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Abstract

This paper aims to introduce a comparative study for the E-Bayesian criteria with three various Bayesian approaches; Bayesian, hierar-
chical Bayesian and empirical Bayesian. This study is concerned to estimate the shape parameter and the hazard function of the Gom-
pertz distribution based on type-Il censoring. All estimators are obtained under symmetric loss function [squared error loss (SELF))] and
three different asymmetric loss functions [quadratic loss function (QLF), entropy loss function (ELF) and LINEX loss function (LLF)].
Comparisons among all estimators are achieved in terms of mean square error (MSE) via Monte Carlo simulation.
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1. Introduction

The Gompertz distribution has great importance in modeling hu-
man mortality and actuarial tables. It has many applications, par-
ticularly in medical and actuarial studies. Also, it used as a surviv-
al model in reliability. Historically, the Gompertz distribution was
first proposed by Gompertz [1]. The probability density function
(pdf), cumulative distribution function (cdf), and hazard function
h(t) of the two-parameter Gompertz distribution are given, re-

spectively, by

f (x;4,0)=10 exp[/lx —oEe™ —1)], x>0, 4,050, (1-1)
F(x;,6)=1— exp[fﬁ(e}“x 71)] x>0, 4,050  (1-2)
And

h(t; 1,6) =10 exp(At), t>0, 1,050  (1-3)

Where 4 and ¢ are the scale and shape parameters respectively.
Recently, many authors have studied the Gompertz distribution;
for example, Grag [2] discussed the properties of the Gompertz
distribution and estimate its parameters by using the maximum
likelihood method. Chen [3] reproduced an exact confidence in-
terval and exact joint confidence region for the parameters associ-
ated to the Gompertz distribution based on type-1l censoring. Ja-
heen [4] constructed the Bayesian technique for the Gompertz
distribution under record values. Wu et al [5] obtained the point
and interval estimators for the unknown parameters corresponding
to the Gompertz distribution based on progressive type-11 censored
samples. Gohary [6] introduced the bivariate Gompertz distribu-

tion and completed the analysis for the mixture of components of
the proposed distribution. Saracoglu et al [7] compared the non-
Bayes and Bayes estimates for the unknown parameters of the
Gompertz distribution. Ismail [8] derived point and interval esti-
mates for the Gompertz distribution based on partially accelerated
life tests with type-Il censoring. Feroze and Aslam [9] obtained
point and interval estimates for the parameters of the two-
component mixture of the Gompertz model based on Bayes Meth-
od along with posterior predictions for the future value from mod-
el. Sarabia et al [10] exploded several properties of the Gompertz
distribution when lifetime or other kinds of data available fully
observed.

The E-Bayesian estimation is a new method of estimation first
introduced by Han [11]. Han [12] derived the E-Bayes and hierar-
chical Bayes estimates of the reliability parameter for testing data
from products with exponential distribution under type-I censoring
and by considering the quadratic loss function. He proved that via
simulation, the E-Bayesian estimator is efficient and easy to oper-
ate. Han [13] obtained the E-Bayesian estimation of the failure
probability based on type-I censored data and by using the quad-
ratic loss function. Yin and Liu [14] applied the E-Bayesian esti-
mation and hierarchical Bayesian estimation methods for estimat-
ing the unknown reliability parameter of the geometric distribution
under scaled squared loss function in complete samples. They
deducted that the E-Bayes criteria is more stability and convenient
in terms of calculation complexity than the hierarchical Bayes
method. Han [15] obtained the E-Bayes and hierarchical Bayes
estimates of reliability for testing data from products with binomi-
al distribution under type-I censoring and by considering the quad-
ratic loss function. He showed that by using simulation the E-
Bayes technique is much simpler than the hierarchical Bayes
method to operate. Wei et al [16] constructed the minimum risk
equivariant estimation and E-Bayes estimation methods for esti-
mating the unknown parameter of the Burr-XII distribution based
on entropy loss function in complete samples. They deducted that
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E-Bayes estimates have most accuracy. Jaheen and Okasha [17]
compared the Bayesian and E-Bayesian estimators for the parame-
ters and reliability function of the Burr Burr-XII distribution based
on type-I1 censoring and by considering the squared error loss and
LINEX loss functions. They deducted that the overall performance
of the E-Bayes estimates are better than the similar obtained by
using the Bayes technique. Cai et al [18] applied the E-Bayesian
estimation method for forecasting of security investment. Okasha
[19] constructed the maximum likelihood, Bayesian and E-
Bayesian methods for estimating the unknown scale parameter and
reliability and hazard functions of the Weibull distribution under
type-2 censored samples and by considering the squared error loss
function. He concluded that the E-Bayes estimates were more
efficient than the maximum likelihood estimates or the Bayes
estimates. Wu [20] introduced the Bayesian estimation and E-
Bayesian estimation techniques in a new integral interval for esti-
mating the failure probability under zero-failure data and by con-
sidering the quadratic loss function. Azimi et al [21] estimated the
parameter and reliability function of the generalized half Logistic
distribution by using the Bayes and E-Bayes methods based on
progressively type-1l censoring and by considering the squared
error loss and LINEX loss functions. They deducted that the E-
Bayes criteria generally is more efficient than the Bayes criteria.
Javadkani et al [22] applied the Bayes, empirical Bayes and E-
Bayes techniques for estimating the unknown shape parameter and
the reliability function of the two parameter bathtub-shaped life-
time distribution based on progressively first-failure-censored
samples and by considering the minimum expected loss and
LINEX loss functions. Liu et al [23] used the E-Bayes and hierar-
chical methods for estimating the unknown parameter of the Ray-
leigh distribution under g-symmetric entropy loss function in
complete samples. They deducted that the two techniques were
close to each other when the sample size is large enough and the
E-Bayes estimation was more convenient in terms of calculation
complexity. Okasha [24] constructed the Bayesian and the E-
Bayesian methods for estimating the scale parameter, reliability
and hazard functions of the Lomax distribution based on type-2
censored and by considering the balanced squared error loss func-
tion. He pointed out that the performance of the E-Bayes estimates
is generally better than the Bayes estimates. Reyad and Othman
[25] obtained the Bayesian and E-Bayesian estimates for the shape
parameter of the Gumbell type-1l distribution based on type-II
censoring and by considering squared error, LINEX, Degroot,
Quadratic and minimum expected loss functions. They deducted
that the E-Bayes estimates were generally much better than the
other estimates.

The goal of this paper is to introduce a statistical comparison be-
tween the E-Bayesian criteria versus other three techniques of
Bayesian approaches; Bayesian, hierarchical and empirical Bayes-
ian to illustrate the potential usefulness of the E-Bayesian esti-
mates which are simple in calculations and efficient. The resulting
estimates are obtained based on symmetric and different asymmet-
ric loss functions and the all outcomes obtained in this article can
be generalized to use in complete sample.

