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Abstract 
 

The precision of using full polynomial response surface designs on models with missing coefficients (reduced models) is studied using 

efficiency measures. The loss in D- and G-efficiency of constructed first-order exact designs is minimized for the model with missing 

interaction coefficient. However, higher losses in D- and G-efficiency are recorded when constructed second-order exact designs are used 

on the model with missing interaction coefficient with few exceptions showing preferences for using the designs on the reduced model. 

Lower condition numbers are observed for the designs under the first-order reduced models thus indicating that the N-point exact designs 

are closer to being orthogonal for the reduced model than for the full model. Perfect orthoganality is achieved at design sizes 4 and 8. In 

fact, N-point exact designs of multiples of N=4 show perfect orthoganality when defined either for the full or reduced first-order models. 

In comparison to a design with perfect orthoganality, the second-order designs are far from being orthogonal. 
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1. Introduction 

Polynomials have been suitably used as approximating functions 

for the true unknown functional models when describing the rela-

tionship between a response variable y  and several control varia-

bles, x , x , ... ,x1 2 k . Following the notations of Khuri and Mukho-

padhyay [8], the approximating polynomial model is of the form 

 

y =  f ′(x) β +  ε                                                                           (1) 

 

where 

y is the vector of observations. 

x (x x ,..., x )1, 2 k is the design point defined on a Euclidean space. 

f (x) is a vector of p elements that consist of powers of 

x ,x ,..., x1 2 k  
up to a certain degree d ( 1) . 

 is a vector of p unknown coefficients called parameters and are 

estimated on the basis of N uncorrelated observations.. 

 is a random experimental error assumed to have a zero mean and 

constant variance 2 . 

The model in (1) may be re-expressed conventionally as 

 

y X                                                                                       (2) 

 

where 

X is an N p design matrix otherwise called model matrix. 

 is estimated as 1ˆ (X X) X y   using the least square approach. 

The variance of the estimate is 

 

2 1ˆVar( ) (X X)    

ˆE(y) X   

 

2 ' 1 'ˆV(y(x)) x(X X) x   

 

Two important approximating polynomial models commonly used 

in response surface methodology are the first-degree model, with 

d=1, given as 

 

k
y x0 i i

i 1

     


                                                                        (3) 

 

and the second-degree model, with d=2, given as 

 

k k
2y x x x x0 i i ij i j ii i

i 1 i j i 1

            
  

                                 (4) 

 

A first-order design describes a design used in modeling first-

order effect while a second-order design describes a design used in 

modeling second-order effect. The model matrix X  is built using 

the model and its associated design, and contains rows synony-

mous to the model parameters. There exists optimal designs built 

with respect to some functional of the variance-covariance matrix,

' 1(X X) . In the theory of optimal design of experiments, such 

designs are considered optimal only with respect to a specified 

optimality criterion. They include designs that may be constructed 

to minimize the determinant of the variance-covariance matrix. By 

so doing, the least square estimates of the parameters are as pre-

cise as possible. The general concept is that such designs are mod-

el dependent. Hence, designs optimal for one model need not be 

optimal for another model. Although much of the literature in 

optimal design of experiments assume the regression model is a 
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full polynomial model, sometimes, missing- or varying-

coefficients of a polynomial could occur due to modifications of 

the underlying full model (Huang et al.[5], Bon[1] ). It is possible 

to delete some selected terms of the full model if the experimenter 

knows that they are unimportant for the response. Also the exper-

imenter may merely be interested in investigating the effect of 

deleting some model terms. Toh et al. [11] observed that for high-

dimensional and high-order problems, multivariate polynomial 

regression becomes impractical due to huge number of product 

terms and thus proposed the use of reduced multivariate polyno-

mial model to overcome dimensionality problem. Fan and Zhang 

[3] gave a comprehensive review of various statistical procedures 

proposed for many varying coefficient models. Sometimes, some 

of the model coefficients are relaxed in other to verify some statis-

tical theorems (Zhu et al. [14], Yuan et al. [13]). Iwundu and Al-

bert-Udochukwuka [6] considered the behaviour of D-optimal 

exact designs for first-order polynomial models under changing 

regression polynomials. Both full polynomial models and reduced 

polynomial models are extensively studied in the literature on 

designing experiments. Reduced models are common in unrepli-

cated factorial experiments, when error estimates are unavailable 

and it becomes necessary to pool information on certain high order 

interaction terms to make up information on the error term. The 

aim of this research is to study the precision of full polynomial 

response surface designs on models with missing coefficients. We 

shall, in this work, refer to models having missing coefficients as 

reduced models.  

