g
(i+k+1)

+ (n —Ryyq— - — Rq - q)'uq:m—l:n
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Rq- R
—(n=Rpp1 == Rq1 —q +1)X F(ge)[1 = F g F Cqun)[1 = Fxqer)] X
(Ry+1.Rr4 20 (Rg—1+Rq+1),Rgs1,mRe) T+ } (3.4) f Ol = F Qo) 1Rmdx, g o dxg_qdXgsq o Xy
q—-1m-1n 4 .
where, i
_ (n=Rrp1==Rg-1=q+1) (Rrs1.Rrszin(Rgo1+Rg+1).Rgs1,s Ry) D
(Ry41,Rrg 25 Ryg) EFRFD Rg+1 q-1m-1n
ﬂqmn -
_ R _ (i+k+1)
K(n,m—l) ﬂ""f0<xr+1...<xq_1<xq+1<w<xm<oo yg(xq_l,qu)X + (n Rr+;q+1 Rg=q) l(:r::_lf::z'-m(Rq+Rq+1+1).Rq+z»-.,Rm) . (38)
[F (DI FOG D1 = FQxp o DIRr L f(xgq )X (i+kt) )
)l S s r I a ) Substituting for u(R”;LRT“ R g om Eq. (3.8) in Eq. (3.4),
R R we get
[1 = F(rg-2)]™ f (gaa)[1 = F(aqua) "™ o f Gem) % ‘
. k
[1 = FOtm)Rmdty 1 o dig-1dXgrg o dom, (35) (i Z“kﬁ Kenm-1)
k=0
Rg+
where ff"'f0<x,.+1<w<xm<oo l+k[F(x7'+1) [1_F( Q)] ! f(xr+1)><
_ (¥a+1 i+k+1 Rq
Xg_1,X = X x,)|1—F(x dx,. 3.6
Valromnxaen) = LA G POl e GOy p s )l - Frg)
Integrating by parts, we obtain .
TGP f(xge)[1 - F(an)]R‘Z+ e FOE[1 = Flep))Rmdx, g oo dxp,.  (3.9)
-1 Rg+1
73(xq—1'xq+1) = Rq+1xcl]-:-li+1[1 - F(xq+1)] a We get
; R
R — L+k+1[1 _ F(xq 1)]Rq+1 K(n,m—l) ff‘"f0<xr+1<m<xm<oo‘xClI[F(xT“‘l)]Tf(xq)[l - F(XQ)] !
— Ry _ Rg—1
i [Favi LK[1 - F(x q)]Rq+1dxq 3.7) fCreD[1 = FOep IR o f(xg-1)[1 = Fg-1)]

Rg+1 “Xg-1
Substituting in Eq. (3.5), we get

Ry I+ k41
Ry +1

(Rr+1.Rr42-

qun K(n,m—l)x

,
... f0<xr+1...<xq_1<xq+1<---<xm<oo[F(xr+1)] X

f(xr+1) [1 - F(xr+1)]Rr+1f(xq—1)[1 - F(xq—l)]Rq_l

f B xgt[1 - F(xq)]Rquxq fxge)[1 = F("qﬂ)]Rq+1 X

Xg-1

fle)[1— F(xm)]Rmdxr+1 ---dxq—ldxq+1 e Xy
Kmm-1) i+k+1 r
Rq+1 ff e f0<xr+1...<xq_1<xq+1<---<xm<oo Xq-1 [F(x7”+1)] x

Rg—_1+Rg+1
q q e

f(xr+1)[1 - F(xr+1)]RT+1 ---f(xq—l)[l - F(xq—l)]