The layout of the paper is as follow. In Section 2, the Bayes esti-
mates of the parameter ¢ and the hazard function h(t) based on

type-1l censored sample are derived under SELF, QLF, ELF and
LLF. The E- Bayes estimates are obtained of the parameter ¢ and
the hazard function h(t)based on type-1l censored sample under
SELF, QLF, ELF and LLF in Section 3. In Sections 4, 5, the hier-
archical Bayes estimates and empirical Bayes of the parameter o
and the hazard function h(t) are derived based on type-1l cen-
sored sample under SELF, QLF, ELF and LLF respectively. In
Section 6, a Monte Carlo simulation is done to compare the behav-
ior of the resulting estimators. Some concluding remarks have
been given in the last Section.

2. Bayesian estimation

In this section, we will obtain the Bayes estimates of the shape
parameter ¢ and the hazard function h(t) of the Gompertz distri-
bution by considering symmetric loss function (SELF)) and three
asymmetric loss functions (QLF, ELF and LLF). Based on type-l1l
censored samples of size r obtained from a life test of n items
from the Gompertz in (1-1) and (1-2) distribution, the likelihood
function can be written as

L(9|x_) =n—!]L[19 exp[ﬁx(i) —9(eﬂx(‘) —1)}{exp(—9(eﬁx(’) —1))}IH

(n — I')' i1
o 0" exp[-0Q | (2-1)
Where
Q ={exp{iéxm}+(n—r)[exp(ﬂx(r))}—r} (2-2)

Assuming 2 is known, we can use the gamma distribution as an
conjugate prior distribution of ¢ with shape and scale parameter
a and b respectively and its pdf given by

ba
I'(a)

g(0a,b)= 0> exp[-b @], 0>0, ab>0 (2-3)

Combining (2-1) and (2-3), from Bayesian theorem the posterior
density function of ¢ can be obtained as

L(0}x)g(0fab)
j:L(€|x_)g (6la,b)do

7(0]x) =

_ @Q+b)™ griate-@m)
Ir'(r+a)

0>0 (2-4)

That mean, the posterior distribution of 6 obeys I'(r +a,Q +b).

2.1. Bayesian estimation under squared error loss func-
tion (SELF)

A commonly used loss function is the square error loss function
(SELF) introduced by Mood et al (26) as follows:
L,(6,0) =k (6-0)? , k>0 (2-5)
Where @ is an estimator of 6 and k is the scale of the loss func-
tion. The scale k is often taken equal to one which has no effect
on the Bayes estimates. This loss function is symmetric in nature.
i.e. it gives equal importance to both over and under estimation.

The Bayes estimator of @ denoted by é,, can be obtained as

Gas =E . (6]%) (2-6)

Where E, indicated to the expectation of the posterior distribu-

tion. We can derived 6,5 by using (2-4) in (2-6) to be

A r+a

Oy = o (2-7)
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We can also obtain the Bayes estimator of h(t)based on SELF
denoted as hg by replacing ;s given in (2-7) instead of @ given
in (1-3) to be

- r+a
hgg =A| —— |e™
w22

2.2. Bayesian estimation under quadratic loss function

(QLF)

Bhuiyan et al [27] defined the quadratic loss function (QLF) as
follows:

L,(6,0)= {%J

(2-8)

(2-9)

The Bayes estimator of ¢ based on QLF denoted by 6,, can be
obtained as

. E.(67x)

A 2-10
E(07]0 (210
We can derived 6,, by using (2-4) in (2-10) to be
A r+a-2
B~ 5 p (2-11)

We can also obtain the Bayes estimator of h(t) based on SELF
denoted as hy, by replacing 6,, given in (2-11) instead of 6
given in (1-3) to be

~ r+a-2
hgo =4 et
" [ Q +b ]

2.3. Bayesian estimation under entropy loss function
(ELF)

(2-12)

Day et al [28] have discussed the entropy loss function (ELF) of
the form

L3(é,9)m[%]—ln[%]—l

The Bayes estimator of ¢ relative to ELF denoted by 6. can be
obtained as

(2-13)

-1
Ooe =[EL(07[0) ] (2-14)
We can obtain 6, by using (2-4) in (2-14) to be

~ r+a-1

BE — QT (2-15)

The Bayes estimator of h(t) relative to ELF denoted as hye by
replacing 6, given in (2-15) instead of ¢ given in (1-3) to be

- r+a-1
hge =4 e
=i 1222

(2-16)

2.4. Bayesian estimation under LINEX loss function
(LLF)

Zellner [29] represent the LINEX (linear-exponential) loss func-
tion (LLF) to be

LA(é, f)=m {exp[s (é—&)}—s(é—@) —1} (2-17)
With two parameters m >0, s =0, where m is the scale of the loss

function and s determines its shape. Without loss of generality,
we assume m =1. The Bayes estimator relative to LLF denoted by

6, can be obtained as

x| (2-18)
We can obtain 6, by using (2-4) in (2-18) to be

Og.. :(’sﬁ)m{nQib} (2-19)

The Bayes estimator of h(t) relative to LLF denoted as hg, by

replacing 6,, given in (2-19) instead of 6 given in (1-3) to be

by =4 252 linj 14 =2
S Q+b

3. E-Bayesian estimation

}e“ (2-20)

In this section, we will derive the E-Bayes estimates of the shape
parameter ¢ and the hazard function h(t)of the Gompertz distri-

bution based on symmetric loss function (SELF)) and three
asymmetric loss functions (QLF, ELF and LLF). Based on Han
[30], the prior parameters aand b must be choose to guarantee

that g(f]a,b) given in (2-3) is a decreasing function of ¢ . The

derivative of g (¢]a,b) with respectto ¢ is

dg (&la,b) _ b

do r'@) G-1)

o [exp [-b Hﬂ[(a -1)-bo]
Note that a>0,b>0 and ¢>0 leads to O<a<lLb>0 due to

dg (f|a,b . . .
Mw , and therefore g(9|a,b) is a decreasing function of

0 . Suppose that a and b are independent with bivariate density
function

z(@,b) =m(@) 7, () 3-2)

Then, the E-Bayesian estimate of ¢ (expectation of the Bayesian
estimate of ') can be written as

6, =E (9|x_) = [[,,6s (@.b) 7(a,b)dadb (3-3)

Where 6, (a,b) is the Bayes estimate 6 of given by (2-7), (2-11),
(2-15) and (2-19). For more details see Han [11, 31].
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3.1. E-Bayesian estimation under squared error loss
function (SELF)

E-Bayesian estimates of ¢ are derived depending on three differ-
ent distributions of the hyper-parameters a andb . These distribu-
tions are used to study the impact of the different prior distribu-
tions on the E-Bayesian estimation of . The following distribu-
tions of aand b may be used:
2(c - b)

m@b)= O0<a<l 0<b<c (3-4)

;rz(a,b):E O0<a<1 0<b<c (3-5)
c

7r3(a,b):§—t2) O0<a<l 0<b<c (3-6)

We can obtained the E-Bayesian estimate of ¢ relative to SELF
based on 7,(a,b) which is denoted as 6, by using (2-7) and (3-
4)in (3-3) to be