In studying the precision of full polynomial response surface de-

signs on models with missing coefficients, design efficiency shall 

be employed to assess the quality of the designs. Commonly en-

countered measures of efficiency of designs are the D-and G-

efficiency. Each of them is a numeric measure that qualifies the 

precision or efficiency of the designs. 

According to Crosier [2], D-efficiency is the thp
 root of the ratio 

of 
'det(X X)

pN
 to the maximum possible value of 

'det(X X)

pN
for any 

design defined on the same region. On the other hand, the G-

efficiency of a design is defined as 

 

p

V(x)max
 

 

where p is the number of parameters in the model and V(x)max  
is 

the maximum scaled variance of prediction. As can be seen in 

Myer et al. [9] the variance of the function at x
 is 

 

2V(x)
ˆV(y(x))

N


                                                                          (5) 

 

where 1'V(x) Nx (X'X) x
 
is the scaled variance for any point x

in the design region.  

Thus, 

 

' 1ˆVar (y(x)) x M x . 

 

The vector x
 
is the row vector of the design matrix, X , associated 

with the design point x .  

G-efficiency thus examines the maximum value of 

 ˆNVar y(x)
V(x)

2


  

within the design region with respect to its 

theoretical minimum variance p . Onukogu [10] has proven, using 

equivalence relation of D- and G-optimality criteria, that the theo-

retical minimum variance is p . Without loss in generality 2 1  . 

Crosier [2] noted that although it is possible to have a design with 

a high D-efficiency and a low G-efficiency but not vice versa and 

offered G-efficiency of 50% or more as a practical rule for choos-

ing a good design. Condition numbers of designs have also been 

utilized in comparing competing designs (see Iwundu and Albert-

Udochukwu [6] ).The condition number of a pxpnon-singular 

square symmetric matrix, M , associated with a design and having 

elements, mij , such that mij = mji, is defined in terms of a matrix 

norm by Cond(M) = ‖M‖.‖M-1‖. The matrix norm ‖M‖ can easi-

ly be computed as the maximum absolute column sum (or row 

sum) given by 

 

‖m‖ = max
j
∑ ⃒mij⃒
p
i=1  ; ‖m‖> 0 if m ≠0 

 

The matrix norm ‖M-1‖ is similarly computed. 

For any matrix M, Cond (M) ≥ 1. A design with condition number 

of 1 is orthogonal, while a design with increased condition number 

is less orthogonal. Hence, designs with low condition numbers 

shall be preferred to designs with higher condition numbers. 

2. Methodology 

In an attempt to investigate the precision of full polynomial re-

sponse surface designs on reduced models, the full polynomial 

response surface designs shall be those constructed to minimize 

the determinants of the variance-covariance matrices associated 

with the polynomial. The reduced model shall be those for which 

the highest order interaction term is assumed not present. Thus the 

full (complete) two-variable first-degree model is 

 

y x x x x0 1 1 2 2 12 1 2                                                      (6) 

 

The reduced two-variable first-degree model is  

 

y x x0 1 1 2 2                                                                     (7) 

 

The complete two-variable second-degree model is 

 

2 2y x x x x x x0 1 1 2 2 12 1 2 11 221 2
        

                        
(8) 

 

And the corresponding reduced two-variable second-degree model 

is  

 

2 2y x x x x0 1 1 2 2 11 221 2
                                                (9) 

 

The choice of the models is due to the fact that in many practical 

problems, low order polynomials are used to approximate the true 

unknown functional relationship between the response variable 

and the control variables. The design region for exploration is the 

two-dimensional Euclidean plane bounded by 1 x ,x 11 2   .The 

design size N lies in the interval 
1

p N p (p 1) 1
2

    (Fedorov[4]). 

