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Abstract 
 

This work seeks to identify the correlation structure of variables in terms of few underlying but unobservable factors. The method was 

applied to age and five different tests results obtained from 200 patients in a hospital. Two factors were identified using the scree plot and 

the Kaiser criterion. The factor loadings obtained by the method of principal components gave an inadequate fit to the data. An algebraic 

approach was applied using orthogonal rotation, and the loadings were found to give a clear and interpretable pattern. Consequently, the 

variables: age, fasting blood sugar and diastolic blood pressure were found to cluster about the first factor F1 called Age-Cardiovascular 

factor. Similarly, the remaining variables malaria, typhoid and haemoglobin clustered about the second factor F2 and the given name was 

Hemo-typhomalaria factor. Diagnostic checks were carried out and the factor model generated by the rotated loadings was found to be 

adequate. 
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1. Introduction 

The beginning of factor analysis could be traced back to the twen-

tieth century. According to Rechard and Dean [14], Karl Pearson 

is often considered to have laid the foundation of modern factor 

analysis. In several decades before the new era, the development 

of factor analysis was slow due to lack of fast and powerful com-

puting devices. In the wake of recent technological advancement, 

several sophisticated computational devices were developed to aid 

in computation and this has renewed the interest in the computa-

tion and theoretical aspects of factor analysis. Historically, factor 

analysis was mostly used in psychology and education. In recent 

times, however, its use within various disciplines cannot be over-

emphasised. According to Brett [4], this increase is illustrated in 

recent surveys of health science electronic databases where arti-

cles reporting factor analysis increases by 16,000%. 

Giving a set ofq −dimensional interrelated random variables, the 

whole idea of factor analysis is predicated on determining whether 

the variables are linearly related to a few underlying, but unob-

served random quantities called factors. Factor analysis is a statis-

tical technique that is used to identify a small number of unob-

served variables (latent variables) called factors that can be used to 

represent the relationship among the variables. In factor analysis, 

latent variables represent unobserved constructs and are referred to 

as factors or dimensions. 

Malaria, typhoid and high blood pressure are devastating diseases 

and are major cause of morbidity and mortality. They remain the 

predominant cause of illness and death. Research shows that ma-

laria alone causes an estimated one million deaths annually. It is a 

life threatening disease transmitted from person to person by the 

female anopheles mosquito. These problems are hard and funda-

mental and therefore require proper, radical and continuous atten-

tion to avoid further debilitating impact. In addition, Hypertension 

and diabetes are two of the leading risk factors for atherosclerosis 

(arterial disease). Atherosclerosisis a common arterial disease in 

which raised areas of degeneration and cholesterol deposits 

plaques form on the inner surfaces of the arteries obstructing 

blood flow. This sickness if not treated can result in heart attacks 

and other related diseases. The intent of this work is to identify 

how these diseases are interrelated and to regroup the variables 

under study into a fewer set of clusters based on the shared corre-

lations. 

Factor analysis is a branch of multivariate statistics that is used to 

simplify a large data se tin a way that the relationship between the 

variables can be easily be depicted, interpreted and understood. 

Uneke [16] studied malaria and typhoid in the tropics simultane-

ously to identify some of the hindrances to effective diagnosis. 

Using Medline search, the study revealed that some of the factors 

impeding the effective diagnosis of malaria and typhoid in Nigeria 

are lack of resources, widespread of self-treatment for clinically 

suspected malaria and typhoid fever and insufficient access to 

trained health personnel. The study also showed that there is an 

appreciable rate of concurrent malaria and typhoid fever. 

In an attempt to uncover the relationship between malaria and 

typhoid fever, Madukosiri [10] studied the illness pattern and rela-

tionship between malaria, typhoid fever and other infections. Us-

ing difference in mean and correlation, the result of the study 

showed that the mean of malaria infection was on the increase. 

The relationship between the illness types showed a positive cor-

relation between malaria and typhoid fever. Malaria and upper 

respiratory tract infections were also found to be positively corre-

lated. 

Oscar and Prasanna [13] studied the relationship between typhoid 

fever, temperature and malaria and remarked that malaria rises 

quickly and attains high level while typhoid fever has a pattern 

that rises slowly during the second and third weeks. In their re-

search, they notice that there exist a relative positive correlation 

between typhoid fever, malaria and temperature.  

http://creativecommons.org/licenses/by/3.0/
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Ina et al [7] examined the connection between diabetes and malar-

ia infection. In their study, a total of 495 diabetes patients and 451 

hypertensive patients were used. Fasting blood sugar and haemo-

globin of each patient were measured. Malaria parasite test was 

also conducted on each of the patients. The study adopted Mann 

Whitney𝜒2 and Fisher’s exact tests. The result showed that 13 

(0.9%) of all participants had malaria parasites at low density and 

the infected persons had reduced mean haemoglobin. The study 

also showed evidence for increased risk for malaria infection in 

patients with type II diabetes. 

Haemoglobin (HB) is an iron based organic molecule in red blood 

cells that transports oxygen and gives blood its red colour. How-

ever, Sylvia [15] defines haemoglobin as the life substance of 

every red blood cell. The study of haemoglobin and other disease 

is motivated by the fact that every organ of the body depends on 

oxygen for growth and function. 

Femke et al [5] studied the association between haemoglobin, 

systolic blood pressure and diastolic blood pressure in healthy 

persons. The study was made up of 101377 whole blood plasma 

donors who visited a blood bank. Using generalized estimating 

equations and mixed model, the result of the study revealed that 

both systolic blood pressure and diastolic blood pressure associ-

ates with haemoglobin level positively in healthy individuals. The 

work of Femke et al [5] clearly showed a relationship between 

blood pressure and haemoglobin. 

