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Abstract

This paper, discusses the problem of predicting future a generalized order statistic of an iid sequence sample was drawn from an arbitrary
unknown distribution, based on observed also generalized order statistics from the same population. The coverage probabilities of these
prediction intervals are exact and free of the parent distribution F(). Prediction formulas of ordinary order statistics and upper record values
are extracted as special cases from the productive results. Finally, numerical computations on several models of ordered random variables are
given to illustrate the proposed procedures.
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1. Introduction

The prediction subject of unobserved data has received a con-
siderable attention in the literatures during the last two decades.
Several applications of the prediction problems can be found in
medical, engineering, stock market studies. Prediction subject have
been categorized generally into two types: one-sample prediction
and two-sample prediction. One-sample prediction case is based
on a sequence of observations, experimenter seeks to predict the
future random variables from the same sequence. In two-sample
prediction type, using the available observations of past information
sample, experimenter interested in (with some level of confidence)
predicting some statistics in a future unobserved sample from the
same underlying distribution F(). The past sample and the future
sample are iid. Also, the predictor can be either point or interval.
Such an interval is said to be a prediction interval (PIs) for the
statistic of interest. Also, the prediction interval can be parametric
(if it depends on the distribution parameters) or nonparametric
(distribution-free). Often the observed data may not appropriate with
certain distribution. Therefore, the results may include some error
resulting from the mistakes in determining the suitable distribution.
Distribution-free predictive inference is a statistical procedure to
learn from data in the absence of prior knowledge and using only
few modeling assumptions. The proposed prediction intervals are
distribution-free, i.e. the corresponding coverage probabilities are
known exactly without any assumption about the parent distribution
other than being continuous. An exact expression for the prediction
coefficient of these intervals is derived.

Many contexts have taken place in the distribution-free PIs direction
using several assumptions [1]-[10]. But all these articles shared
in one to one prediction way, i.e. predict a future certain type of

samples based on another one. For the purpose of generalization,
Mohie El-Din and Emam [11] discussed the predicting of future
generalized order statistics, as well as outer and inner PIs based
on ordinary order statistics. For more generalization, this article
discusses the predicting of future generalized order statistics based
on generalized order statistics. The study was conducted over all
assumptions of generalized order statistics (gOSs) [12] and [13].
Paper is organized as follows: In section 2, some preliminaries are
given. In Section 3, distribution-free PIs for a gOS from a future
Y-sequence of iid random variables, based on also gOSs from the
X-sequence are derived. Section 4, includes numerical computations.
Finally, conclusions are given in section 5.

This paper aims to construct nonparametric PIs for future gOSs
based on gOSs, therefore, all the previous researches in the field
of nonparametric PIs for future Y-sample based on another X-
sample (which can be obtained as a special model of gOSs as
table 1 considerations) is a special case of this paper. Some nu-
merical results of oOSs and Krecord (for some K ∈ N) as spe-
cial models of gOSs case I; and oOSs, nonI, Seque, P f ie f , PCOs
with two stages (mr = 0 if r 6= r1, mr1 = n1, k = ν − n1− n+ 1,
γr = ν − n1 − r + 1 if r ≤ r1, γr = ν − n1 − r + 1 if r > r1,
see, [12] p.48), Trunc and knrec as special models of case II.

2. Preliminaries

The concept of gOSs was introduced by Kamps [12] and was
developed by Kamps and Cramer [13]. This concept was introduced
as a unified approach to several models of ordered random variables
such as, ordinary order statistics (oOSs), order statistics with
non-integral sample size (nonI), K-records model (Krecord), upper
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record values (record), sequential order statistics (Seque), Pfeifer’s
record model (P f ei f ), progressively Type-II right-censored order
statistics sample (PCOs), ordering via truncation (Trunc) and
kn-record values (knrec). Table 1, shows these models as special
cases of gOSs. Let n ∈ N, m̃ = (m1, . . . ,mn−1) ∈ Rn−1, if n ≥ 2
(m̃ ∈ R, arbitrary if n = 1) k ≥ 1, be given constants such that for
all 1≤ i≤ n−1,γi = k+n− i+Mi > 0, where Mi = ∑

n−1
j=i m j. We

may classify gOSs into the following two cases:

Case I: If m1 = m2 = . . .= mn−1 = m, the probability density func-
tion (pdf) of Xr,n,m,k, as introduced by Kamps [12], can be written
as

fXr,n,m,k (x) =
cr−1

(r−1)!
Fγr−1

(x) f (x)gr−1
m (F(x)), (1)

where cr−1 = ∏
r
j=1 γ j,γ j = k+(n− j)(m+1),

gm(z) = hm(z)−hm(0), 0 < z < 1, such that

hm(z) =


−(1−z)m+1

m+1 , m 6=−1,

− ln(1− z), m =−1.
(2)

The survival function of Xr,n,m,k, is given by:

FXi,n,m,k (x) = ci−1(1−F(x))γi
i−1

∑
ν=0

gν
m(F(x))

ν!ci−ν−1
,1≤ i≤ n. (3)

Case II: If γi 6= γ j , i, j = 1,2, . . . ,n−1 and i 6= j, the pdf of Xr,n,m̃,k
which is given in Eq.(1) as be introduced by Kamps and Cramer [13],
is given by:

fXr,n,m̃,k (x) = cr−1

r

∑
i=1

ai(r)
(
F(x)

)γi−1 f (x), (4)

where ai(r) = ∏
r
j=1, j 6=i

1
γ j−γi

, 1≤ r ≤ n and γi = k+n− i+Mi > 0.
And the survival function of Xr,n,m̃,k, is given by:

FXi,n,m̃,k (x) = ci−1

i

∑
ν=1

aν (i)
γν

(1−F(x))γν . (5)

Let ci−1, m, ai(r) and γi denote the past scheme X constants, and
c∗r−1, m∗, a∗i (r) and γ∗r follow the future unobserved scheme Y. The
prediction coefficients φ not only depend on subscripts, but also
depend on observed sample sizes n and n∗ in addition the constants
k and k∗, i.e. φ (.) = φ (. ,n,k; . ,n∗,k∗) .