F(xqen)[1 = Fxgar)] ™ x

fOo)[1 = FO)]fmdixy 4 q ... dxg-1dxg41 - dXpy

_ Kmm-1) i+k+1 r
Rq+1 ﬂ"''f0<xr+1...<ch_1<xq+1<---<xm<ooxq‘H [F(x7”+1)] x

f(xq+1)[1 -

f(xr+1) [1 - F(xr+1)]RT+1
Flxgen)] o™ x

f )1 = F ()] Rmdxy 4 e lXq_1dXgiq o Xy =

i+k+1 r
Kam-1) Rgt1 ﬂ"'f0<xr+1...<xq_1<xq+1<---<xm<oo[F(xr+1)] X

: Rg+1
f;;qj Xk [1 = F(xg)] " dxg £ Gerp D[ = F(tyy)]Fron x

Frr)[1 = F(xqen)]™ ™ v fGomd [ = FGen) P dity gy .o ity

i+k
- K(nm 1) ff f0<xr+1< <Xm<002k 0 k‘ xq X

[F G DV [1 = F )] G

fxg-1)[1 - F(xq—l)]Rq_lf(qu)[l - F("q+1)]Rq+1 o X

fGen)[1 = F(xp))Fmdx,yy ...

— F ()[R

A (3.10)

We get

K1) [+ Sy oo ¥ [1 = F ()] Gerg) X
[1— FCere)]froif(xq-1)[1 - F(xq—l)]Rq_lf(qu)

[1 = Fxqen)] " e fGem) (1 = F )]

[f (xg) — aeP¥a[1 = F (x)]][F (xr+1)] %Xy 41 ... dxy = 0.(3.11)
Using Muntz-Szasz theorem, [See, Hwang and Lin [10]], we get
f(xq) = aePa[1 - F(x,)].

Using Theorem 3.1, we get

Fx)=1—e 8",

That is the distribution function of GD.
This completes the proof.
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3.3. Characterization via recurrence relations for prod-
uct moments

In the next two theorems, we will introduce the characterization of
GD using recurrence relations for product moments based on
GPTIICOS.

Theorem 3. 3: Let Xr+1:n< Xr+2:n<... < Xn:n be the order stasistics
of a random sample of size (n — r). Then X has GD iff, forr +
1<g<s<m-1, m<nandij>0,

p e Rez Ru) Z apX
asmn kKli+k+1)
(Rr :Rr ,...,Rm)(i+k+1'j)
{(Rq +1 uq,sﬁrﬁ:n 2
(Rests(Rq+Rqa1+1) RquzrRen) T
+ (Il —Rppg == Rq - q)p‘q,s:i:m—lq:n " "
—(n=Rp4g =+ —Rqog —q + 1)X
(i+k+1,j)

(Rr+1.Rrs2,4(Rqe1+Rq+1),Rg11,-Rm)

q-1,s—-1:m-1:n } (312)
Proof

Necessity:

Theorem 2.2 proved the necessary part of this theorem.
Sufficiency:

Similarly as proved in theorem 3.2 we obtain the distribution
function of GD given by

F(x) = 1— e 8D,

This completes the proof.

Theorem 3.4: Let Xr+1:n<... < Xn:n be the order stasistics of a
random sample of size (n—r). Then X has GD iff, for
r+l1<g<s<m-1,m<nandi,j=0,

(Rr+1.Rr 42 Rm)(i'j) oo aﬁk
=0 {(R
Hasmn Lic=o Ki(i+k+1) (R +
(Ry41,Ry42,sRi) BT HRHD)
) q,s:m:m

(Rs+Rs+1+1)'Rs+2----;Rm)(i'j+k+1)

Ryt
+ (n —Ryp1——Rs— S)#z(q,s::ri—l:n
—(M—=Rpyg — =Ry —s+1)X
(@j+k+1)
'u(({RsHi }:):)rzln(Rs 1+Rs+1), Ry g 1,00 R) BT HEHL (3.13)
Proof
Necessity:
Theorem 2.3 proved the necessary part of this theorem.
Sufficiency:

Similarly as proved in theorem 3.2 we obtain the distribution
function of GD given by

Flx) =1—e 7",

This completes the proof.
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