2 b
Ocpsy = II[(;:?)][ (Cc ):|dbd

(22 [ 2eloeg

Similarly, we can derive the E-Bayesian estimates of ¢ relative to
SELF based on r,(a,b) and z,(ab) which are denoted as

Ocss 2, Oenss DY USING (2-7), (3-5) in (3-3) and (2-7), (3-6) in (3-3)
respectively to be

20 Lo (252 )

And

Oeas = H[;‘;J[%}dbd —(zr:lj{l—%ln[H%H 3-9)

The E-Bayes estimates of h(t) relative to SELF denoted as

(G

(3-8)

hess; (i =1,2,3) can be obtained by replacing 6 (i =1,2,3) given
in (3-7), (3-8) and (3-9) instead of @ given in (1-3) to be

Regs, = 267 (%J{(ug]ln{ué]—l}, (3-10)
Regs , = A2 ™" [%j{ln [1+%H (3-11)
And

Peg s = 46" [% J[l-%ln{ﬂ%ﬂ (3-12)

3.2. E-Bayesian estimation under quadratic loss func-
tion (QLF)

We can obtain the E-Bayesian estimate of & relative to QLF
based on 7, (a,b) which is denoted as éEBQl by using (2-11) and (3-
4)in (3-3) to be

[ r+a-21\ 2(c -b)
oo = H[Qm J{ = }dbd

=[2r_3]{[1+9)|n(1+1]—1}
c c Q
Also, we can derive the E-Bayesian estimates of ¢ relative to
QLF based on r,(ab) and r,(ab) which are denoted as
Ocs02:Oesgs DY USING (2-11), (3-5) in (3-3) and (2-11), (3-6) in (3-
3) respectively to be

(3-13)

Besz = H[rgibz]Hdbda:(erC‘3j[ln[u%ﬂ (3-14)
And
A e BT
:[Zrc—3 ][1_%.n(1+%ﬂ (3-15)

Similarly, the E-Bayes estimates of h(t)based on QLF denoted as
ﬁEBQi (i =1,2,3)can be obtained by replacing éEBQi (i =12,3) given
in (3-13), (3-14) and (3-15) instead of ¢ given in (1-3) to be

Repos = A2 [% jﬁl+%)ln[l+%j—l}, (3-16)
hengs = 76™ [% j[m(n%ﬂ (3-17)
And

Resgs = 1" (?J{l—%ln[l+%ﬂ (3-18)

3.3. E-Bayesian estimation under entropy loss function
(ELF)

We can get the E-Bayesian estimate of ¢ relative to ELF based on
7,(a,b) which is denoted as ., by using (2-15) and (3-4) in (3-
3) to be

P :'ﬂc r+a-1 {2(0 b)}dbd
EBE1 = Jolo Q+b o2

(-2l

Also, we can derive the E-Bayesian estimates of ¢ relative to ELF

(3-19)

based on r,(a,b)and ,(a,b) which are denoted as Gge 5, beee s DY

using (2-15), (3-5) in (3-3) and (2-15), (3-6) in (3-3) respectively
to be

o D e L

And

(3-20)
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A cfr+a-1}) 2b _ 2
b33 2o (2o
A (2r+l Q?
=(2rc_1 j{l—%ln{l+%ﬂ (3-21) . OepLs —[ 2 j Hg]'n(“'—ﬂ*' (3-27)

Also, the E-Bayes estimates of h(t) relative to ELF denoted as

hese (i =1,2,3) can be obtained by replacing 6 (i =1,2,3) given
in (3-19), (3-20) and (3-21) instead of ¢ given in (1-3) to be

Pege, = Ao ™" [% J{(l+%jln(l+%j—l}, (3-22)
Rege, = A6 [% ]{m[n%ﬂ (3-23)
And

Neges = A6t [%]{1—%{“%}} (3-24)

3.4. E-Bayesian estimation under LINEX Loss function
(LLF)

We can get the E-Bayesian estimate of ¢ relative to LLF based on
7,(a,b) which is denoted as 6, by using (2-19) and (3-4) in (3-

3) to be
r +ajln{1+LJ[2(c _b)}dbda
s Q+b c?

[l
(&5 ez
EEIE

Also, we can derive the E-Bayesian estimates of ¢ relative to LLF

it

(3-25)

&

based on z,(a,b)and r,(a,b) which are denoted as 6y, ;.6 s DY
using (2-19), (3-5) in (3-3) and (2-19), (3-6) in (3-3) respectively

to be
In[h 5 }{E}dbda
Q+b |l c

2

(2r+1
L2

(3-26)

And

~ 1ecf F+a S 2b
9EBL3 :J.OJO (?jln{J.*’Q b :||:c—2:|db da

Also, the E-Bayes estimates of h(t) relative to LLF denoted as

hesy; (i =1,2,3) can be obtained by replacing 6. (i =1,2,3) given
in (3-25), (3-26) and (3-27) instead of ¢ given in (1-3) to be

HEBU:M(Z;”) [ - (3-28)
L3
{In[h—Qic]}r

ﬁEBLfﬂe“(Z;:lj [(Q:Sjm 1+Q°+Sﬂ_ (3-29)
GRS

And
K-@c ;Scf]m(%i ﬂ .

Py, = 267 (%) H%JIH[H_J} (3-30)

4. Hierarchical Bayesian estimation

In this section, we will derive the hierarchical Bayes estimates of
the shape parameter ¢ and the hazard function h(t) of the Gom-

pertz distribution based on symmetric loss function (SELF)) and
three asymmetric loss functions (QLF, ELF and LLF). According
to Lindley and Smith [32], if a and b are hyper-parameters in 0,

the prior density function of ¢ is g(6]a,b)given in (2-3) and the
prior density functions of hyper-parameters a,b are given in (3-4),

(3-5) and (3-6), then the corresponding hierarchical prior density
functions of ¢ are given as the following:

740 =[] 9(6Ja,b) m(a,b)dbda

= %j;j; % (c -b)6* e dbda, (4-1)
C
1pc
7(0) = [1[¢ 9(0]a,b) 7,(a,b)dbda
=S 20 Manda 4-2)

I'(a)
And
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75(0) =], ]9 (0|a,b)7r3(a,b)dbda

ea‘le‘bedbda (4-3)

2 J.OJ.O I'(a)

From Bayesian theorem, the hierarchical posterior density func-
tions of @ can be derived by combining (2-1), (4-1), (4-2) and (4-
3) to be

L(t9|x_)7r4(9)

(Ox) = ———
j:L(9|x)7r4(9)d6’

jjo r( )(c —b) 6"+ 0@+ hda

(4-4)

[ @ (¢ -b)I(r +a) [Q +b " dbda ’

L0 7(9)

h2(0|x_) TN
[ L(9|x_);z5(e)d.9

1re b® +a-1 o ~0(Q+b)
Iojoﬁgr *le dbda

(4-5)
jo 2 @ N [Qub] 9 goda

And

L(H|X_)7r6(6)

hy(0)x) = ——F——
[; L(0|x_)7r6(€)d9

J-OJ-O r(a) 0r+a—1 —0(Q+b)dbda
- (4-6)
r(r +a) [Q +b T dbda

e Ty I'(a)