Bernard [3] established a relationship between blood pressure and 

blood sugar. He found that 50% to 80% of patients that were dia-

betic were also hypertensive. The study further revealed that that 

diabetes and hypertension are mostly found on the same individual 

more frequently than would occur by probability. 

Hopkins [6] studied the relationship between Haemoglobin and 

packed cell level of 21 adults within the ages of 40 to 67 using 

correlation analysis. The results showed a strong positive linear 

relationship between packed cell volumes and haemoglobin. He 

noted that haemoglobin and packed cell volume of some universi-

ty students under study decreased simultaneous. This indicated a 

positive correlation between these variables. 

Ani and Sean [2] highlighted that the relationships between health 

variables should not only be investigated using correlation analy-

sis. They encouraged the use of factor analysis to identify the un-

derlying structure that generates the observed data. Ani and Sean 

[2] studied factor analysis using mathematical procedure for the 

simplification of interrelated measures to discover pattern in a set 

of variables. They discovered that factor analysis is a better tool 

for investigating the principles of interaction and integration with-

in the health system.  

According to Williams et al [17], two types of factor analysis can 

be identified; the confirmatory and exploratory factor analysis. 

According to Aniand Sean [17] exploratory factor analysis (EFA) 

uncovers complex patterns by exploring the data set , whereas the 

confirmatory factor analysis (CFA) attempt to confirm hypothesis 

and uses path analysis to represent variables. The exploratory 

factor analysis helps in determining the nature and number of 

latent variables that is responsible for the variation among the 

observed data. 

Alexander [1] applied factor analysis in environmental studies. He 

made use of nutrient distribution patterns under shrub live-oak in 

two contrasting soils. The objectives of the research were to iden-

tify underlying patterns in soil properties using factor analysis and 

analyze factor scores to determine how the factor patterns varied 

between soils, canopy covers, and depth. Factor analysis provided 

a statistical tool for grouping the 11 correlated soil variables into 

three uncorrelated factors. Analysis of factor scores allowed inde-

pendent assessment of soils, shrub cover, depth, and their interac-

tions on soil properties.  

Factor analysis of the properties of volcanic soil constituents was 

first applied by Okuhara et al [12]. The variation of fourteen soil 

chemical and physical properties of twenty soil samples from 

Andosols was decomposed into the contributions of seven soil 

constituents or end-members. The samples were from the slopes of 

the andesitic Turrialba volcano in Costa Rica. The result showed 

that Factor analysis of the data explained 98% of the variance by 

six orthogonal factors.  

Michael [11] proposed using factor analysis to environmental data 

with probabilistic neural networks. He analyzed observation data 

which consist of environmental factors as the explanatory varia-

bles and a population number of a creature (firefly) as the ex-

plained variable. The proposed system incorporated probabilistic 

neural networks which can acquire 60 known nonlinear mapping 

from the explanatory variables to the explained variable. The pro-

posed system could estimate the effect of the explanatory varia-

bles on the explained variable. In other words, the system could 

solve the inverse problem. To realize the desired environment for 

the selected creature, the authors showed that the proposed system 

can suggest an adequate strategy for the controllable explanatory 

variables.  

It is interesting to note that the aforementioned works in the health 

and environmental sectors in particular have been based oneither 

correlation analysis or factor analysis with loadings that the values 

are high and low enough to provide interpretations. However, this 

work considers a situation where the factor loadings do not give a 

clear picture of the relationship between the variables and the 

underlying factors. The work employs the principle of rotation in 

addressing this set back. 

2. Methodology 

2.1.The kaiser criterion 

This method postulates that only factors whose eigen values are 

greater than one should be retained. This criterion was proposed 

by Kaiser [8] and it is probably the most widely used criterion. 

The idea behind this approach is that any component whose eigen 

value is more than one account for a meaningful amount of vari-

ance while component whose eigen values are less than one ac-

count for less variance that had been contributed by one variable. 

2.2.Scree test 

The Scree test is a graphical method use to obtain significant eigen 

values of the correlation matrix.In this approach, the eigen value 

associated with each component is plotted. To obtain the signifi-

cant values, we look for a break between the component with rela-

tively large eigen values and those with small eigen values. The 

components that appear before the break are considered meaning-

ful and retained. When several breaks occur, the last big break 

should be sorted for and the components before the last big break 

should be retained. 

2.3.The orthogonal factor model 

LetX1, X2, … , Xp be a set of mean zero random variables with each 

variable observed on n subjects. Then, the factor model states that 

each variableXi (i = 1, 2,… , p) can be expressed as a linear com-

bination of few underlying unobservable random varia-

blesF1, F2, … , Fm  called common factors with an accompanied 

error termεi associated only withXi. This can be expressed as: 

 

Xi = ai1F1 + ai2F2 + ⋯+ aimFm + εi ; i = 1,2,… , p;m < 𝑝  (1) 

 

WhereXi is theith random variable. 

Theaij’s are unknown regression – type coefficients called factor 

loadings. 

Considering the fact that Xi(i = 1,2,… , p)is a set of zero – mean 

variables; then for any observation vectorxr (r = 1,2, … , n), the 

common factor model (1) can explicitly be written as: 

 

Xi − μi = ai1F1 + ai2F2 + ⋯+ aimFm + εi               (2)   

 

Where μi is the mean of variable i. 
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2.3.1.Assumptions of the factor model 

1) E[Fj] = 0 ;  j = 1, 2, … ,m 

 

2) Var[Fj] = 1 ;  j = 1, 2,… ,m 

 

3) Cov(Fj,  Fk) = 0 ;  j ≠ k ;  j = 1, 2,… ,m ;  k = 1, 2,… ,m 

 

4) E[εi] = 0 ;  i = 1, 2,… , p 

 

5) Var[εi] = ψi ;  i = 1, 2,… , p 

 

6) Cov(εi,  εk) = 0 ;  i ≠ k ;  i = 1, 2,… , p ;  k = 1, 2,… , p 
 

7) Cov(εi,  Fj) = 0 ; ∀ i, j. 