Table 1: Some special cases of gOSs, with λi, αi ∈ R+,
1≤ i≤ n−1.

Model mr k γr
oOSs 0 1 n− r+1
nonI 0 α−n+1 α− r+1
Krecord -1 k ∈N k
record -1 1 1
Seque (n− r+1)αr− αn (n− r+1)αr

(n− r)αr+1−1
P f ei f λr−λr+1−1 λn λr
PCOs Rr ∈N0 Rm +1 m− r+1+Mi
Trunc αrkr−αr+1kr+1−1 αnkn αrkr
knrec λrkr−λr+1kr+1−1 λnkn λrkr

Lemma1. Based on X-sample observations, suppose we are inter-
ested in obtaining (1−α)100% distribution-free upper pound PIs for
Yr from a future Y-sample of the form (−∞,Xi), 0≤α ≤ 1, such that,
the coverage probability P(Xi ≥ Yr) = 1−α . We refer to the interval
(−∞,Xi) as (1−α)100% PI for Yr. Upon the non-parametric predic-
tion procedure by assuming that Yr is continuous random variable.
Then, we get

φ (i;r) = P(Xi ≥ Yr) =
∫

∞

−∞

P(Xi ≥ y) fYr (y)dy. (6)

Distribution-free prediction attempt transforming integration base
from the random variable to the survival function, to distribute F()
randomly as standard uniform (0,1) random variable. Therefore,
the sampling distribution doesn’t appear in final results. The cov-
erage probabilities of these PIs intervals are exact and are free of
the parent distribution F(), and depend only on the prefixed sub-
scripts of the samples. Therefor, φ (i;r) = 1−α represents the
prediction coefficient which does not depend on the parameters of
the parent distribution F , it depends only on the random variable’s
positions (the indices i and r) in addition modeling prefixes. Here,
Xi are the upper bounds of the prediction interval for Yr. Under
the assumptions of lemma1, assume we are interested in obtain-
ing (1−α)100% distribution-free two sided PIs for Yr from a future
Y-sample of the form (Xi,X j),1≤ i < j, such that, the coverage prob-
ability P

(
Xi ≤ Yr ≤ X j

)
= 1−α . We refer to the interval (Xi,X j) as

(1−α)100% PI for Yr. Then, we get

p
(
Xi ≤ Yr ≤ X j

)
= P

(
X j ≥ Yr

)
−P(Xi ≥ Yr)

= φ ( j;r)−φ (i;r) . (7)

Such that, p
(
Xi ≤ Yr ≤ X j

)
= 1−α presents the coverage proba-

bility for Yr. Thus, we have (Xi,X j) is a prediction interval for Yr,
Here, Xi and X j are the lower and upper bounds of the prediction
interval for Yr, respectively.

3. PIs for individual gOSs

In this section, we obtain one and two-sided distribution-free PIs
for a future rth gOSs Yr,n∗,m̃∗,k∗ ,1 ≤ i ≤ n∗ based on the endpoints
of observed gOSs. Let Y1,n∗,m̃∗,k∗ , . . . , Yn∗,n∗,m̃∗,k∗ be n∗ gOSs based
on the continuous cumulative distribution function (cdf) F with
density function (pdf) f from a future Y -sequence of i.i.d. random
variables, under assumption m∗1 = m∗2 = . . . = m∗n−1 = m∗, or
γ∗i 6= γ∗j , i, j = 1,2, . . . ,n∗ − 1 and i 6= j, and let Xι ,n,m̃,k be ιth

gOSs from another observed random sample, under assumption
m1 = m2 = . . . = mn−1 = m, or γi 6= γ j, i, j = 1,2, . . . ,n∗− 1 and
i 6= j, and further let the underling distribution of the two samples
be the same. We are interested here in obtaining one and two-sided
distribution-free PIs for a future rth gOSs Yr,n∗,m̃∗,k∗ ,1 ≤ r ≤ n∗

based on the endpoints of observed gOSs. The coverage probabilities
of this PIs are exact and do not depend on the sampling distribution.

T heorem1. Let {Xi,n,m,k,1 ≤ i ≤ n} under assumption
m1 = m2 = . . . = mn−1 = m, and {Yr,n∗,m∗,k∗ ,1 ≤ r ≤ n∗} un-
der assumption m∗1 = m∗2 = . . . = m∗n−1 = m∗, be two independent
gOSs from continuous cdf F . then (−∞,Xi,n,m,k), 1 ≤ i ≤ n,
is an upper prediction bound for the future Yr,n∗,m∗,k∗ , with the
corresponding prediction coefficient, being free of F , given by:

φ1 (i,m;r,m∗) =
i−1

∑
ν=0

Cν (i;r)×

∑
ν

λ=0
bν

λ
(m)B(r, γi+γ∗r +λ (m+1)

m∗+1 )

(m∗+1)r , m 6=−1;m∗ 6=−1,

∑
ν

λ=0
(r−1)!bν

λ
(m)

(γi+k∗+λ (m+1))r , m 6=−1;m∗ =−1,

∑
r−1
η=0

ν!br−1
η (m∗)

(k+γ∗r +η(m∗+1))ν+1 , m =−1;m∗ 6=−1,

(ν+r−1)!
(k+k∗)ν+r , m =−1;m∗ =−1,

(8)

where Cν (i;r) = ci−1c∗r−1
(r−1)!ν!ci−ν−1

, bν

λ
(m) =

(−1)λ (ν

λ
)

(m+1)ν and B(., .) is a
beta constant.
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Table 2: Some values of p
(
Xi,20,m,k ≤ Yr,n∗,m∗,k∗ ≤ X j,20,m,k

)
for some i, j and r.