4.1. Hierarchical Bayesian estimation under squared
error loss function (SELF)

The hierarchical Bayes estimates of ¢ based on SELF denoted by
fss (i =1,2,3) can be obtained as

éHBSi =E, (lglﬁ), i=123 @-7)

Where E,, indicated to the expectation of the hierarchical poste-

rior distribution. We can derived 6, (i
5) and (4-6) in (4-7) to be

=1,2,3) by using (4-4), (4-

(r+a+l)

Il @ )(c b)I(r +a+1)[Q +b] " dbda
Orgs1 = (4-8)
[ ra )(c b)I(r +a) [Q +b " dbda
N e ) " r(r+a+1)[Q +b ] Vdbda
s 2 = (4'9)
[ @) [Q +b] " dbda
And
j jo r(r +a+)[Q +b ] dbda
I (4-10)

[ ra )r(r +2) [Q +b ] dbda

Similarly, the hierarchical Bayes estimates of h(t)based on SELF

denoted as h (i =1,2,3) can be obtained by replacing

Ouesi (1 =1,2,3) given in (4-8), (4-9) and (4-10) instead of ¢ given
in (1-3) to be
Ae;‘jojo—)(c —b)r(r +a+D[Q +b] sy o
Nhgs1 = I I . (4-11)
oo gy © DT @) [0 +b] T dbda
(r+a+1)
s = Ll i oM R M (4-12)
HBS2 —
Io,[o ra )F(r +a) [Q +b:| ) 4bda
And
MI Lf 1": ) r(r+a+1)[Q *bjf(%ﬂ)dbda
hHBS3 - (4-13)
“* dhda

j fo @ )F(r +a)[Q+b]

4.2. Hierarchical Bayesian estimation under quadratic
loss function (QLF)

The hierarchical Bayes estimates of ¢ based on QLF denoted by
Oupoi (i =1,2,3) can be obtained as

. E, (07x
Oupoi :Ll—) i =123

E, (62x) (4-14)

We can derived 6, (i
(4-14) to be

=1,2,3) by using (4-4), (4-5) and (4-6) in

(r+a-1)

) [ " -b)r(r +a-1[Q +b] " “dbda
0HBQ1 = - r@) s (4-15)

I;Lfr()(c b)r(r+a-2) [Q+b] " dbda

HOF r(r+a-)[Q+b ] ’dbda
gHBQZ = ( ) (4'16)
I'r+a-2)[Q +b ~“dbda
s p T +a-2 [ +0]
And
1pc patl —(r+a-1)
+a-— +
IoJo r( )r(r a-)[Q+b]" " dbda
HBQ3 = (4'17)
——I'(r+a-2)|Q +b dbda
L e CRUTRA

Similarly, the hierarchical Bayes estimates of h(t) based on QLF
denoted as HHBQi (i=123) can be obtained by replacing
Oupo (i =1,2,3) given in (4-15), (4-16) and (4-17) instead of ¢
given in (1-3) to be

]7(r+a—l)

xeﬂ‘mg b -lQ +b dbda

(4-18)

hHBQl =

1" doda

o Io

[Q +b
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2t j;j;—r(r +a-1[Q +b ] "*dbda
hHBQz = . ra2) (4'19)
jjo @) I(r+a-2)[Q+b] dbda
And
PN @ )F(r +a-)[Q +b] " dbda
HBQ3 = (4'20)

[ ra )F(r +a-2)[Q +b """ dbda

4.3. Hierarchical Bayesian estimation under entropy
loss function (ELF)

The hierarchical Bayes estimates of ¢ based on ELF denoted by
Ouee (1 =1,2,3) can be obtained as

i=123

éHBEi =[ Ep, (Hillﬁ) Tl (4-21)

We can derived 6, (i
(4-21) to be

=1,2,3) by using (4-4), (4-5) and (4-6) in

[N r( )(c b)I(r +a)[Q +b | “dbda
Orger = (4-22)
[ie-2 @ )(c b)I(r +a-1) [Q +b | dbda
X j;r I(r +a)[Q +b ] ""“dbda
Orge 2 = @) (4'23)
I'r+a-1)Q +b “dbda
Rl ey e s [Qeb]
And
[ e LI +2)[Q +b ] "dbda
HBE3 = ( ) (4'24)
—F(r+a—1) Q+b | " dbda
L [Q+b] "

Similarly, the hierarchical Bayes estimates of h(t) based on ELF
hueg (i =1,2,3) can be obtained by replacing
Ouee (1 =1,2,3) given in (4-22), (4-23) and (4-24) instead of 6
given in (1-3) to be

denoted as

(r+a)

2e’t [y Io

HBE1 =

(c b)'(r +a)[Q +b | “dbda
ra) . (42s)

HO ) (c b)r(r+a-1)[Q +b] """ dbda
pres jojo " r(r+a)[Q +b] “dbda

Phge2 = I (4-26)
[ @ )F(r +a-1)[Q+b ] """ dbda

And
ﬂe“j;jgil"(r +a)[Q +b ] “dbda

hHBE3 = at ) (4'27)
[ @ ey [Q+b] " dbda

4.4. Hierarchical Bayesian estimation under LINEX loss
function (LLF)

The hierarchical Bayes estimates of ¢ based on LLF denoted by
=1,2,3) can be obtained as

5)} i =123

=1,2,3) by using (4-4), (4-5) and (4-6) in

gHBLi (I

Orpes = [_—1j In [Ehi (e 0
s

We can derived 6, (i
(4-28) to be

(4-28)

1 JOJO (c bIF(r +a)[Q +b +s]
o = (;jm (4-29)
) Iofo (C b)r(r+a)[Q +b] ) dhda
[N b r v a)[Q +b +sT Vdbda
éHBLZ :(_?1} ’ F( ) (4-30)
[N @ T [Q+b] " dbda
And
fs J r(r +2)[Q +b +s | “dbda
n -1 oo
L3 :[?jl r(a) — (4-31)

F r+a)|Q +b dbda
Similarly, the hierarchical Bayes estimates of h(t) based on LLF
hesy G =12,3) can be obtained by replacing

Qe (i =1,2,3) given in (4-29), (4-30) and (4-31) instead of ¢
given in (1-3) to be

denoted as

(c b)r(r +a)[Q +b +s] Vb

A fo!o
N _et
PhgL1 :[ : jl (4'32)
IoIo (c b)r(r +a) [ +b] ™ dbda
at jojoir(r +a)[Q +b +5]
B2 :(*ﬂ: }In r@ ) (4-33)
Iofo F(r +a) [Q +b] ) ihda
And
. et Io.[o F(r+a)[Q +b +5]
NigLs :( ]m +1 (4-34)
Jofo o [@ +b] " dbda