 

From (1), the assumptions that 𝑉𝑎𝑟[𝐹𝑗] = 1 , 𝑉𝑎𝑟[𝜀𝑖] =

𝜓𝑖,𝐶𝑜𝑣(𝐹𝑗 , 𝐹𝑘) = 0 and𝐶𝑜𝑣(𝜀𝑖 , 𝐹𝑗) = 0yield: 

 

𝑉𝑎𝑟[𝑋𝑖] = 𝑎𝑖1
2 + 𝑎𝑖2

2 + ⋯+ 𝑎𝑖𝑚
2 + 𝜓𝑖 . 

 

Where𝜓𝑖 is the 𝑖th specific variance. 

In matrix notation, we consider a random sample𝑥1, 𝑥2, … , 𝑥𝑛from 

a homogenous population with mean vector𝜇 and covariancema-

trix . Let𝑋 be a random vector with 𝑝 components. Then, equation 

(2) can be expressed as:  

 

                          𝑋 − 𝜇   =    𝐴𝐹                 +    𝜀                              (3) 
(𝑝×1)     (𝑝×1)(𝑝×1)   (𝑝×1) 

 

Where 

 

𝑋 = [

𝑋1

𝑋2

⋮
𝑋𝑝

];𝜇 = [

𝜇1

𝜇2

⋮
𝜇𝑝

];𝐹 = [

𝐹1

𝐹2

⋮
𝐹𝑚

];𝜀 = [

𝜀1

𝜀2

⋮
𝜀𝑝

]; 

 

𝐴 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑚

𝑎21 𝑎22 ⋯ 𝑎2𝑚

⋮
𝑎𝑝1

⋮
𝑎𝑝2

⋱
⋯

⋮
𝑎𝑝𝑚

] 

2.4.Factor loadings  

This describes the correlations between the factors and the original 

variables used in the construction of the factors.  

2.5.Estimation of loadings and communalities 

2.5.1.The principal component method 

Let𝑥1, 𝑥2, … , 𝑥𝑛  be a random sample based on 𝑝 correlated ran-

dom variables. 

Let𝑅 be the sample correlation matrix. 

In the factor model, it is assumed that the correlation matrix can 

be expressed as 

                                    𝑅 = 𝐴𝐴′ + 𝜓                                                  (4) 

 

Where𝜓 is the matrix of specific variance given as: 

 

𝜓 = [

𝜓1 0 ⋯ 0
0 𝜓2 ⋯ 0

⋮
0

⋮
0

⋱
…

⋮
𝜓𝑝

] 

 

In this estimation method, we seek for an estimator�̂� that will 

approximate (4). 

Let us for now suppose that the specific factors in the model (3) 

are of minor importance so that 𝜓can be neglected in (4). Diago-

nalizing �̂� using spectral decomposition;�̂� is factored into 

 

                                     �̂� = �̂�𝐴′̂                                                         (5)                 

 

Where 

                                    𝐴′̂ = 𝑉𝐷1/2                                                     (6)  

 

is the estimated unrotated factor loading matrix and 

 

𝐷 =

[
 
 
 
 
 √𝜆1 0 ⋯ 0

0 √𝜆2 ⋯ 0

⋮
0

⋮
0

⋱
…

⋮

√𝜆𝑝]
 
 
 
 
 

 

 

is a diagonal matrix with eigen values  𝜆1, 𝜆2, … , 𝜆𝑝  of�̂�on the 

diagonal.  

𝑉is the matrix having normalized significant eigen vectors as col-

umns. 

2.5.2.Extraction of the factors 

However, the goal of factor analysis is to summarize the infor-

mation contained in the correlation matrix with few factors as 

possible. Since each eigen value corresponds to a different poten-

tial factor, usually only factors with large eigen values are re-

tained. Thus, if the factor analysis is good, the few factors should 

almost duplicate the correlation matrix. 

Now, suppose it is found that the first𝑚 factors are large enough 

to be retained in subsequent analysis; then the dimension 

of𝐴′̂is(𝑝×𝑚)with𝑚 < 𝑝. 

The estimated specific variances 𝜓�̂� ‘s are provided by the diago-

nal elements of the matrix�̂� − �̂�𝐴′̂ . That is, 

                              𝜓�̂� = 𝑠𝑖𝑖 − ∑ 𝑎𝑖𝑗 
2̂𝑚

𝑗=1                                              (7) 

2.5.3.Communalities 

The𝑖th communality is estimated by 

 

ℎ𝑖
2̂ = ∑𝑎𝑖𝑗

2̂

𝑚

𝑗=1

= 𝑎𝑖1
2̂ + 𝑎𝑖2

2̂ + ⋯+ 𝑎𝑖𝑚
2̂  

2.5.4.Variance of 𝐗𝐢 

The variance of the 𝑖th random variable is given by: 

 

𝑠𝑖𝑖 = ℎ𝑖
2̂ + 𝜓�̂� = ∑ 𝑎𝑖𝑗

2̂𝑚
𝑗=1 + 𝜓�̂� = 𝑎𝑖1

2̂ + 𝑎𝑖2
2̂ + ⋯+ 𝑎𝑖𝑚

2̂ + 𝜓�̂�   (8) 

2.6.Rotation 

If we consider a rectangular 𝑥𝑦 -coordinate system in the 

𝑥𝑦 −plane, we can obtain a new 𝑥′𝑦′ -coordinate system if the 

original𝑥𝑦 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠𝑦𝑠𝑡𝑒𝑚  is rotated anticlockwise about 

their origin through an angle𝜃 . 

