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Abstract 

 

In this paper, we consider the estimation of R= p(y<x) when x and y are two independent random variables from two-

parameter weibull distribution with different scale parameters and the same shape parameter. Assuming that the 

common shape parameter is known, MLE, UMVUE and Bayes estimators of  R are obtained. We also derive a 

confidence interval and shortest confidence interval for R based on MLE of R.  Monte-Carlo simulation are performed 

to compare the different proposed methods. 
 
Keywords: Bayes estimator, Maximum likelihood estimator, shortest confidence interval, stress-strength model, uniformly minimum variance 

estimator 
 

 

1 Introduction 

In this paper, we consider the problem of estimating the stress-strength parameter R=P(Y<X) when X and Y are two 

independent random variables from two-parameter Weibull distribution. R=P(Y<X) is arised  when the random strength 

X exceeds the random stress Y and we are interested in calculating the probability of it. Because of that R=P(Y<X) is 

called the stress-strength parameter. Due to practical point of view of reliability stress-strength model many authors 

represented a lot of papers about the estimation of R=P(Y<X) for different distributions. Kundu and Gupta [4,9], Rezaei 

et al. [5], Panahi and Asadi [6], Krishnamoorthy et al. [12], Kundu and Raqab [13]. 

When the common shape parameter α is unknown, Kundu and Gupta [7] considered the estimation of R when 

            and            are two independent Weibull distributions with different scale parameters. In this 

paper, we consider estimation of R when the common shape parameter α is known. 

The layout of this paper is as follow: in section 2, we introduce the Weibull distribution. In section 3, we derive the 

estimation of R, in this section, the MLE , UMVUE and Bayes estimators of R are obtained. Simulation study for 

comparison between estimators are given in section 5. 

 

2 Weibull distribution 

Weibull is one of the most widely used distributions in reliability studies. It is often used as the lifetime distribution, 

because some failure models are described by their shape parameter. Therefore, the weibull distribution is important 

and has been studied extensively over the years. 

A random variable X is said to have weibull distribution, if it´s probability density function (PDF) is given by 

 

                   
 
                                                                                                                                         (1) 

 

The cumulative distribution function of weibull distribution (CDF) is defined by 

            
 

,  

where     is a shape parameter and   is a scale parameter. 
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3  Estimation of R = P(Y<X) 

3.1   MLE of R 
 

Let X and Y are two independent Weibull random variables with parameters   ,and        respectively. Therefore 
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Let           be a random sample from          , and           be a random sample from         , then the 

log-likelihood function of observed data is 
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The     of     and   , denoted by      and     respectively, can be obtained as follow 
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From (4) and (5), we obtain 
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Then, 
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It is easy to see that 

 

      
         

  
      and           

         
  

    

So 
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Where    has   distribution with    and    degrees of freedom. So the PDF of    can be abtian as follow 
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Where       and          . 

Then           the confidence interval is 

 

 
 

                        
 

 

                      
                                                                                                                      (11) 

 

We can also obtain the shortest confidence interval for R by using   
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As a pivotal quantity which it´s limiting distribution is F with 2m and 2n degrees of freedom. This confidence interval is 

as follow 
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We must choose a and b such that two below equations (14 and 15) are hold simultaneously 
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where       is a probability distribution function of F distribution with 2m and 2n degrees of freedom. 

 

3.2   UMVUE of R 
 

In this subsection we obtain the UMVUE of R using the Rao-Blackwell theorem and applying the result of Tong [1,2]. 

We know             
  

       
  

     is a jointly sufficient statistic for        . Let 
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Where      
  and      

  . It is easily seen that          is an unbiased estimator of R. So the UMVUE of R, say 

        can be abtained as 
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Where                                
 

                    
       

   

  
           

          
          

       
   

  
           

Therefore 
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3.3   Bayes estimator of R 
 

In this subsection, we derive the Bayes estimator of R under SEL function . For this purpose, we assume  independent  

Gamma priors on     and     , that is   and    follow               and              respectively. Then the 

posterior PDF´S of    and    is  

 
                                                                                                                                                        (19) 
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Where       
  

    and      
  

    . Note that, here   is known. 

Since    and    are independent, using (19) and (20), the posterior PDF of R is 
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Where   
            

              
 

Therefore, the Bayes estimator of R,      , is the posterior mean which can be obtained as follow 
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Where                                         . 

 

4 Simulation 

In this section we use numerical results to compare the performance of the different estimators obtained in section 3 , 

with respect to their biases and mean square errors. For this purpose Monte Carlo simulation was used. The following 

steps were considered for obtaining these numerical results. 

Step1: we generated         from Weibull distribution for n=15, 25,      and      . 

Step2: we generated         from Weibull distribution for m=15, 25, 50 and    2, 4, 6 and   1.5. 

Step3: we compute the MLE of R using Eq. (8). 

Step4: Eq.(18) was used for computing the UMVUE of R. 

Step5: To obtain Bayes estimator Eq.(22) was used when the values of the prior parameters being    1 ,    2,    2 

and    3. 