5. Empirical Bayesian estimation

The Bayes approach assumed that the hyper-parameters a and b
are known. When a and b are unknown, we may use the empiri-
cal Bayes criteria to get its estimates from likelihood function and
probability density function of the prior distribution [33].Now,
from (2-1) and (2-3), the marginal distribution of x given a and
b is obtained as:

f (x|lab)eb?[r@] T(r+a)(Q+b) "™ (5-1)

By taking the natural log for (5-1), we get
logf (x|a,b) s alogb ~log(@)+log"(r +a)—(r +a)log(Q +b) (5-2)
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By taking the derivative for (5-3) and setting it equal to zero, we
obtain

ologf (x|a,b
M:k}gb_imgr(a)
oa oa (5-3)
0
+alogr(r+a)—log(Q +b)=0
dlogf (x|a,b)737(r+a)7o (5-4)
ab b Q+b

By solving (5-3) and (5-4) simultaneously, we can get the maxi-
mum likelihood estimators of a and b denoted by & and b to be

aQ

a=log {—} —ﬁlog r'(@) +i logI'(r +a)—log {Q [1+ Eﬂ (5-5)
r oa oa r

p-Q (5-6)

5.1. Empirical Bayesian estimation under squared error
loss function (SELF)

The empirical Bayes estimates of ¢ and h(t) based on SELF de-
noted as 6, and hegg respectively can be obtained by replacing
aand b in (5-5), (5-6) instead of a and b in (2-7), (2-8) respec-
tively to be

5 r+a
BS — ~
e Q+b

(5-7)
And

- r+a |
Negs =4 = |e
o i )

5.2. Empirical Bayesian estimation under quadratic loss
function (QLF)

(5-8)

The empirical Bayes estimates of ¢ and h(t)relative to on QLF
denoted as éeBQ and ﬁeBQ respectively can be obtained by replacing

dand b in (5-5), (5-6) instead of a and b in (2-11), (2-12) re-
spectively to be

. r+a-2

Opo = = 5-9
o = (59)

And

- r+a- at

hgo =4 — |e 5-10
eBQ [ Q +b J ( )

5.3. Empirical Bayesian estimation under entropy Loss
function (ELF)

The empirical Bayes estimates of ¢ and h(t) relative to on ELF
denoted as 4, and h, respectively can be obtained by replacing

dand b in (5-5), (5-6) instead of aand b in (2-15), (2-16) re-
spectively to be

(5-11)

W (EEN 12

5.4. Empirical Bayesian estimation under LINEX loss
function (LLF)

The empirical Bayes estimates of ¢ and h(t) relative to on LLF
denoted as 4, and h,, respectively can be obtained by replacing

dand b in (5-5), (5-6) instead of a and b in (2-19), (2-20) re-
spectively to be

O, :(r:ajln{h—Qit{} (5-13)
And
. —4(r :ajln[uQ - N}eﬂ (5-14)

6. Monte Carlo simulation

This section conducted a Monte Carlo simulation study to evaluate
the performance of different estimators for the shape parameter
and hazard function corresponding to the Gompertz distribution
discussed in the preceding sections. The simulation structure con-
sists of five basic steps which are:

Step (1): Set the default values (true values) of A4,s and ¢ which
are 0.4, 2 and 3 respectively. We considered different censoring
schemes (different values of n,r ) to observe their effect on the

estimates in small, moderate and large dataset which are

small samples moderate samples large samples
n 5,10 15, 20, 25 50, 70
r 2,3,4,5 7,12,13, 16, 18, 22 25, 30, 32, 35

Step (2): For these cases, we generate a,b from the uniform priors
distributions (0, 1) and (0, c) respectively given in (3-4), (3-5) and
(3-6). For given values of a and b, we generate ¢ from the
gamma prior distribution given in (2-3).

Step (3): For known values of 2, type-l1l censored samples are
generated from the Gompertz distribution with pdf and cdf given
in (1-1) and (1-2) respectively through the adoption of inverse
transformation method, by using the formula

t; =F’l(Ui)=(%)In{l—[%]ln(l—ui)} i=12,..n

Where U is a random variable distributed according to uniform
distribution on the period (0, 1).

Step (4): Calculate the Bayes, E-Bayes, hierarchical Bayes and
empirical Bayes estimates of the unknown shape parameter and
the hazard function associated to the Gompertz distribution ac-
cording to the formulas that have been obtained.

Step (5): We repeated this process 10000 times and compute the
Mean Square Error (MSE) for the estimates for different censoring
schemes and given values of c, s,4 where

. 1 10000 . )
MSE(9)=W > 6 -9
i=1

And @ stands for an estimator of ¢ . The simulation results are
displayed in Tables (1-8).
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Table 1: Averaged Values of MSEs for Estimates of the Parameter Based on SELF