Sample Y
X r i j Yr:25 record 2record 3record 4record 5record
Xι :20 1 1 6 0.4889 0.1923 0.3276 0.4228 0.4892 0.5351

12 0.5000 0.4231 0.6268 0.7219 0.7619 0.7732
18 0.5000 0.6538 0.8234 0.8562 0.8482 0.8278

3 6 0.1062 0.1154 0.18803 0.2320 0.2566 0.2682
18 0.1173 0.5769 0.6838 0.6654 0.6156 0.5609

3 1 6 0.7593 0.0037 0.0222 0.0574 0.1055 0.1617
12 0.8808 0.0306 0.1441 0.2983 0.4508 0.5812
18 0.8827 0.1315 0.4334 0.6783 0.8267 0.9065

3 18 0.5000 0.1310 0.4298 0.6680 0.8060 0.8721
6 1 18 0.9886 0.0028 0.0503 0.1835 0.3661 0.5443

22 0.9889 0.0226 0.2249 0.5212 0.7460 0.8755
25 0.9889 0.2096 0.6889 0.9063 0.9734 0.9923

5 18 0.6371 0.0028 0.0503 0.1832 0.3647 0.5401
22 0.6374 0.0226 0.2248 0.5209 0.7447 0.8719

10 10 22 0.4998 0.0002 0.0167 0.1118 0.2950 0.5007
24 0.5000 0.0027 0.0948 0.3489 0.6156 0.7979
25 0.5000 0.0207 0.2692 0.6079 0.8240 0.9259

15 24 0.0782 0.0027 0.0947 0.3473 0.6063 0.7676
25 0.0782 0.0207 0.2691 0.6063 0.8146 0.8957

record 5 1 4 0.1921 0.3320 0.6097 0.6489 0.6160 0.5674
8 0.1923 0.7749 0.8496 0.7599 0.6717 0.5980
20 0.1923 0.9680 0.8683 0.7627 0.6723 0.5981

2 20 0.0235 0.8899 0.6488 0.4661 0.3446 0.2632
10 1 4 0.3820 0.0452 0.3051 0.5279 0.6400 0.6804

8 0.3846 0.3136 0.8108 0.9035 0.8817 0.8350
12 0.3846 0.6672 0.9615 0.9420 0.8924 0.8385
18 0.3846 0.9380 0.9823 0.9437 0.8926 0.8385

2 18 0.0931 0.9331 0.9244 0.8029 0.6779 0.5693
3 18 0.0170 0.9197 0.8185 0.6093 0.4417 0.3226

15 1 8 0.5770 0.0669 0.5378 0.8251 0.9087 0.9141
12 0.5770 0.2786 0.8772 0.9712 0.9625 0.9347
18 0.5770 0.7017 0.9913 0.9865 0.9648 0.9351

2 18 0.2238 0.7014 0.9799 0.9364 0.8593 0.7728
3 18 0.0661 0.7005 0.9495 0.8361 0.6904 0.5565

20 1 8 0.6912 0.0002 0.0262 0.1338 0.2850 0.4251
12 0.7692 0.0748 0.6772 0.9324 0.9758 0.9711
18 0.7692 0.3714 0.9613 0.9952 0.9884 0.9739

2 18 0.4451 0.3714 0.9593 0.9794 0.9423 0.8870
3 18 0.2042 0.5000 0.9752 0.9390 0.8455 0.7348

Figure 1: The coverage probabilities of the event X3:30 ≤ Y5,20,m̃∗,k∗ ≤ X j:30
under table 3 assumptions.

Figure 2: The coverage probabilities of the event X1:25:30 ≤ Y5,20,m̃∗ ,k∗ ≤
X j:25:30 under table 4(a) assumptions.
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Table 3: Some values of p
(

Xi,n,m,k ≤ Yr,20,m̃∗,k∗ ≤ X j,n,m,k

)
for some i, j and r.

Sample Y
X r i j oOSs nonI Seque P f ei f PCOs trunc Knrec

Xι :30 1 1 10 0.5971 0.5870 0.5971 0.2903 0.4996 0.6086 0.5845
15 0.6000 0.5893 0.6000 0.4516 0.5000 0.6121 0.7595
20 0.6000 0.5894 0.6000 0.6129 0.5000 0.6122 0.8567

2 10 0.3522 0.3401 0.3522 0.2581 0.2454 0.3662 0.4993
3 10 0.2042 0.1937 0.2042 0.2258 0.1183 0.2167 0.4195

5 1 10 0.7508 0.7772 0.7921 0.0727 0.9113 0.8039 0.5416
15 0.9617 0.9671 0.7971 0.2171 0.9715 0.8102 0.7807
20 0.9913 0.9906 0.7973 0.4289 0.9739 0.8103 0.9151

3 20 0.9187 0.9088 0.3418 0.4269 0.7881 0.3633 0.8374
5 20 0.7512 0.7273 0.1167 0.4196 0.5000 0.1299 0.7106