In algebra, the relationship between such transformed coordinate 

is given by 

                      𝑥′ = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃                                                 (9)    

                      𝑦′ = −𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃                                             (10) 

 

and 

                   (
x
𝑦) = (

𝑥′𝑐𝑜𝑠𝜃 − 𝑦′𝑠𝑖𝑛𝜃

𝑥′𝑠𝑖𝑛𝜃 − 𝑦′𝑐𝑜𝑠𝜃
)                                   (11) 

 

Algebraically, the relationship between the coordinates in the two 

coordinate systems is 

                                      𝑋 = 𝑀𝑋′                                                     (12) 
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Where𝑀is an orthogonal matrixsatisfying 

                                𝑀 𝑀′ = 𝑀′𝑀 = 1 

and 

𝑀 = (𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

) 

 

If we consider a rotation as a change from an old basis𝐵 to a new 

basis 𝐵′, then 𝑀 is the transformation matrix. 

In factor analysis, rotation is a method of altering the initial factor 

loadings in order to achieve more interpretability while still pre-

serving the essential properties of the initial loadings. Rotation is 

ordinarily used after extraction of factors to maximize high corre-

lations and minimize low ones.This is usually accomplished by 

multiplying the unrotated factor loading matrix𝐴 by a transfor-

mation matrix𝑀to obtain the rotated loading matrix𝐴∗ . That is, 

 

𝐴𝑀 = 𝐴∗ 

 

Usually, for a two factor model, the transformation 

 

𝑀 = (𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

) 

 

is used. 

3. Diagnostic checks 

After fitting the factor model, we need to examine whether the 

model is adequate or not.One of the ways of checking the adequa-

cy of the model is by examining the behaviour of the residuals 

matrices. According to Lutkepohl [9], if 𝜌𝑖𝑗 is the true correlation 

coefficients corresponding to the sample correlations 𝑟𝑖𝑗, then we 

have the following hypothesis test at 5% level to check whether or 

not a given factor model is adequate. 

 

𝐻0: 𝜌𝑖𝑗 = 0 

 

Against 

 

𝐻1: 𝜌𝑖𝑗 ≠ 0 

 

Decision 

Reject𝐻0 if│√𝑁𝑟𝑖𝑗 │ > 2orEquivalently│𝑟𝑖𝑗│ >
2

√𝑁
 

Thus in practical sense, we obtain the residual correlations to be 

tested and compare their absolute value with 
2

√𝑁
 

4. Data analysis and results 

The data used for this research consist of the medical record of 

200 patients upon which five different tests were conducted. The 

ages of the patient were also recorded.The age and the various 

tests are considered as variables. The data was obtained from 

UTH, Nigeria. 

The six variables used are: age(𝑋1), malaria(𝑋2), typhoid(𝑋3), 

fasting blood sugar(𝑋4) , haemoglobin(𝑋5)  and diastolic blood 

pressure (𝑋6) . Typhoid was measured at three lev-

els (60,180 𝑎𝑛𝑑 360 ) representing mild, moderate and severe 

growth respectively. Since the level of malaria is usually recorded 

as+,++, 𝑎𝑛𝑑 + + +  ; the different levels were represented in 

figures as 1, 2 and 3 respectively. Haemoglobin was measured in 

grams/decilitre, its normal range is (13 − 18)𝑔𝑟𝑎𝑚/𝑑𝑙 . Blood 

pressure was measured using the sphygmomanometer. Only the 

diastolic blood pressure was considered. The data for the six vari-

ables is displayed in table 3 of the appendix. 

The variables under consideration have different scales of meas-

urement. Thus, Correlation matrix is therefore appropriate since it 

is scale invariant. The sample correlation matrix�̂� of the six varia-

bles is displayed in expression (13) below: 

 

�̂� =

[
 
 
 
 
 
 

 1.000 −0.047 −.039 0.665 . 011 0.686
−0.047 
−0.039 
0.665
0.011
0.686

 1.000
0.617
−.004
−.584
−.012

0.617
1.000
−.008
−.851
−.123

−.004
−.008
1.000
. 001
. 552

−.584
−.851
. 001
1.000
. 080

−.012
−.123
. 552
. 080
1.000]

 
 
 
 
 
 

(13) 

 

The eigen values are:  

 

𝜆1 = 0.1457,  𝜆2 = 0.2691, 𝜆3 = 0.4223, 𝜆4 = 0.5124, 𝜆5

= 2.2025, 𝜆6 = 2.4480.  
 

and the corresponding eigen vectors are: 

 

𝑒1̂ =

(

  
 

. 0140

. 0641
−.7295
. 0307
−.6767
−.0690)

  
 

 , 𝑒2̂ =

(

  
 

.7687

. 1913
−.0581
−.3227
. 1287
−.4985)

  
 

 , 𝑒3̂ =

(

  
 

−.1868
. 4013
−.1410
. 6855
. 2655
. 1492 )

  
 

 , 𝑒4̂

=  

(

  
 

−.1138
. 7232
−.2802
−.3272
. 3104
. 4267 )

  
 

 

 

𝑒5̂ =

(

  
 

. 51257
. 2871
. 3071
. 4929
−.3286
. 4632 )

  
 

,𝑒6̂ =

(

  
 

. 3135
−.4391
−.5213
. 2737
. 5042
. 3286 )

  
 

 

 

The six eigen values and the corresponding eigen vectors above 

corresponds to six factors representing the six variables. The fac-

tor model seeks to determine 𝑘 such that 𝑘 < 𝑞. Several methods 

exist to achieve this. This research adopted the scree plot testand 

the Kaiser criterion. 

4.1.The scree plot test 

This is a plot of eigen values against the factors. The graph is dis-

played below. 
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Fig. 1: Scree Plot of the Data. 