n r Ogs Oes Ohms Ougs Best estimator
0.0923816 0.0900734 ) )
%) 0.1154007 0.1098492 0.1034039 0.1081736 H'eéamh'ca'
. 0.1319542 0.1187886 ayes
0.28303229 0.7028934
3 0.1246743 0.1740581 0.6009574 0.2037672 E-Bayes
0.1115517 0.2547409
0.0963787 0.0949064 . .
4 0.1073193 0.1057411 0.1020377 0.1012551 H'eéamh'ca'
0 0.1169024 0.1096066 ayes
0.1170692 0.1247767
5 0.1102817 0.1122438 0.1290224 0.1113921 Bayes
0.111367 0.1141872
0.1320453 0.1327131
7 0.1343433 0.1343069 0.134495 0.1340809 E-Bayes
5 0.1375919 0.135698
0.4895673 0.4935076
12 0.4877208 0.4882623 0.4933152 0.5068884 E-Bayes
0.4872165 0.4916517
0.4390487 0.4398919
13 0.4387684 0.4388826 0.4399477 0.4604651 Bayes
20 0.4388002 0.4395233
0.5270064 0.5270607
16 0.5270217 0.5270204 0.5270596 0.5338379 E-Bayes
0.5270347 0.5270582
0.5261164 0.5261638
18 0.5261348 0.5261334 0.5261661 05331317 E-Bayes
55 0.5261509 0.5261682
0.5385311 0.5385329
22 0.5385323 0.5385319 0.5385327 0.5388161 E-Bayes
0.5385301 0.5385325
0.5323611 0.5324108
25 0.5323851 0.5323835 0.5324138 0.539386 E-Bayes
s 0.5324059 0.5324162
0.5530951 0.553102
30 0.5530953 0.5530952 0.5531014 0.5539138 E-Bayes
0.5530954 0.5531009
0.5536152 0.5536406
32 0.5536197 0.5536186 0.5536383 E-Bayes
o 0.5536224 0.5536366 isSEat
0.5564315 0.5564399
35 0.5564317 0.5564318 0.5564391 0.5574312 E-Bayes
0.556432 0.5564385
Table 2: Averaged Values of MSEs for Estimates of the Parameter ¢ Based on QLF
n r Osq Ocso Ouso b0 Best estimator
04238526 04633921
9 0.42377492 0.4236345 0.4658621 0.4417558 E-Bayes
5 0.4456019 0.4678147
0.2202763 0.2292603
3 0.2398602 0.2336599 0.2350935 0.2200502 Empirical
0.2555785 0.2435989
0.2378877 02367211
4 02523542 0.2501698 0.2464958 02448517 Hierarchical
0 0.2630071 0.2548032
0.1798498 0.1791594
5 0.1899613 0.1884004 0.1856097 0.1842346 Hierarchical
0.1985524 0.1918728
0.1895637 0.1887348
7 0.1960455 0.1953579 0.1932251 0.1956803 Hierarchical
s 0.2017024 0.1973158
0.4951878 0.497656
12 0.4940261 0.4943824 0.4974899 0.5118598 E-Bayes
0.4937599 0.4962776
0.4503912 0.4509263
13 0.4503843 0.4504469 04510272 0.4712319 Bayes
20 0.4505636 0.4508205
0.5283811 0.5284392
16 0.5283964 0.5283947 0.5284373 0.5344438 E-Bayes
0.5284085 0.5284358
0.5274266 0.5274779
18 0.5274446 0.5274432 0.5274792 0.5337475 E-Bayes
’s 0.5274598 0.5274806
0.5385601 0.538563 Bayes
22 0.5385601 0.5385601 0.5385628 0.5388208 =
0.5385601 0.5385627 E-Bayes
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0.5340203 0.5340734
25 0.5340429 0.5340413 0.5340749 0.5405435 E-Bayes
50 0.5340623 0.5340762
0.5531793 0.5531863
30 0.5531795 0.5531794 0.5531857 0.5539447 E-Bayes
0.5531796 0.5531852
0.5541335 0.5541593
32 0.5541373 0.5541362 0.5541568 UeBiEhos E-Bayes
70 0.5541394 0.554155
0.5565402 0.5565487
35 0.5565404 0.5565404 0.5565479 0.5574841 E-Bayes
0.5565407 0.5565473
Table 3: Averaged Values of MSEs for Estimates of the Parameter 6 Based on ELF
n r O Oree . O,pc Best estimator
0.2168677 0.2165015 Hierarchical
2 0.2447842 0.2382808 0.2338617 0.2393492 Bayes
5 0.2613634 0.2491744
0.1783073 0.286921
3 0.1381134 0.1505408 0.2454365 0.1489339 Bayes
0.1464825 0.1578187
0.1543769 0.1524457 Hierarchical
4 0.1687689 0.1666153 0.1622049 0.1611572 Bayes
10 0.1799419 0.1714139
0.1355164 0.1373493
5 0.1392281 0.1390392 0.1396337 0.1361098 E-Bayes
0.1452053 0.1414759
0.1561711 0.1558313 Hierarchical
7 0.1609936 0.1605749 0.1592189 0.1607174 Bayes
15 0.1657474 0.1622656
0.4922695 0.4954227
12 0.4907839 0.4912282 0.4952433 0.5093679 E-Bayes
0.4904062 0.4938076
0.4445716 0.4452436
13 0.4444365 0.4445235 0.4453234 0.4658121 Bayes
20 0.4445488 0.4450136
0.5276915 0.5277477
16 0.5277067 0.5277054 0.5277462 0.5341407 E-Bayes
0.5277195 0.5277448
0.5267692 0.5268187
18 0.5267877 0.5267862 0.5268205 0.5334395 E-Bayes
25 0.5268034 0.5268223
0.5385450 0.5385482
22 0.5385451 0.5385451 0.5385477 0.5388185 E-Bayes
0.5385451 0.5385476
0.5331892 0.5332406
25 0.5332126 0.5332109 0.5332428 0.5399644 E-Bayes
50 0.5332327 0.5332447
0.5531372 0.5531442 Empirical
30 0.5531374 0.5531373 0.5531435 0.5339292 Bayes
0.5531375 0.5531431
0.5538742 0.5538998
32 0.5538784 0.5538773 0.5538974 0.5567751 E-Bayes
70 0.5538805 0.5538956
0.5564859 0.5564943
35 0.556486 0.5564861 0.5564935 0.5574577 E-Bayes
0.5564863 0.5564929
Table 4: Averaged Values of MSEs for Estimates of the Parameter 6 Based on LLF
n r O, s, . Oee Best estimator
0.1300703 0.1274319 Hierarchical
2 0.1534217 0.1486116 0.1423646 0.1468433 Bayes
5 0.1693468 0.1570616
0.1164396 0.1409541
3 0.0999737 0.1047927 0.1277961 0.1077884 Bayes
0.1047618 0.1085985
0.1162738 0.1143817 Hierarchical
4 0.1283687 0.1267342 0.1226245 0.1218346 Bayes
10 0.1383037 0.1307677
0.1115827 0.1128788
5 0.1145334 0.1144052 0.114787 0.1121342 E-Bayes
0.1193545 0.1163856
0.2035517 0.2019998 Hierarchical
15 7 0.2109233 0.2101355 0.2071128 0.2108287 Bayes
0.4591252 0.2122008
12 1.3658455 1.3655501 1.3660657 1.4051697 E-Bayes
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1.3658569 1.3662818
1.4517256 1.3663222
0.7808361 0.7808361 Hierarchical
13 07815429 0.7815032 0.7815032 08112455 Bazles
20 0.8878425 0.7817255 E-Bayes
1.4825934 1.482692
16 1.4826256 1.4826228 1.4826932 1.4939107 E-Bayes
1.5017362 1.4826956
1.1255801 1.1256476
18 1.1256065 1.1256044 1.1256518 1.1345492 E-Bayes
25 1.1415574 1.125656
3.4861319 2.1960631
22 2.1960561 2.1960560 2.1960626 2.196718 E-Bayes
3.7932213 2.1960622
0.5324057 0.5324556
25 0.5324297 0.5324283 0.5324584 0.539399 E-Bayes
50 0.5324504 0.5324607
0.5584083 0.5531023 Bayes
30 0.5530956 0.5530956 0.5531017 0.5539138 =
0.5565524 0.5531012 E-Bayes
0.5536209 0.5536474
32 0.5536264 0.5536253 0.5536451 0.5566063 E-Bayes
70 0.5536319 0.5536434
0.5661383 0.5564404
35 0.5564322 0.5564323 0.5564396 0.5574313 Bayes
0.5653351 0.556439
Table 5: Averaged Values of MSEs for Estimates of the Parameter h(t) Based on SELF
n r Pes Pess (W Negs Best estimator
0.1258195 0.1227171 Hierarchical
2 0.1476429 0.1426235 0.1363939 0.1412723 Bayes
5 0.1606808 0.1502469
0.120067 0.1692736 .
Empirical
3 0.1413497 0.1343846 0.172298 0.1178139 Bayes
0.1613064 0.1511548
0.1313219 0.1290326 Hierarchical
4 0.1434964 0.141665 0.1372499 0.1371602 Bayes
10 0.1525482 0.1455241
0.1565579 0.1537777 Hierarchical
5 0.1701982 0.1679724 0.1621621 0.1633304 Bayes
0.1806547 0.1717051
0.1896829 0.1879971 Hierarchical
7 0.1974726 0.1965934 0.1932869 0.1974171 Bayes
15 0.2038466 0.198737
1.3653674 1.3668662
12 1.3652581 1.3653868 1.3670484 1.4049949 Bayes
1.3655327 1.3667106
0.7795411 0.7796862
13 0.7802063 0.7801771 0.7801322 0.8106249 E-Bayes
20 0.7808441 0.7804643
1.4825332 1.4826317
16 1.4825668 1.4825633 1.4826333 1.4939071 E-Bayes
1.4825935 1.4826361
1.1255281 1.1255963
18 1.1255559 1.1255537 1.1256008 1.1345459 E-Bayes
25 1.255794 1.1256054
2.1960558 2.196063
22 2.1960559 2.1960559 2.1960624 2.196718 E-Bayes
2.1960559 2.1960621
0.5719854 0.5720236
25 0.572003 0.5720018 0.5720256 0.5770019 E-Bayes
50 0.5720182 0.5720272
0.7808447 0.7808513
30 0.7808449 0.7808449 0.7808507 0.7815812 E-Bayes
0.780845 0.7808503
0.5173308 0.5173478
32 0.5173336 0.5173329 0.5173462 0.5192111 E-Bayes
70 0.5173351 0.517345
0.5868669 0.586873
35 0.5868674 0.586867 0.5868724 0.5875585 E-Bayes
0.5868672 0.5868719
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Table 6: Averaged Values of MSEs for Estimates of the Parameter h(t) Based on QLF
n r haq heso huso Neao Best estimator
0.3389923 0.360396
2 0.3459976 0.344487 0.3614346 0.3482932 E-Bayes
5 0.3500319 0.3622528
0.3497848 0.3483162
3 0.3857052 0.3750094 0.3682359 0.3586745 Hierarchical
0.4025491 0.3885239
0.2417891 0.2410258
4 0.2512266 0.2498273 0.2474453 0.2463663 Hierarchical
10 0.2580322 0.2527922
0.2684134 0.2663228
5 0.2822113 0.2798524 0.2753904 0.2752486 Hierarchical
0.2918048 0.2840613
0.2591428 0.2578511
8 0.2666107 0.2657306 0.2630432 0.2663315 Hierarchical
15 0.2725026 0.2678566
1.3792834 1.3802569
12 1.3793881 1.3794473 1.3804155 1.14138456 Empirical
1.3796988 1.380229
0.7954954 0.7956202
13 0.7961594 0.7961197 0.7960272 0.8232002 E-Bayes
20 0.7967664 0.7963558
1.4849752 1.4850816
16 1.4850051 1.4850023 1.4850805 1.4950112 E-Bayes
1.4850295 1.485081
1.1273277 1.1274009
18 1.1273531 1.1273514 1.1274034 1.1354064 E-Bayes
25 1.1273744 1.1274061
2.1961274 2.1961347
22 2.1961275 2.1961274 2.1961342 2.1967308 E-Bayes
2.1961275 2.1961338
0.5732148 0.5732553
25 0.5732312 0.5732345 0.5732562 0.5778575 E-Bayes
50 0.5732453 0.573257
0.7809229 0.7809296
30 0.7809230 0.7809230 0.7809293 0.7816112 E-Bayes
0.7809231 0.7809285
0.5176671 0.5176846
32 0.5176698 0.5176691 0.5176829 0.5194343 E-Bayes
70 0.5176711 0.5176817
0.5869444 0.5869507
35 0.5869445 0.5869446 0.5869501 0.5875973 E-Bayes
0.5869447 0.5869496
Table 7: Averaged Values of MSEs for Estimates of the Parameter h(t) Based on ELF
n r Ree Rese Ruse hese Best estimator
0.2191796 0.2189966 Hierarchical
2 0.2363194 0.2324628 0.229798 0.2331493 Bayes
5 0.2461973 0.2389718
0.2070463 0.2117466
3 0.2446143 0.2331799 0.2281944 0.2129794 E-Bayes
0.2657445 0.2453087
0.1820682 0.1804084 Hierarchical
4 0.1934148 0.1917172 0.1882323 0.1875475 Bayes
10 0.201693 0.195379
0.2072122 0.2044472 Hierarchical
5 0.2216547 0.2192354 0.2137031 0.2144449 Bayes
0.2321073 0.2234342
0.222526 0.2209862 Hierarchical
7 0.2303126 0.2294133 0.2263544 0.2301584 Bayes
15 0.236558 0.231613
1.3722569 1.3734691
12 1.3722642 1.372356 1.3736401 1.4094141 E-Bayes
1.3725596 1.3733802
0.7874409 0.7875702
13 0.7881094 0.7880746 0.7879983 0.8168902 E-Bayes
20 0.7887349 0.7883314
1.4837526 1.4838549
16 1.4837841 1.4837812 1.4838552 1.494459 E-Bayes
1.4838109 1.4838568
1.1264267 1.1264973
18 1.1264533 1.1264512 1.1265008 1.1349761 E-Bayes
25 1.1264757 1.1265045
2.1960916 2.1960988
22 2.1960917 2.1960917 2.1960983 2.1967244 E-Bayes