10 1 15 0.5227 0.5796 0.8321 0.1705 0.3544 0.8453 0.7777
20 0.8902 0.9170 0.8322 0.3839 0.7466 0.8454 0.9159
25 0.9944 0.9965 0.8323 0.6518 0.9659 0.8455 0.9759
30 1.0000 1.0000 0.8328 0.9414 0.9998 0.8455 0.9903

5 15 0.5165 0.5712 0.1321 0.1672 0.3510 0.1474 0.5863
7 17 0.6705 0.7120 0.0407 0.2352 0.4998 0.0475 0.5117

15 1 20 0.2911 0.3746 0.8502 0.3675 0.0118 0.8642 0.9160
25 0.7795 0.8458 0.8502 0.6413 0.1109 0.8642 0.9764

5 25 0.7794 0.8457 0.1421 0.6392 0.1109 0.1596 0.7880
7 27 0.9220 0.9526 0.0439 0.7508 0.2426 0.0517 0.6562

20 1 30 0.6000 0.8202 − 0.9386 − 0.0000 0.9911
5 30 0.6000 0.8202 − 0.9370 − 0.0000 0.8038
8 30 0.6000 0.8202 − 0.9260 − 0.0000 0.5925

record 5 1 2 0.2016 0.1949 0.1019 0.2923 0.2016 0.1099 0.2355
5 0.2381 0.2283 0.1132 0.6224 0.2381 0.1191 0.3191
10 0.2381 0.2283 0.1132 0.6726 0.2381 0.1191 0.3204

2 20 0.0365 0.0334 0.0083 0.3819 0.0365 0.0092 0.0845
10 1 5 0.4750 0.4557 0.1556 0.6445 0.5286 0.1647 0.3253

20 0.4762 0.4566 0.1556 0.7009 0.5311 0.1647 0.3267
2 20 0.1486 0.1354 0.0146 0.4072 0.1903 0.0163 0.0872

15 1 5 0.6985 0.6736 − 0.6518 0.7678 − 0.3267
6 0.7101 0.6821 − 0.6806 0.8029 − 0.3278
20 0.7143 0.6849 − 0.7099 0.8242 − 0.3281

2 20 0.3728 0.3362 − 0.4162 0.5408 − 0.0877
20 1 5 0.6532 0.7570 − 0.6554 − − 0.3273

10 0.9353 0.9108 − 0.7125 − − 0.3287

Proo f . Based on lemma1, we can write

φ1 (i,m;r,m∗) = P
(
Xi,n,m,k > Yr,n∗,m∗,k∗

)
=

∫
∞

−∞

P
(
Xi,n,m,k > y

)
fYr,n∗ ,m∗ ,k∗ (y)dy. (9)

Upon substituting the survival function (3) and constructing pdf
of Yr,n∗,m∗,k∗ from (1), we can express

φ1 (i,m;r,m∗) =
i−1

∑
ν=0

Cν (i;r)Iν (i), (10)

such that

Iν (i) =
∫

∞

−∞

Fγi+γ∗r −1
(y)gν

m (F(y))gr−1
m∗ (F(y)) f (y)dy

=
∫ 1

0
yγi+γ∗r −1gν

m (1− y)gr−1
m∗ (1− y)dy. (11)

The integration (11) is given for all m,m∗ ∈ R. Thus, based on

assumptions of case I, Iν (i) is given by:



∫ 1
0 yγi+γ∗r −1

(
1−ym+1

m+1

)ν ( 1−ym∗+1

m∗+1

)r−1
dy, m 6=−1;m∗ 6=−1,

∫ 1
0 yγi+k∗−1

(
1−ym+1

m+1

)ν

(− lny)r−1 dy, m 6=−1;m∗ =−1,

∫ 1
0 yk+γ∗r −1 (− lny)ν

(
1−ym∗+1

m∗+1

)r−1
dy, m =−1;m∗ 6=−1,

∫ 1
0 yk+k∗−1 (− lny)ν+r−1 dy

=
∫

∞

0 zν+r−1e−(k+k∗)z =
(ν+r−1)!
(k+k∗)ν+r , m =−1;m∗ =−1.

(12)

Now, using the binomial expansion on some brackets and solving
(12) as the last one, we obtain the required result. Using lemma1
and under assumptions of theorem1, the coverage probability of the
event Xi,n,m,k ≤ Yr,n∗,m∗,k∗ ≤ X j,n,m,k, is given by:

p
(
Xi,n,m,k ≤ Yr,n∗,m∗,k∗ ≤ X j,n,m,k

)
= φ1 ( j,m;r,m∗)−φ1 (i,m;r,m∗) ,

(13)
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Table 4(a): Some values of p
(
Xi,30,m̃,k ≤ Yr,20,m̃∗,k∗ ≤ X j,30,m̃,k

)
based on PCOs and Trunk, for some i, j and r.