An N-point exact design can be represented by a matrix D, of 

order N×k 

 

D = 

(

 
 

x11 x12… x1k
x21 x22… x2k
x31 x32… x3k

⋮ ⋮ ⋮
xN1 xN2… xNk)

 
 

 

 

where xij  denotes the (ij)th  design setting ; i = 1,2, … , k; j = 

1,2,...,N. Each row of D represents a point, referred to as a design 

point, in a k-dimensional Euclidean space. The exact designs are 

obtained according to the rules of Wynn [12] and Iwundu and 

Chigbu [7]. As is usual in optimal designs theory, the model ma-

trix, X , shall be formed using the design and the model as an N×p 

matrix whose columns correspond to the terms in the model. For 
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example, the model matrix associated with the N-point exact de-

sign of order N×2 for the model in (6) is 

 

X = 

(

 
 

1 x11 x12… x11x12
1 x21 x22… x21x22
1 x31 x32… x31x32

⋮ ⋮ ⋮
1 xN1 xN2… xN1xN2)

 
 

 

 

X X shall define the information matrix of the design which shall 

be normalized as 

 

X X
M

N


  

 

Normalizing the information matrix helps to remove the effect of 

varying design size, N so that comparisons may be made. Each 

first- order design shall be expanded into a model matrix such that 

for every non-singular information matrix, M, a determinant value 

may be computed, assuming the respective full and reduced first- 

order design models. Similarly each second-order design shall be 

expanded into a model matrix and an associated determinant value 

of information matrix may also be computed assuming the respec-

tive full and reduced second-order models. The scaled variance of 

prediction at each design point shall be obtained using the designs 

and the models. Design efficiency and condition number shall be 

employed to assess the quality of the designs. The use of D-and G- 

efficiency as fundamental measures of quality of designs is com-

mon in vast numbers of literatures and these shall be the chosen 

efficiency criteria for use in this research. Efficiency values lie 

between 0 and 1 when a design, N , is compared to a reference 

design, *
N , usually an optimal design. The values may be pre-

sented in percentage for easy interpretation. We shall compare the 

efficiency of the design when defined for the reduced models in 

relation to the efficiency of the design when defined for the full 

models. A design shall be considered more suitable for a particular 

model if it has a higher efficiency value for that model than when 

used for the competing model. The loss in efficiency, which is 

simply one minus efficiency, shall be computed to compare the 

suitability of the first-and second-order designs for the reduced 

models. Furthermore, comparison shall be made using the condi-

tion numbers of the design.  

3. Results 

For the first-order full model, the 4-point exact design constructed 

to maximize the determinant of information matrix is 

 

1 1

1 -1
4

-1 1

-1 -1

 
 
  
 
 
 

  

For N = 5, 6… 11, the design points that make up the exact de-

signs are as in Table 1 

 
Table 1: First-Order N-Point Exact Designs for N = 5, 6… 11 

Design size Design points 

5 ξ4 + (1, 1) 

6 ξ5 + (1, -1) 

7 ξ6 + (-1, 1) 

8 ξ7 + (-1, -1) 

9 ξ8 + (1, 1) 

10 ξ9 + (1, -1) 

11 ξ10 + (-1, 1) 

 

For the second-order full model, the 6-point exact design con-

structed to maximize the determinant of information matrix is  

1 1

1 1

1 1
6

1 1

1 0

0 0

 
 


 
 

   
  
 
 
  

 
 

For N = 7, 8… 22, the design points that make up exact designs 

are as in Table 2.  

 
Table 2: Second-Order N-Point Exact Designs for N = 5, 6… 11 

Design size Design points  Design size Design points  

7 ξ6 + (0, -1) 15 ξ14 + (-1, 0) 

8 ξ7 + (-1, 0) 16 ξ15 + (1, 1) 

9 ξ8 + (0, 1) 17 ξ16 + (1, -1) 

10 ξ9 + (1, 1) 18 ξ17 + (-1, 1) 

11 ξ10 + (1, -1) 19 ξ18 + (-1, -1) 

12 ξ11 + (-1, 1) 20 ξ19 + (0, 1) 

13 ξ12 + (-1, -1) 21 ξ20 + (1, 0) 

14 ξ13 + (0, 0) 22 ξ21 + (0, -1) 

 

The full first-order model matrix that corresponds to the 4-point 

exact design is formed as an Nxp design matrix  

 

 
 

The associated information matrix is  

 

4 0 0 0

0 4 0 0
X X

0 0 4 0

0 0 0 4

 
 
  
 
 
   

 

The normalized information matrix is 

 

1 0 0 0

0 1 0 0X X
M

0 0 1 04

0 0 0 1

 
 

   
 
 
   

 

Its inverse is 

 

1 0 0 0

0 1 0 01M
0 0 1 0

0 0 0 1

 
 

  
 
 
   

 

The full second-order model matrix that corresponds to the 6-point 

exact design is formed as an Nxp design matrix  

 

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1
X

1 1 1 1 1 1

1 1 0 0 1 0

1 0 0 0 0 0

 
 

 
 
  

  
 

 
 
    

 

The information matrix is X′X and normalized as 
X′X

6
.  