2.1960917 2.1960979
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0.5725995 0.5726388
25 0.5726165 0.5726153 0.5726403 0.5774295 E-Bayes
50 0.5726312 0.5726415
0.7808838 0.7808904
30 0.7808846 0.7808839 0.7808899 0.7815962 E-Bayes
0.7808841 0.7808894
0.5174989 0.5175161
32 0.5175017 0.517501 0.5175145 0.5193227 E-Bayes
70 0.517503 0.5175133
0.5869056 0.5869118
35 0.5869058 0.5869058 0.5869112 0.5875779 E-Bayes
0.586906 0.5869108
Table 8: Averaged Values of MSEs for Estimates of the Parameter h(t) Based on LLF
n r PeL Rest . Pest Best estimator
0.1592111 0.1571097
2 0.1763238 0.1729069 0.1683651 0.1716604 Hierarchical
5 0.2923221 0.1788406
0.1585437 0.1523755
3 0.1897742 0.1820938 0.1690574 0.1628875 Hierarchical
0.4584379 0.1903974
0.1519278 0.1500465
4 0.1626394 0.161177 0.1577888 0.1570101 Hierarchical
10 0.3430544 0.1645925
0.1799092 0.1771111
5 0.1929771 0.1910202 0.1856013 0.1864011 Hierarchical
0.4555219 0.1946963
0.2035517 0.2019998
7 0.2109233 0.2101355 0.2071128 0.2108287 Hierarchical
15 0.4591252 0.2122008
1.3655501 1.3660657
12 1.3658455 1.3658569 1.3662818 1.4051697 E-Bayes
1.4517256 1.3663222
0.7808360 0.7808360 Hierarchical
13 0.7815429 0.7815032 0.7815032 0.8112455 =
20 0.8878343 0.7817255 E-Bayes
1.4825934 1.482692
16 1.4826256 1.4826228 1.4826932 1.4939107 E-Bayes
1.5017362 1.4826956
1.1255801 1.1256476
18 1.1256065 1.1256044 1.1256518 1.1345492 E-Bayes
25 1.1415574 1.125656
3.4861319 2.1960631
22 2.1960561 2.1960560 2.1960626 2.196718 E-Bayes
3.7932213 2.1960622
0.5720181 0.5720563
25 0.5720357 0.5720345 0.5720583 0.5770112 E-Bayes
50 0.5773542 0.5720598
0.7873262 0.7808516 Bayes
30 0.7808452 0.7808452 0.7808513 0.7815812 =
0.7861364 0.7808506 E-Bayes
0.5173338 0.517352
32 0.5173379 0.5173372 0.5173504 0.5192121 E-Bayes
70 0.5226816 0.5173493
0.5954512 0.5868733 Bayes
35 0.5868673 0.5868673 0.5868727 0.5875585 =
0.5961556 0.5868723 E-Bayes