Y
X r i j oOSs nonI record 2record 3record 4record 5record

PCOs 1 1 10 0.5984 0.5881 0.3610 0.5834 0.7233 0.8132 0.8719
20 0.6000 0.5894 0.7604 0.9357 0.9810 0.9939 0.9979

3 1 10 0.9069 0.9074 0.0139 0.0738 0.1699 0.2814 0.3930
2 10 0.7955 0.7885 0.0139 0.0738 0.1699 0.2814 0.3930

5 1 10 0.8234 0.8443 0.0002 0.0045 0.0201 0.0535 0.1034
20 0.9926 0.9914 0.0237 0.1957 0.4522 0.6694 0.8135

3 20 0.9200 0.9096 0.0237 0.1957 0.4522 0.6694 0.8135
7 1 25 0.9992 0.9991 0.1209 0.5634 0.8411 0.9477 0.9831

7 25 0.7632 0.7328 0.1209 0.5634 0.8411 0.9477 0.9831
11 8 23 0.9578 0.9463 0.0002 0.0184 0.1251 0.3244 0.5393

25 0.9603 0.9477 0.0105 0.1930 0.5115 0.7549 0.8883
15 1 24 0.9740 0.9854 0.0000 0.0055 0.0616 0.2094 0.4099

25 0.9946 0.9973 0.0007 0.0480 0.2319 0.4809 0.6906
19 1 24 0.5700 0.7320 0.0000 0.0004 0.0114 0.0653 0.1823

25 0.7995 0.8992 0.0000 0.0103 0.0877 0.2560 0.4605

Trunk 5 3 10 0.6604 0.6369 0.1243 0.4907 0.7492 0.8798 0.9413
4 10 0.3702 0.3453 0.1244 0.4907 0.7492 0.8798 0.9413

11 0.3703 0.3453 0.2068 0.6387 0.8585 0.9443 0.9770
9 2 10 0.9908 0.9900 0.0050 0.1054 0.3256 0.5475 0.7129

4 10 0.7850 0.7586 0.0050 0.1054 0.3256 0.5475 0.7129
12 0.7880 0.7608 0.0335 0.3319 0.6570 0.8417 0.9282

6 14 0.2972 0.2646 0.1328 0.6375 0.8897 0.9669 0.9885
13 2 15 0.9998 0.9997 0.0419 0.4613 0.8058 0.9380 0.9801

7 15 0.4443 0.3911 0.0419 0.4613 0.8058 0.9362 0.9741
19 3 18 0.9993 0.9999 0.0455 0.5649 0.8912 0.9761 0.9946

19 0.9998 0.9999 0.0999 0.7206 0.9515 0.9920 0.9986

where φ1 is given in (8). Thus, we have a prediction interval
(Xi,n,m,k,X j,n,m,k), 1 ≤ i < j ≤ n, for Yr,n∗,m∗,k∗(1 ≤ r ≤ n∗), whose
prediction coefficient given by (13), is free of F .

Some special cases of φ1:
We have the following simpler expressions for some special cases one-sided prediction coefficient φ1 that given by (8), and the corresponding
two-sided prediction coefficient that given by (13).

• Distribution-free upper pound PIs for Yr:n∗ from a future Y-sample of the form (−∞,Xi:n), can be obtained as a special case from
φ1 (i,m;r,m∗) by setting m = m∗ = 0, k = k∗ = 1, γi = n− i+1, 1≤ i≤ n and γ∗r = n∗− r+1, 1≤ r ≤ n∗, and has the following form

p(Xi:n ≥ Yr:n∗) = φ1 (i,0;r,0) =
i−1

∑
ν=0

r
(

n− i+ν

ν

)(
n∗

r

)
ν

∑
λ=0

(−1)λ

(
ν

λ

)
B(r,n− i+n∗− r+2). (14)

Distribution-free two sided PIs for Yr:n∗ of the form (Xi:n,X j:n) which was discussed by Mohie El-Din et al [1] appear here as a special case,
such that

p
(
Xi:n ≤ Yr:n∗ ≤ X j:n

)
= P

(
X j:n ≥ Yr:n∗

)
−P(Xi:n ≥ Yr:n∗) . (15)

Similarly:
• Prediction interval of future record based on oOSs which was discussed by Ahmadi and Balakrishnan [5], can be given with Lemma1 by:

p(Xi:n ≥Ur) = φ1 (i,0;r,−1) =
i−1

∑
ν=0

(
n− i+ν

ν

)
ν

∑
λ=0

(−1)λ
(

ν

λ

)
(n− i+λ +2)r . (16)

• Prediction interval of future oOSs based on record which was discussed by Ahmadi and Balakrishnan [5], is given by:

p
(
Ui ≤ Yr:n∗ ≤U j

)
= φ1 ( j,−1;r,0)−φ1 (i,−1;r,0) =

j−1

∑
ν=i

r
(

n∗

r

) r−1

∑
λ=0

(−1)λ
(r−1

λ

)
(n∗− r+λ +2)ν+1 . (17)

• Prediction interval of future record based on record also, which was discussed by Raqab and Balakrishnan [8], is given by:

p
(
Ui ≤U∗r ≤U j

)
= φ1 ( j,−1;r,−1)−φ1 (i,−1;r,−1) =

j−1

∑
ν=i

(
ν + r−1

ν

)
1

2ν+r . (18)
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Table 4(b): Some values of p
(
Xi,30,m̃,k ≤ Yr,20,m̃∗,k∗ ≤ X j,30,m̃,k

)
based on Seque and P f ie f , for some i, j and r.