 

In figure1, the scree test shows a break between the factors with 

relative large eigenvalues and those with small eigen values. The 

factors that appear before the point where the curve makes an 

elbow (the break) are considered meaningful. This suggest that all 

the factors that appear from the point of break further should be 

discarded. By this criterion, only the first two factors are to be 

retained.  

4.2.Kaiser criterion 

Using the Kaiser criterion discussed in section 3.1; only factors 

with eigen values greater than one are retained. Thus, from the list 

of eigen values; 𝑘 = 2because only the eigen values2.2025 and 

2.4480 will be utilized and the corresponding eigen vectors are 

𝑒5̂and𝑒6̂ . This means 78%[(2.2025×2.4480 6⁄ )×100]of the total 

variation will be explained by the two factors to be extracted.  

4.3.Estimation of the factor loadings and communalities 

The factor loadings are estimated using equation (6) as shown 

below: 

 

�̂� =

(

 
 
 
 

. 5127

. 2871

. 3071

. 4929
−.3208
. 4267

. 3135
−.4391
−.5213
. 2737
. 5042
. 3286

)

 
 
 
 

(√2.2025
0

0

√2.4480
) =

(

  
 

. 7609

. 4261

. 4558

. 7315
−.4761
. 6874

. 4945
−.6926
−.8222
. 4317
. 7951
. 5141 )

  
 

                                                                    (14) 

 

Expression (14) gives the loadings of the variables on the factors. 

In the matrix (14), each row corresponds to each of the variables 

under study. The communalities were obtained by summing the 

squares of the rows of the loadings. Table 1 below shows the fac-

tor loadings and communalities of the observed variables. 

 

 

 

Table1:Factor Loadings of Diseases 

Variables 𝐹1 𝐹2 Communalities 

Age .7609 .4945 0.8235 

Mal. .4261 -.6926 0.6613 

Typh. .4558 -.8222 0.8838 
FBS. .7315 .4317 0.7215 

HB -.4761 .7951 0.8589 

Dias. .6874 .5141 0.7368 
--------- ---------- ----- --------- 

Var 2.447 2.207 
4.6858 

 
%Var .408 .367 0.7810 

 

The specific variances were estimated using equation (7) and is 

expressed in matrix form as shown below. 

 

𝐶𝑜𝑣(𝜀) = �̂� =

[
 
 
 
 
 
. 1765

0
0
0
0
0

0
. 3344

0
0
0
0

0
0

. 1163
0
0
0

0
0
0

. 2786
0
0

0
0
0
0

. 1414
0

0
0
0
0
0

. 2633]
 
 
 
 
 

 

 

Thus, �̂�𝐴′̂ + �̂� will produce a matrix similar to �̂� as postulated 

by the factor model. 

Now, 

 

�̂�𝐴′̂ + �̂� = 

 

[
 
 
 
 
 
 1.000
−0.018
−0.060
 0.770
0.031
0.777

−0.018
 1.000
 0.764
 0.013
−0.754
−0.063

 −0.060
 0.764
 1.000
−0.022
−0.871
−0.109

 0.770
 0.013
−0.022
 1.000
−0.005
 0.725

 0.031
−0.754
−0.871
−0.005
1.000
0.815

 0.777
−0.062
−0.109
 0.725
 0.082
 1.000 ]

 
 
 
 
 

                (15) 

 

Clearly, expression (15) gives a fair approximation of the original 

correlation matrix �̂�. 

4.4.The vagueness of the unrotated factor loadings 

Observantly, table 1 does not give a clear interpretable pattern. To 

ascertain this fact,  

below is the plot of the loadingpairsfor each variable. 
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Fig. 2:Plot ofUnrotated Factor Loadings. 

 

In figure 2, the 𝑥-axis represent the first factor (𝐹1) while the y-

axis represents the second factor (𝐹2). As seen in figure 2, the 

variables do not cluster well about the factors. The loading matrix 

and the plot in figure 2 does not give a clear picture and interpreta-

tion of the correlation structure between the variables and the fac-

tors. Usually, a factor is most interpretable when a few variables 

are highly correlated with it and the rest are not. To maximize 

high correlations and minimise low ones, an orthogonal rotation is 

necessary. 

4.5.Orthogonal rotation 

In this method of rotation, we use the transformation matrix 

 

𝑀 = (𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

),  

 

Such that the rotated loadings 𝐴∗̂  is 

 

𝐴∗̂ = �̂� 𝑀 

 

Where𝜃 = 28°is the angle of rotation and �̂� is unrotated factor 

loadings. 

The angle of 28𝑜 was chosen such that one axis passes through a 

cluster of points. The factor loadings for the counter clockwise 

orthogonal rotation of 28𝑜 were obtained as follows: 

 

𝑀 = [
 0.8829 −0.4695
0.4695  0.8829

](16) 

 

𝐴∗̂ =

(

  
 

 0.902
 0.054
 0.020
 0.847
−0.050
 0.848

 0.076
−0.807
−0.934
 0.035
0.920
0.131 )

  
 

(17) 

 

The factor loadings and the communalities are shown in the table 

2 below: 

 

 
Table 2: Rotated Factor Loadings Variable 

 𝐹1 𝐹2 Communalities 

Age  0.902 0.076 0.819 

Mal.  0.054 −0.807 0.654 

Typh.  0.020 −0.934 0.873 

FBS  0.847  0.035 0.719 

HB −0.050  0.920 0.849 

Dias. 0.848  0.131 0.736 

 
Var 2.256 2.394 4.650 

%Var 0.376 0.399 0.775 

 

In the above table, the loadings in  𝐴∗̂ give a clear picture of the relationship between the variables and the factors. The high loadings are 

extremely high while the low ones are extremely low.It should be noted that the signs of the loadings do not count in this case. The plot 

of the rotated loadings is shown below. 
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Fig. 3:Plot of Rotated Factor Loading. 