7. Conclusion remarks

Among four estimates of ¢ based on SELF shown in Table
1, we can deducted that hierarchical Bayes estimates are the
best estimators in most cases of small samples sizes [5], [2],
[10], [4], while the E-Bayes are the best estimators in [5],
[3] and the Bayes estimators are the best in [10], [5].Also,
the E-Bayes estimates have smallest MSE in nearly all cases
of moderate and large sample sizes except for [20], [13]
where the Bayes estimates are the best. Generally, the over-
all performance of the four techniques for estimating ¢ can
be ordered due to number of having smaller MSE as fol-
lows:

Ocss > Ops = Oups > Oigs

Among four estimates of ¢ based on QLF shown in Table
2, we can deducted that hierarchical Bayes estimates are the
best estimators in most cases of small samples sizes [10],
[4], [10], [5], while the E-Bayes are the best estimators in
[5], [2] and the empirical Bayes estimators are the best in
[5], [3]- In addition, the E-Bayes estimates have smallest
MSE in most cases of moderate sample sizes except for
[15], [7] where the hierarchical Bayes estimates are the best,
[20], [13] where the Bayes estimates are the best and [25],
[22] where the Bayes and E-Bayes estimates are equivalent.
In large samples, the E-Bayes estimates are the best in all
cases. Generally, the overall performance of the four meth-
ods for estimating ¢ can be ordered due to number of hav-
ing smaller MSE as follows:

Oeq > Ghisg > Oag > bisq
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Among four estimates of ¢ based on ELF shown in Table
3, we can deducted that hierarchical Bayes estimates have
smallest MSE in most cases of small samples sizes [5], [2],
[10], [4], while the Bayes are the best estimators in [5], [3]
and the E-Bayes estimators are the best in [10], [5]. Fur-
thermore, the E-Bayes estimates are the best in most cases
of moderate sample sizes except for [15], [7] where the hi-
erarchical Bayes estimates are the best and [20], [13] where
the Bayes estimates are the best. In large samples, the E-
Bayes have smallest MSE in nearly all cases except for [50],
[30] where the empirical Bayes estimates are the best. Gen-
erally, the overall performance of the four methods for es-
timating @ can be ordered due to number of having smaller
MSE as follows:

Ocse > Onge > Ose > Oupe

Among four estimates of ¢ based on LLF shown in Table
4, we can deducted that hierarchical Bayes estimates have
smallest MSE in most cases of small samples sizes [5], [2],
[10], [4], while the Bayes estimates have smallest MSE in
[5], [3] and the E-Bayes estimators are the best in [10], [5].
Also, the E-Bayes estimates are the best in most cases of
moderate sample sizes except for [15], [7] where the hierar-
chical Bayes estimates are the best and [20], [13] where the
E-Bayes estimates and hierarchical Bayes estimates are
equivalent. In large samples, the E-Bayes have smallest
MSE in nearly all cases except for [50], [30] where the E-
Bayes and Bayes estimates are equivalent. Generally, the
overall performance of the four methods for estimating ¢
can be ordered due to number of having smaller MSE as fol-
lows:

Oca > gL > Ol > Gl

In comparing the various techniques relative to the different
loss functions in estimating &, we can ordered them due to

having smallest MSE to be
Oserr > Ok > Oair > Onir

Among four estimates of h(t) based on SELF shown in Ta-

ble 5, we can deducted that hierarchical Bayes estimates
have smallest MSE in nearly all cases of small samples siz-
es except for [5], [3], while the empirical Bayes estimates
are the best. In addition, the E-Bayes estimates are the best
in most cases of moderate sample sizes except for [15], [7]
where the hierarchical Bayes estimates are the best and [15],
[12] where the Bayes estimates are the best. In large sam-
ples, the E-Bayes have smallest MSE in all cases. General-
ly, the overall performance of the four methods for estimat-
ing h(t) can be ordered due to number of having smaller

MSE as follows:
Negs > Npgs > hgg = Nggg

Among four estimates of h(t) based on QLF shown in Ta-

ble 6, we can deducted that hierarchical Bayes estimates
have smallest MSE in nearly all cases of small samples siz-
es except for [5], [2] where the E-Bayes estimates are the
best. Also, the E-Bayes estimates are the best in most cases
of moderate sample sizes except for [15], [7] where the hi-
erarchical Bayes estimates are the best and [15], [12] where
the empirical Bayes estimates are the best. In large samples,
the E-Bayes have smallest MSE in all cases. Generally, the
overall performance of the four methods for estimating h(t)

can be ordered due to number of having smaller MSE as fol-
lows:

Nesg > Mg > hegg > higg

Among four estimates of h(t) based on ELF shown in Ta-

ble 7, we can deducted that hierarchical Bayes estimates are
the best in nearly all cases of small samples sizes except for
[5], [3] where the E-Bayes estimates are the best. Further-
more, the E-Bayes estimates are the best in nearly all cases
of moderate and large sample sizes except for [15], [7]
where the hierarchical Bayes estimates are the best. Gener-
ally, the overall performance of the four methods for esti-
mating h(t) can be ordered due to number of having small-

er MSE as follows:

Among four estimates of h(t) based on LLF shown in Ta-

ble 8, we can deducted that hierarchical Bayes estimates are
the best in all cases of small samples sizes. Also, the E-
Bayes estimates are the best in nearly all cases of moderate
samples sizes except for [15], [7] where the hierarchical
Bayes estimates are the best and [20], [13] where the E-
Bayes and hierarchical Bayes estimates are equivalent. In
the end, The E-Bayes estimates have smallest MSE in most
cases except for [50], [30], [70], [35] where the Bayes and
E-Bayes and Bayes estimates are equivalent. Generally, the

overall performance of the four methods for estimating h(®)
can be ordered due to number of having smaller MSE as fol-
lows:

heg, >hyge >hg =g,

In comparing the different approaches within the various
loss function, we can ordered them due to having smallest
MSE to be

Psere >hue >hee >hg e
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