Y
X r i j Yr:20 nonI record 2record 3record 4record 5record

Seque 1 1 5 0.7205 0.7151 0.2335 0.4027 0.5278 0.7220 0.6940
7 0.7478 0.7398 0.4027 0.6271 0.7585 0.8387 0.8894
9 0.7499 0.7416 0.5776 0.8036 0.9016 0.9477 0.9708

2 5 0.4143 0.4045 0.2335 0.4027 0.5279 0.6221 0.6941
7 0.4417 0.4292 0.4027 0.6271 0.7585 0.8387 0.8894

2 1 7 0.9280 0.9255 0.1090 0.2902 0.4555 0.5872 0.6873
9 0.9392 0.9351 0.2356 0.5186 0.7071 0.8211 0.8889
11 0.9398 0.9356 0.4066 0.7315 0.8791 0.9435 0.9723

3 11 0.4765 0.4584 0.4066 0.7315 0.8791 0.9435 0.9723
4 1 9 0.9883 0.9895 0.0218 0.1358 0.3038 0.4687 0.6058

13 0.9969 0.9964 0.1786 0.5654 0.8027 0.9126 0.9606
3 13 0.8294 0.8144 0.0721 0.3241 0.5720 0.7432 0.8481

11 5 16 0.9713 0.9632 0.0054 0.1521 0.4603 0.7146 0.8612
19 0.9716 0.9634 0.0589 0.5197 0.8466 0.9570 0.9880

16 8 20 0.9491 0.9252 0.0093 0.2879 0.6933 0.8961 0.9672
10 22 0.7381 0.6668 0.0550 0.5910 0.9048 0.9809 0.9961

20 12 22 0.9159 0.8409 0.0102 0.3469 0.7688 0.9364 0.9799

P f ei f 5 1 10 0.2381 0.2283 0.2002 0.6024 0.8250 0.9228 0.9647
15 0.2381 0.2283 0.2558 0.6968 0.8939 0.9629 0.9865

2 15 0.0649 0.0598 0.2558 0.6968 0.8939 0.9629 0.9865
7 1 10 0.3331 0.3194 0.0629 0.3633 0.6435 0.8121 0.9015

5 10 0.0084 0.0069 0.0629 0.3633 0.6435 0.8121 0.9015
9 1 10 0.4271 0.4099 0.0176 0.1956 0.4576 0.6678 0.8039

7 11 0.0064 0.0050 0.0192 0.2096 0.4825 0.6940 0.8260
11 1 11 0.5196 0.4994 0.0051 0.1058 0.3235 0.5443 0.7111

5 17 0.0560 0.0463 0.0076 0.1496 0.4248 0.6665 0.8214
13 1 20 0.6174 0.5927 0.0023 0.0851 0.3154 0.5682 0.7548

30 0.6188 0.5935 0.0034 0.1181 0.4052 0.6775 0.8466
15 5 20 0.2088 0.1750 0.0060 0.0408 0.2025 0.4327 0.6393

25 0.2141 0.1782 0.0007 0.0498 0.2388 0.4916 0.7014
17 1 30 0.7885 0.7668 0.0002 0.0277 0.1729 0.4111 0.6370

8 30 0.2156 0.1674 0.0002 0.0277 0.1729 0.4111 0.6370
19 1 30 0.7497 0.7979 0.0001 0.0128 0.1061 0.3003 0.5223

8 30 0.3475 0.3060 0.0001 0.0128 0.1061 0.3003 0.5223

• Prediction interval of future gOSs case I based on oOSs, is given by:

p
(
Xi:n ≥ Yr,n∗,m∗,k∗

)
=

i−1

∑
ν=0

(n−i+ν

ν

)
cr−1

(r−1)!

ν

∑
λ=0

(−1)λ

(
ν

λ

)
B(r, n−i+1+γ∗r +λ

m∗+1 )

(m∗+1)r , m∗ 6=−1,

(r−1)!
(n−i+1+k∗+λ )r , m∗ =−1.

(19)

• Prediction interval of future gOSs case I based on record, is given by:

p
(
Ui ≥ Yr,n∗,m∗,k∗

)
=

i−1

∑
ν=0

1
(r−1)!ν!


c∗r−1 ∑

r−1
η=0

ν!br−1
η (m∗)

(γ∗r +η(m∗+1)+1)ν+1 , m∗ 6=−1,

(ν+r−1)!(k∗)r

(k∗+1)ν+r , m∗ =−1.

(20)

• Prediction interval of future oOSs based on gOSs case I, is given by:

p
(
Xi,n,m,k ≥ Yr:n∗

)
=

i−1

∑
ν=0

n∗!
(n∗− r)!(r−1)!ν!


ci−1

ci−ν−1
∑

ν

λ=0 bν

λ
(m)B(r,γi +n∗− r+1+λ (m+1)), m 6=−1,

kν
∑

r−1
η=0

ν!(−1)η(r−1
η
)

(k+n∗−r+1+η)ν+1 , m =−1.
(21)

• Prediction interval of future record based on gOSs case I, given by:

p
(
Xi,n,m,k ≥U∗r

)
=

i−1

∑
ν=0

1
(r−1)!ν!


ci−1

ci−ν−1
∑

ν

λ=0
(r−1)!bν

λ
(m)

(γi+1+λ (m+1))r , m 6=−1,

(ν+r−1)!kν

(k+1)ν+r , m =−1.
(22)

T heorem2. Let {Xi,n,m,k,1≤ i≤ n} under assumption m1 = m2 = . . .= mn−1 = m, and {Yr,n∗,m̃∗,k∗ ,1≤ r ≤ n∗} under assumption γi 6= γ j,
i, j = 1,2, . . . ,n∗−1 and i 6= j, be two independent gOSs from continuous cdf F . then (−∞,Xi,n,m,k), 1≤ i≤ n, is distribution-free one-sided
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Table 5: Some values of p
(
Xi,30,m̃,k ≤ Yr,20,m̃∗,k∗ ≤ X j,30,m̃,k

)
for some i, j and r.