 

In the above plot, the variables age(𝑋1), fasting blood sugar(𝑋4) 

and diastolic blood pressure(𝑋6) cluster about the 𝐹1  axis while 

malaria(𝑋2), typhoid(𝑋3) and haemoglobin(𝑋5) cluster about the 

𝐹2 axis. Thus a clear picture of the factor loadings is achieved. 

From the value of the communalities in the above table,81.9% of 

the variance in 𝑋1 (Age) is accounted for by Factor 1 plus Factor 

2. The communalities of other variables can be interpreted in the 

same way.  

The value 0.376 means that 37.6% of the variance in the variables 

is accounted for by the first Factor (i.e. Factor 1) 

The value 0.399 means that means that the second Factor accounts 

for39.9% of the variance in the variables. 

Since the rotation is orthogonal, the two Factors together account 

for 78%of the variance in the variables. 

4.6.The factor model 

Since, a satisfactory factor loadings have been achieved, the factor 

model becomes 

 

𝑋 − 𝜇 = 𝐴∗̂ 𝐹 + 𝜀(18) 

 

Where 

 

𝑋 =

(

 
 
 

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝑋6)

 
 
 

;  𝜇 =

(

  
 

𝜇1

𝜇2
𝜇3

𝜇4
𝜇5

𝜇6)

  
 

;𝐴∗̂ =

(

  
 

 0.902
 0.054
 0.020
 0.847
−0.050
 0.848

 0.076
−0.807
−0.934
 0.035
0.920
0.131 )

  
 

 ;  𝐹

= (
𝐹1

𝐹2
) ;  𝜀 =

(

  
 

𝜀1

𝜀2
𝜀3

𝜀4
𝜀5

𝜀6)

  
 

 

4.7.The Reproduced Correlation Matrix 𝐑∗̂ 

As noted previously, the two factors account for 78% of the total 

variance and therefore represent the six variables well. To see how 

well the rotated two factor model reproduces the correlation ma-

trix, we proceed as follows. The reproduced correlation matrix is 

obtained as 

 

R∗̂ = A∗̂A∗′̂ + ψ̂ 

=

[
 
 
 
 
 
 1.000
−0.041
−0.033
 0.687
0.023
0.675 

−0.041
 1.000
 0.655
−0.007
−0.545
−0.016

−0.033
 0.655
 1.000
−0.006
−0.860
−0.125

 0.687
 −0.007
−0.006
 1.000
 0.003
 0.523

 0.023
−0.545
−0.860
 0.003
1.000
0.078

 0.675
−0.016
−0.125
 0.523
0.078
1.000 ]

 
 
 
 
 

(19) 

 

Comparing the closeness of the matrices (15) and (19) to the orig-

inal correlation matrix R̂ ; it is clear that the valuesestimated by 

(19) are closer to the values ofR̂than the elements of (15).  

This simply means that the factor model generated by the rotated 

loadings is better than the one produced by the unrotated factor 

loadings. 

4.8.The error (residual) matrix �̂� 

The Residual (Error) correlation matrix Ê is obtained as 

 

Ê = R̂ − R∗̂ 

 

=

[
 
 
 
 
 
 0.000 
−0.006
−0.006
−0.022
−0.012 
0.011 

−0.006
 0.000
−0.038
 0.003

−0.039 
0.004

−0.006
−0.038
 0.000
−0.002
 0.009
 0.002

−0.022
 0.003

 −0.002 
 0.000

 −0.002 
 0.029

−0.012
−0.039
 0.009
−0.002
0.000
0.002

 0.011
 0.004
 0.002
 0.029
0.002
0.000]

 
 
 
 
 

(20) 

 

Observantly, the above error matrix Êalmost results in a null ma-

trix. In fact, a correction of the values in Êto one decimal place 

absolutely gives a null matrix. This is an evidence that the fitted 

factor model (18) using rotated loadings is adequate. In other 

words, there is no significant difference between the original cor-

relation matrix and the correlation matrix generated by the factor 

analysis. It is now left to test statistically whether this difference is 

negligible. 

4.9.Diagnosis 

After obtaining the factor model, the next step is to carry out diag-

nostic checks to ascertain whether the model is adequate or not. 

This is achieved by examining the residual matrix as done in sec-

tion 5.8 and using the hypothesis stated in section 4 of the meth-

odology. 

Since 

 

N = 200 ⇒
2

√200
= 0.1414 
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Then, under this hypothesis, 

 

 H0is rejected if│ruv,i│ >
2

√N
= 0.1414.  

 

Now, examining the residual correlation matrix Ê above; it clearly 

shows that none of the residual autocorrelations │ruv,i│is greater-

than0.1414. This provides evidence that the fitted factor model is 

adequate. 

5. Discussion and conclusion 

The aim of factor analysis is to represent the variables of interest 

as a linear combination of a few random variables called factors. 

The factors are underlying constructs or latent variables that gen-

erate the variables of interest. If these variables are correlated, the 

goal of the factor analysis is to reduce the redundancy among the 

variables by using a smaller number of factors (Brett, [4]). In this 

work, six variables of interest were involved: age(X1) , malar-

ia(X2), typhoid(X3), fasting blood sugar(X4), haemoglobin(X5) 