In a similar fashion, the model matrix that corresponds to the N-

point exact design associated with the reduced model is formed, as 

an Nxp design matrix, by deleting the design matrix column asso-

ciated with the missing coefficient. 
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Using the designs and the models yields the computations in Ta-

bles 3-6. 

 

 
Table 3: Summary of Results Using First-Order Full Model 

Design Det Max. Var of D- G- Loss in D- Loss in G- Condition 

Size (M) Prediction Efficiency Efficiency Efficiency Efficiency Number 

4 1.0000 4.0000 1.0000 1.0000 0.0000 0.0000 1.0000 

5 0.8192 5.0000 0.9514 0.8000 0.0487 0.2000 2.0000 
6 0.7901 6.0000 0.9428 0.6667 0.0572 0.3333 2.0000 

7 0.8530 7.0000 0.9610 0.5714 0.0390 0.4286 2.0000 

8 1.0000 4.0000 1.0000 1.0000 0.0000 0.0000 1.0000 
9 0.9364 4.5000 0.9837 0.8889 0.0163 0.1111 1.5000 

10 0.9216 5.0000 0.9798 0.8000 0.0202 0.2000 1.5000 

11 0.9442 5.5000 0.9857 0.7273 0.0143 0.2727 1.5000 

 
Table 4: Summary of Results Using First-Order Reduced Model 

Design Det Max. Var of D- G- Loss in D- Loss in G- Condition 

Size (M) Prediction Efficiency Efficiency Efficiency Efficiency Number 

4 1.0000 3.0000 1.0000 1.0000 0.0000 0.0000 1.0000 

5 0.8960 3.5714 0.9641 0.8400 0.0359 0.1600 1.7500 
6 0.8889 4.0000 0.9615 0.7500 0.0290 0.2500 2.0000 

7 0.9329 4.2000 0.9771 0.7143 0.0172 0.2857 1.6000 

8 1.0000 3.0000 1.0000 1.0000 0.0000 0.0000 1.0000 
9 0.9657 3.2727 0.9884 0.9167 0.0116 0.0833 1.3750 

10 0.9600 3.5000 0.9865 0.8571 0.0135 0.1429 1.5000 

11 0.9737 3.6667 0.9912 0.8182 0.0084 0.1818 1.3333 

 
Table 5: Summary of Results Using Second-Order Full Model 

Design Det Max. Var of D- G- Loss in D- Loss in G- Condition 

Size (M) Prediction Efficiency Efficiency Efficiency Efficiency Number 

6 0.0055 6.0000 0.8869 1.0000 0.1131 0.0000 48.6927 

7 0.0082 6.8833 0.9480 0.8717 0.0520 0.1283 20.1766 
8 0.0088 7.3333 0.9592 0.8182 0.0408 0.1818 20.7295 

9 0.0098 7.2500 0.9765 0.8276 0.0235 0.1724 18.0000 

10 0.0094 8.0513 0.9698 0.7452 0.0302 0.2548 20.9754 
11 0.0095 8.7396 0.9715 0.6865 0.0285 0.3135 23.0779 

12 0.0102 9.5303 0.9831 0.6296 0.0169 0.3704 24.8282 

13 0.0113 6.8824 1.0000 0.8718 0.0000 0.1282 26.2266 
14 0.0110 6.2462 0.9955 0.9606 0.0045 0.0394 17.6356 

15 0.0106 6.5665 0.9894 0.9137 0.0106 0.0863 18.2293 

16 0.0103 7.0026 0.9847 0.8568 0.0153 0.1432 19.8417 
17 0.0103 7.2357 0.9847 0.8292 0.0153 0.1708 21.2628 

18 0.0104 7.6549 0.9863 0.7838 0.0137 0.2162 22.6459 

19 0.0107 7.5220 0.9909 0.7977 0.0091 0.2023 23.8925 
20 0.0110 7.0005 0.9955 0.8571 0.0045 0.1429 22.7099 