Y
X r i j oOSs nonI Seque P f ei f PCOs trunc Knrec
Seque 1 1 10 0.6000 0.6012 0.6000 0.8347 0.5000 0.6122 0.9021

30 0.6000 0.6012 0.6000 0.9677 0.5000 0.6122 0.9091
2 10 0.2522 0.2534 0.2522 0.7723 0.1629 0.2650 0.7462

5 1 10 0.9926 0.9927 0.7973 0.7803 0.9739 0.8103 0.9779
2 10 0.9070 0.9081 0.3931 0.7771 0.7850 0.4169 0.8962
3 10 0.6769 0.6795 0.1358 0.7598 0.4573 0.1379 0.7274

10 1 10 0.9921 0.9918 0.8323 0.7611 0.9740 0.8455 0.9806
2 12 0.9713 0.9974 0.4346 0.9035 0.9966 0.4565 0.9150
3 12 0.9710 0.9717 0.1523 0.8939 0.9812 0.1662 0.7501

15 4 20 0.9922 0.9986 0.0429 0.9612 0.9986 0.0490 0.5466
30 0.9922 0.9986 0.0429 0.9614 0.9998 0.0490 0.5466

6 30 0.8554 0.8598 0.0016 0.7801 0.9917 0.0019 0.2075
20 1 15 0.8678 0.8437 − 0.9835 0.0000 0.0000 0.9913

4 20 0.9979 0.9967 − 0.9643 0.0000 0.0000 0.5478

P f ie f 2 1 10 0.8235 0.8242 0.7013 0.1792 0.7435 0.7137 0.5860
15 0.8380 0.8388 0.7045 0.3542 0.7457 0.7177 0.7980

2 15 0.6386 0.6402 0.4419 0.3464 0.4870 0.4600 0.7441
6 1 10 0.6470 0.6697 0.7951 0.0696 0.7781 0.8074 0.5565

3 18 0.9488 0.8201 0.3383 0.3480 0.9099 0.3602 0.8058
4 29 0.9139 0.9119 0.1984 0.9390 0.8349 0.2163 0.8467

12 1 18 0.5800 0.5623 0.8321 0.3089 0.2581 0.8458 0.8852
3 18 0.5799 0.5502 0.3737 0.3085 0.2581 0.3988 0.8124
6 24 0.9604 0.9204 0.0697 0.6289 0.6289 0.7679 0.7007

18 1 25 0.3914 0.3321 − 0.6870 0.0000 0.8711 0.9803
26 0.5265 0.3223 − 0.7487 0.0000 0.8711 0.9847
27 0.6755 0.3001 − 0.8111 0.0000 0.8711 0.9875

PCOs 3 1 10 0.8757 0.8763 0.6447 0.1495 0.8757 0.4546 0.6177
20 0.8813 0.8819 0.6450 0.6433 0.8814 0.6549 0.9560

2 20 0.6940 0.6953 0.3510 0.6409 0.6940 0.3628 0.9171
6 4 20 0.6920 0.6917 0.0981 0.0865 0.6982 0.1052 0.4708

6 20 0.4708 0.4681 0.0186 0.5812 0.5000 0.0207 0.6755
12 3 15 0.9059 0.9001 0.2210 0.2564 0.8101 0.2328 0.7844

20 0.9958 0.9732 0.2210 0.5660 0.9913 0.2328 0.8958
16 1 16 0.7422 0.7222 0.7315 0.3009 0.5000 0.7423 0.8842

20 0.9746 0.9521 0.7315 0.5584 0.8958 0.7423 0.9640
2 20 0.9745 0.9517 0.4330 0.5583 0.8958 0.4477 0.9391

18 2 20 0.9291 0.8880 0.4372 0.5556 0.7429 0.4522 0.9393
8 22 0.9778 0.9231 0.0031 0.6799 0.9158 0.0037 0.5356

PI for the future Yr,n∗,m̃∗,k∗ , with the corresponding prediction coefficient φ2 (i,m;r, m̃∗), that does not depend on the sampling distribution F ,
and is given by:

i−1

∑
ν=0

(r−1)!Cν (i;r)
r

∑
µ=1

a∗µ (r)


B(ν+1,

γi+γ∗µ
m+1 )

(m+1)ν+1 , m 6=−1,

ν!
(k+γ∗µ )

ν+1 , m =−1.

(23)

Proo f . Under the assumption that {Yr,n∗,m̃∗,k∗ ,1≤ r ≤ n∗} are continuous r.v.’s, we can write

φ2 (i,m;r, m̃∗) = P
(
Xi,n,m,k > Yr,n∗,m̃∗,k∗

)
=

∫
∞

−∞

P
(
Xi,n,m,k > y

)
fYr,n∗ ,m̃∗ ,k∗ (y)dy. (24)

Using (3) and (4), φ2 can be written as

φ2 (i,m;r, m̃∗) =
i−1

∑
ν=0

ci−1c∗r−1
ν!ci−ν−1

r

∑
µ=1

a∗µ (r)Jν ,µ (i), (25)

such that

Jν ,µ (i) =
∫

∞

−∞

Fγi+γ∗µ−1
(y)gν

m (F(y)) f (y)dy. (26)
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Thus, based on gm(.) and (2), Jν ,µ (i) is given by:

Jν ,µ (i) =
∫

∞

−∞
Fγi+γ∗µ−1

(y)
(

1−Fm+1
(y)

m+1

)ν

f (y)dy, m 6=−1,

∫
∞

−∞
Fk+γ∗µ−1

(y)
(
− lnF(y)

)ν f (y)dy, m =−1.

(27)

Using the following transformation F(y) = u, we get

Jν ,µ (i) =


∫ 1

0 uγi+γ∗µ−1
(

1−um+1

m+1

)ν

du, m 6=−1,

∫ 1
0 uk+γ∗µ−1 (− lnu)ν du, m =−1.