and diastolic blood pressure(X6). The correlation matrix of these 

variables clearly shows that some variables are highly correlated 

while some have low correlations. By this research, it was be-

lieved that this pattern of correlations is being generated by an 

underlying structure called factors. If the factors identified truly 

represent the pattern, a larger percentage of the variance in the 

variables will be accounted for by these factors. In this work two 

factors were identified to represent these groups of variables using 

the Kaiser and scree plot method. The method of principal com-

ponent was used in the estimation of factor loadings. However, the 

loadings obtained did not give a satisfactory picture for interpreta-

tion. To enhance interpretation of the correlation structure, an 

orthogonal transformation matrix was multiplied with the original 

loadings to give satisfactory and interpretable results. The new 

loadings and their graphical representation gave a clear picture of 

the correlation structure defined by the two underlined factors. It 

was observed that age, fasting blood sugar (FBS) and blood pres-

sure clustered into one group and loaded high on the first factor, 

F1  (figure 3). This factor might be called Age-Cardiovascular 

factor. Similarly, malaria, typhoid and haemoglobin clustered and 

loaded high on the second factor. This factor can be labelled as 

Hemo-typhomalaria factor. It is also observed that though malaria, 

typhoid and haemoglobin are loaded high in one factor (F2); ma-

laria and typhoid load in opposite sign with haemoglobin. Perhaps, 

this is due to the fact that, medically, malaria and typhoid are in-

versely related to haemoglobin. However, in factor analysis, it is 

the absolute values of the loadings that are considered. The signs 

do not play significant role on how high or low the loadings are. It 

is also noted that the elements of the first factor all loaded with the 

same sign. The result of Bernard [3] showed that there exist a 

positive relationship between blood pressure and blood sugar. In 

this work, age(X1), fasting blood sugar(X4) and diastolic blood 

pressure(X6) loads high on the Age-Cardiovascular factor. This 

affirms the conclusion drawn by Bernard [3]. 
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Appendix 

Table 3: Age and Test Results of 200 Patients 

S/No. AGE (X1) 
MAL. 

(X2) 

TYPH. 

(X3) 

FBS 

(X4) 
HB (X5) 

DAIS. 

(X6) 
S/No. 

AGE  

(X1) 

MAL. 

(X2) 

TYPH. 

(X3) 
FBS (X4) 

HB 

 (X5) 

DAIS. 

(X6) 

1 65 1 60 5.7 15.5 90 51 44 3 60 4.6 12.6 83 

2 23 3 60 4.5 15.6 79 52 49 2 60 4.3 16.1 82 

3 21 2 180 4.3 14.5 77 53 49 3 180 4.6 11.2 84 

4 20 1 180 3.5 14.7 75 54 67 3 360 5.6 9.8 90 

5 49 3 360 5.2 7.5 79 55 68 2 180 5.5 12.2 88 

6 54 3 360 5.5 7.6 85 56 62 3 360 4.8 8.3 89 

7 22 3 180 4.8 14.5 89 57 63 1 60 5.3 15.1 91 

8 57 2 60 5.6 16.2 95 58 54 2 60 4.7 14.7 85 

9 24 2 180 4.7 14.7 80 59 50 2 180 4.6 14.2 85 

10 23 2 180 4.6 14.4 85 60 69 1 60 5.2 15.6 91 

11 44 1 60 5.2 15.1 80 61 55 2 60 3.9 15.4 86 

12 55 2 180 3.3 14.3 88 62 29 2 180 4.3 14.3 77 

13 65 3 60 3.8 15.9 91 63 27 2 180 4.2 14.9 78 

14 49 3 360 5.8 10.1 85 64 66 3 360 4.7 10.1 89 

15 43 2 180 4.6 14.7 83 65 69 3 360 5.6 9.8 90 

16 63 1 60 5.5 15.9 88 66 54 2 360 4.6 10.2 85 

https://doi.org/10.20982/tqmp.09.2.p079
https://doi.org/10.1007/978-3-540-27752-1
https://doi.org/10.1007/978-3-540-27752-1
https://doi.org/10.5251/abjna.2012.3.10.413.426
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17 64 2 180 5.4 14.7 86 67 60 3 180 5.2 14.3 91 

18 34 3 360 3.9 9.5 75 68 32 2 60 3.9 15.7 75 

19 30 3 180 3.5 14.2 83 69 41 1 60 3.8 10.8 83 

20 20 2 60 5.6 15.3 90 70 60 3 180 5.8 7.4 83 

21 64 1 60 5.5 15.8 90 71 60 3 360 4.5 9.3 80 

22 61 2 60 5.6 15.4 86 72 63 2 180 5.5 14.6 90 

23 33 2 180 4.7 14.3 80 73 63 3 360 5.4 8.9 88 

24 29 2 180 4.6 14.4 85 74 33 3 180 3.9 14.3 77 

25 53 2 180 5.2 14.6 91 75 29 1 180 4.3 13.9 50 

26 49 1 60 3.3 15.8 83 76 24 1 60 4.2 15.8 79 

27 50 2 180 4.5 14.1 82 77 28 1 60 4.6 16.3 81 

28 36 1 60 4.3 16.2 80 78 40 3 360 4.8 11.1 79 

29 30 3 360 4.5 9.8 80 79 44 2 360 4.6 10.4 85 

30 62 2 180 5.7 14.3 90 80 59 2 180 5.2 14.4 80 

31 60 2 360 5.3 7.9 85 81 62 1 60 5.5 15.5 90 

32 49 1 360 4.2 13.5 76 82 34 2 180 4.8 14.3 80 

33 46 3 360 4.3 7.6 85 83 64 2 180 5.6 14 89 

34 42 2 180 4.2 13.9 83 84 34 3 360 4.7 10.1 80 

35 61 1 60 5.6 15.5 88 85 51 2 180 4.6 14.3 85 

36 64 2 180 4.7 14.2 90 86 63 3 360 5.5 8.4 90 

37 55 2 360 4.6 9.9 85 87 46 2 180 4.8 14.2 80 

38 30 3 180 5.2 13.9 77 88 63 1 60 5.6 16.1 86 

39 25 2 180 3.3 14.1 79 89 52 2 180 4.5 14.2 80 

40 31 1 180 3.8 14.4 84 90 62 2 60 5.5 15.5 90 

41 37 3 360 4.1 10.4 83 91 35 2 360 4.3 11.6 73 

42 25 3 180 4.5 8.6 80 92 51 3 360 4.9 7.2 85 

43 62 2 60 5.5 15.9 90 93 30 3 360 3.5 9.4 81 

44 59 2 180 5.4 14.3 90 94 60 1 360 5.5 10.5 90 

45 29 2 180 3.9 10.5 77 95 65 2 180 5.6 14.4 91 

46 24 3 180 4.3 11.6 75 96 22 2 180 4.5 13.9 75 

47 22 2 180 4.2 13.9 75 97 41 1 180 4.4 10.1 83 

48 38 3 180 4.6 14.5 84 98 24 3 360 4.3 8.4 79 

49 35 1 60 4.6 15.9 72 99 30 3 180 4.5 14.6 82 

50 66 2 180 5.7 14.1 92 100 29 2 60 3.5 15.7 78 

 

S/No. AGE (X1) 
MAL. 