21 0.0110 7.1806 0.9955 0.8356 0.0045 0.1644 22.7028 

22 0.0113 6.2756 1.0000 0.9561 0.0000 0.0439 21.9930 

 
Table 6: Summary of Results Using Second-Order Reduced Model 

Design Det Max. Var of D- G- Loss in D- Loss in G- Condition 

Size (M) Prediction Efficiency Efficiency Efficiency Efficiency Number 

6 0.0082 6.0000 0.8216 0.8333 0.1784 0.1667 48.6927 

7 0.0143 5.1333 0.9183 0.9740 0.0817 0.0260 20.1766 
8 0.0176 5.3333 0.9572 0.9375 0.0428 0.0625 20.7295 

9 0.0219 5.0000 1.0000 1.0000 0.0000 0.0000 18.000 

10 0.0202 5.4762 0.9840 0.9130 0.0160 0.0870 20.6222 
11 0.0191 5.9583 0.9730 0.8392 0.0270 0.1608 23.0779 

12 0.0186 6.4138 0.9679 0.7796 0.0321 0.2204 24.5367 

13 0.0183 6.8824 0.9647 0.7265 0.0353 0.2735 26.2266 
14 0.0193 6.2462 0.9750 0.8005 0.0250 0.1995 17.6356 

15 0.0198 6.4468 0.9800 0.7756 0.0200 0.2244 18.2293 
16 0.0188 6.8201 0.9699 0.7331 0.0301 0.2669 19.7460 

17 0.0181 6.9988 0.9626 0.7144 0.0374 0.2856 21.2628 

18 0.0175 7.3969 0.9561 0.6760 0.0439 0.3240 22.5565 
19 0.0170 7.5220 0.9506 0.6647 0.0494 0.3353 23.8925 

20 0.0184 7.0005 0.9658 0.7142 0.0342 0.2858 22.7099 

21 0.0194 7.1806 0.9760 0.6963 0.0240 0.3037 22.7028 
22 0.0209 5.9231 0.9907 0.8442 0.0093 0.1558 21.9930 

 

4. Discussions 

The choice of the design size is restricted to 

 

1
p N p (p 1) 1

2
     

as in many literatures on optimal design of experiments. For the 

N-point exact designs considered, both D- and G-efficiency values 

were generally high for designs defined for either the full model or 

the reduced model. Although for first-order models, it is in agree-

ment with Crosier [2] that a design with high D-efficiency value 

could have low G-efficiency value but not vice versa, variation 

existed for second-order models as two designs considered had G-

efficiency values that were greater than their corresponding D-
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efficiency values. In studying the precision of using constructed 

full model designs on reduced models, the first-order designs had 

lower loss in D-efficiency as well as G-efficiency when used on 

reduced first-order model. However, the second-order designs had 

more preferences for D- and G-efficiency when used for second-

order full model. The loss in D- and G-efficiency were generally 

higher for the reduced model. In all cases considered, the G-

efficiency values exceeded the minimum 50% given by Crosier 

[2] for assessing a good design. In respect to orthogonality criteri-

on, lower condition numbers were observed for the designs under 

the first-order reduced models. This means that the N-point exact 

designs were closer to being orthogonal for the reduced model 

than for the full model. Perfect orthogonality was achieved at N = 

4 and 8. In fact, for multiples of 4, N-point exact designs have 

perfect orthogonality when defined either for the full or reduced 

first-order models. The best first-order designs observed under D- 

and G-efficiency were also best under the condition number crite-

rion. The condition numbers for second-order designs were large 

both for full and reduced model. Most of them were identical for 

the N-point designs defined for both full and reduced models. 

However, a few cases were observed with slight differences in 

magnitude and in favour of the second-order reduced model. In 

comparison to a design with perfect orthogonality, the second-

order designs are far from being orthogonal. 

5. Conclusion 

In using designs optimal for the full first- or second-order models 

for the reduced no-interaction models, no much loss in D- and G- 

efficiency was incurred. Results were more precise when the con-

structed first-order designs were used on the reduced model. This 

was not generally true for second-order models. In fact, prefer-

ences were directed towards the full second-order model. The 

efficiency values were high enough in all cases studied. The asser-

tion that it is possible to have a design with a high D-efficiency 

and a low G-efficiency but not vice versa did not hold very abso-

lutely. 
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