Step6: We obtained the estimators based on N=2000 replications and calculate the MSE as follow 
2000

2
i

i 1

1 ˆMSE (R R)
2000



 
 

where    is an estimator of R. All the results are given in table1. 

From table 1, it is clear that when m=n and n, m increase then the MSEs decrease. We observed that for fixed n as m 

increase MSEs decrease and also for fixed m as n increase the MSEs decrease. 

It is also observed that MSEs of the Bayes estimators of R are smaller than the MSEs of the MLEs and UMVUEs. Also 

MLEs has MSEs less than the UMVUEs. So the performance of Bayes estimators are better than MLEs and the 

performance of the MLEs are better than UMVUEs.  
 

5 Conclusion 

In this paper, we treated different point estimations of R=P(Y<X) under Weibull distribution. The MLE and UMVUE 

of R were obtained that had closed forms. We obtained the Bayes estimator of R with respect to the square error loss 

function based on gamma priors exactly. We also represented a confidence interval and shortest confidence interval for 

R based on MLE of R. At last, we performed simulation study for comparing between three estimators. As the Bayes 

estimators has smallest MSEs among all estimators so we recommend to use the Bayesian estimators in practice. 
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Table 1: The bias and MSE values of the MLE, UMVUE and Bayes Estimator  

n.m         
    

           
      

           
       

           

 

 

15,15 

 

 

       2 

 

 

4   4 

 

 

    6 

 

0.33 

 

 

0.5 

 

 

0.6 

 

0.3391 

(-0.005807,0.006590) 

 

0.4998 

(0.000185,0.007856) 

 

0.5972 

(0.002770,0.007518) 

0.3343 

(-0.001005,0.006903) 

 

0.4998 

(0.000193,0.008391) 

 

0.6003 

(-0.000347,0.007974) 

0.3471 

(-0.013754,0.002942) 

 

0.4456 

(0.054329,0.002639) 

 

0.4941 

(0.105864,0.002390) 

15,25  

 

2 

 

 

4   4 

 

 

6 

0.33 

 

 

0.5 

 

 

0.6 

0.3339 

(-0.000572, 0.005263) 

 

0.4971 

(0.002883, 0.006497) 

 

0.5946 

(0.005385, 0.006611) 

0.3329 

(0.000399, 0.0055) 

 

0.5004 

(-0.000374, 0.006851) 

 

0.6002 

(-0.000247, 0.006907) 

0.3684 

(-0.035082, 0.002764) 

 

0.4892 

(0.010779, 0.002673) 

 

0.5504 

(0.049579, 0.002527) 

15,50 

    2 

 

 

4   4 

 

 

    6 

 

 

0.33 

 

 

0.5 

 

 

0.6 

0.3291 

(0.004197, 0.004270) 

 

0.4937 

(0.006317, 0.005285) 

 

0.5936 

(0.006413, 0.005126) 

0.3310 

(0.002309, 0.004459) 

 

0.4994 

(0.000619, 0.005522) 

 

0.6012 

(-0.001168, 0.005290) 

0.3860 

(0.002309, 0.002437) 

 

0.5285 

(-0.028557, 0.002371) 

 

0.6040 

(-0.004028, 0.002136) 

25,15 

      2 

 

 

4    4 

 

 

     6 

 

 

0.33 

 

 

0.5 

 

 

0.6 

0.3417 

(-0.008403, 0.005269) 

 

0.5023 

(-0.002271, 0.006802) 

 

0.5982 

(0.001824, 0.005961) 

0.3349 

(-0.001603, 0.005431) 

 

0.4990 

(0.000999, 0.007170) 

 

0.5975 

(0.002511, 0.006276) 

0.3231 

(0.010199, 0.002497) 

 

0.4186 

(0.081364, 0.002475) 

 

0.4658 

(0.134229, 0.002090) 

25,25 

      2 

 

 

4    4 

 

 

      6 

 

 

0.33 

 

 

0.5 

 

 

0.6 

0.3363 

(-0.002937, 0.003928) 

 

0.4976 

(0.002433, 0.004773) 

 

0.5990 

(0.000997, 0.004622) 

0.3333 

(-0.000014, 0.004037) 

 

0.4975 

(0.002483, 0.004967) 

 

0.6009 

(-0.000906, 0.004789) 

0.3434 

(-0.010062, 0.002361) 

 

0.4606 

(0.039436, 0.002317) 

 

0.5244 

(0.075580, 0.002184) 

25,50 

 

     2 

 

 

4    4 

 

 

     6 

 

 

0.33 

 

 

0.5 

 

 

0.6 

0.3348 

(-0.001505, 0.003038) 

 

0.4986 

(0.001404, 0.003676) 

 

0.5959 

(0.004067, 0.003449) 

0.3349 

(-0.001528, 0.003120) 

 

0.5011 

(-0.001075, 0.003787) 

 

0.5997 

(0.000273, 0.003530) 

0.3629 

(-0.029585, 0.002065) 

 

0.5031 

(-0.003138, 0.002124) 

 

0.5777 

(0.022303, 0.001918) 

 