(X2) 

TYPH. 

(X3) 

FBS 

(X4) 
HB (X5) 

DAIS. 

(X6) 
S/No. 

AGE  

(X1) 

MAL. 

(X2) 

TYPH. 

(X3) 
FBS (X4) 

HB 

 (X5) 

DAIS. 

(X6) 

101 61 2 180 5.1 14.3 90 151 65 3 180 5.5 14.8 90 

102 60 2 180 5.5 14.5 81 152 61 2 60 5.4 15.6 90 

103 35 3 180 4.8 11.5 85 153 45 2 180 4.5 14.5 76 

104 64 2 180 5.6 14.7 90 154 38 2 180 4.3 14.4 75 

105 52 3 180 4.7 14.5 85 155 29 1 60 4.2 15.6 80 

106 55 1 60 4.6 15.9 90 156 62 2 180 5.5 15.3 91 

107 63 2 180 5.5 13.7 89 157 63 1 60 5.6 15.7 87 

108 49 2 60 4.8 15.4 89 158 46 3 360 4.6 14.9 80 

109 64 2 60 5.6 15.1 89 159 24 2 180 4.6 14.8 77 

110 27 3 180 4.7 14.3 80 160 60 1 60 5.2 15.5 91 

111 50 3 360 5.1 7.5 77 161 23 2 180 3.3 14.3 89 

112 59 2 180 5.2 13.9 88 162 31 2 180 3.8 14.3 75 

113 34 3 360 4.9 7.8 85 163 24 2 360 3.9 10.1 76 

114 55 1 60 4.8 15.6 89 164 40 3 180 4.5 14.2 80 

115 63 2 60 5.6 15.3 80 165 63 2 60 5.5 16.2 90 

116 29 2 180 4.6 14.3 80 166 58 1 60 5.4 15.5 90 

117 33 1 60 4.6 15.9 85 167 49 2 60 3.9 15.2 87 

118 61 2 180 5.5 14.3 88 168 23 2 180 4.3 14.6 75 

119 40 2 60 4.8 15.9 79 169 40 2 180 4.7 13.5 80 

120 62 2 180 5.6 14.1 86 170 40 1 180 4.6 14.2 85 

121 45 3 180 4.7 14.5 80 171 60 3 360 5.2 10.1 91 

122 60 3 360 5.5 9.2 90 172 34 3 360 4.3 9.8 75 

123 45 2 360 4.3 8.2 80 173 20 3 180 4.5 14.3 75 

124 50 3 180 4.6 14.2 85 174 32 1 60 4.1 15.4 79 

125 39 2 60 3.5 10.2 84 175 35 2 180 4.5 14.3 80 

126 59 1 60 5.2 15.4 90 176 64 2 180 5.5 14.6 90 

127 64 3 180 5.5 13.9 91 177 58 1 60 5.4 15.9 90 

128 54 3 360 4.8 9.3 89 178 29 2 180 3.9 16.1 77 

129 63 2 180 5.6 14.3 91 179 39 1 60 4.3 15.5 78 

130 43 3 360 4.7 9.1 80 180 46 3 180 4.2 14.4 85 

131 41 3 180 4.6 13.9 85 181 40 3 360 4.6 10.2 76 

132 62 2 180 5.2 14.3 91 182 53 2 180 4.6 14.5 81 

133 23 2 60 3.2 15.4 83 183 60 3 360 5.6 10.1 90 

134 39 1 60 4.1 15.9 78 184 39 1 60 4.6 15.8 87 

135 30 3 360 4.2 7.2 78 185 50 1 60 4.6 16.2 85 

136 39 3 360 4.5 10.1 80 186 64 3 60 5.2 14.1 91 

137 61 2 180 5.5 13.9 86 187 46 2 180 3.3 14.3 84 

138 40 1 60 4.7 15.6 80 188 33 1 180 3.8 11.9 84 

139 32 2 180 4.6 13.7 85 189 55 3 360 4.2 9.3 86 

140 60 3 360 5.2 10.2 90 190 34 3 360 4.5 10.4 80 

141 61 3 360 5.5 7.3 89 191 62 3 180 5.5 14.4 90 

142 30 2 180 4.8 14.3 89 192 23 2 60 4.7 15.1 80 

143 31 3 360 5.6 9.6 95 193 22 2 180 4.6 13.6 77 

144 29 2 360 4.7 10.4 80 194 59 2 180 5.2 14.4 90 

145 41 2 180 4.6 14.3 85 195 63 1 60 5.5 15.4 91 

146 63 1 60 5.2 15.1 91 196 41 2 180 4.8 14.3 84 

147 44 3 60 3.3 15.5 84 197 63 1 60 5.6 15.9 87 

148 21 1 180 3.8 14.3 77 198 49 3 360 4.8 10.1 85 

149 44 3 360 4.3 10.2 81 199 44 2 180 4.6 14.2 85 

150 55 3 360 4.5 9.7 86 200 59 1 60 5.2 15.8 91 

 
 