(28)

The prediction coefficient φ2 (i,m;r, m̃∗), given in (23) is obtained directly by solving (28).

Some special cases of φ2:

• Prediction interval of future oOSs based on also oOSs, is given by:

p(Xi:n ≥ Yr:n∗) = φ2

(
i,0;r, 0̃

)
=

i−1

∑
ν=0

r!
(

n− i+ν

ν

)(
n∗

r

) r

∑
µ=1

a∗µ (r)B(ν +1,n− i+n∗−µ +2). (29)

• Prediction interval of future oOSs based on record, is given by:

p(Ui ≥ Yr:n∗) = φ2

(
i,−1;r, 0̃

)
=

i−1

∑
ν=0

r!
(

n∗

r

) r

∑
µ=1

a∗µ (r)

(n∗−µ +2)ν+1 . (30)

• Prediction interval of future gOSs case II based on oOSs which was discussed by Mohie El-Din and Emam [11], is given by:

P
(
Xi:n ≥ Yr,n∗,m̃∗,k∗

)
= φ2 (i,0;r, m̃∗) =

i−1

∑
ν=0

(n−i+ν

ν

)
c∗r−1

(r−1)!

r

∑
µ=1

a∗µ (r)B(ν +1,n− i+1+ γ
∗
µ ). (31)

• Prediction interval of future oOSs based on gOSs case I which was discussed in [11], is given by:

P
(
Xi,n,m,k > Yr:n∗

)
= φ2

(
i,m;r, 0̃

)
=

i−1

∑
ν=0

r
(n∗

r
)

ν!

r

∑
µ=1

a∗µ (r)


ci−1B(ν+1, γi+n∗−µ+1

m+1 )

ci−ν−1(m+1)ν+1 , m 6=−1,

ν!kν

(k+n∗−µ+1)ν+1 , m =−1.

(32)

• Prediction interval of future gOSs case II based on record, is given by:

P
(
Ui ≥ Yr,n∗,m̃∗,k∗

)
= φ2 (i,−1;r, m̃∗) =

i−1

∑
ν=0

c∗r−1
(r−1)!ν!

r

∑
µ=1

a∗µ (r)
ν!

(γ∗µ +1)ν+1 . (33)

Under the assumption of lemma1, (Xi,n,m,k,X j,n,m,k), 1≤ i < j ≤ n, is a distribution-free PIs for Yr,n∗,m̃∗,k∗(1≤ r ≤ n∗), whose coverage
probability is free of the parent distribution F , given by:

p
(
Xi,n,m,k ≤ Yr,n∗,m̃∗,k∗ ≤ X j,n,m,k

)
= φ2 ( j,m;r, m̃∗)−φ2 (i,m;r, m̃∗) , (34)

where φ2 is given in (23).

Proo f . By assumption that {Yr,n∗,m̃∗,k∗ ,1≤ r ≤ n∗} are continuous
r.v.’s, we have

φ3 (i, m̃;r,m∗) = P
(
Xi,n,m̃,k > Yr,n∗,m∗,k∗

)
=

∫
∞

−∞

P
(
Xi,n,m̃,k > y

)
fYr,n∗ ,m∗ ,k∗ (y)dy. (36)

By using (5) and constructing the pdf of Yr,n∗,m∗,k∗ from (1), φ3
take the form

φ3 (i, m̃;r,m∗) = C(i;r)
i

∑
ν=1

aν (i)
γν

ζν (i), (37)

where

ζν (i) =


∫

∞

−∞
(F(y))γν+γ∗r −1

(
1−Fm∗+1

(y)
m∗+1

)r−1
f (y)dy, m∗ 6=−1,

∫
∞

−∞
(F(y))γν+k∗−1 (− ln(F(y))

)r−1 f (y)dy, m∗ =−1.

(38)
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Making the transformation F(y) = u, we get

ζν (i) =


∫ 1

0 uγν+γ∗r −1
(

1−um∗+1

m∗+1

)r−1
du, m∗ 6=−1,

∫ 1
0 uγν+k∗−1 (− ln(u))r−1 du, m∗ =−1.

(39)

By solving the integrations (39), easily we obtain the required result.

Some special cases of φ3:

• Prediction coefficient of future oOSs based on also oOSs, is given by:

φ3

(
i, 0̃;r,0

)
= r(i!)

(
n
i

)(
n∗

r

) i

∑
ν=1

(−1)i−ν B(r,n− i+n∗− r+2)
(ν−1)!(i−ν)!(n−ν +1)

. (40)

• Prediction coefficient of future record based on oOSs, is given by:

φ3

(
i, 0̃;r,−1

)
=

(
n
i

) i

∑
ν=1

(−1)i−ν ν
( i

ν

)
(n−ν +1)(n−ν +2)r . (41)

• Prediction coefficient of future gOSs case I based on oOSs, is given by:

φ3

(
i, 0̃;r,m∗

)
=

n!
(n− i)!(r−1)!

i

∑
ν=1

aν (i)
n−ν +1


B(r,

n−ν+1+γ∗r c∗r−1
m∗+1 )

(m∗+1)r , m∗ 6=−1,

(r−1)!
( n−ν+1

k∗ +1)r , m∗ =−1.

(42)

• Prediction coefficient of future oOSs based on gOSs case II, is given by:

φ3 (i, m̃;r,0) = r
(

n∗

r

)
ci−1

i

∑
ν=1

aν (i)
γν

B(r,γν +n∗− r+1). (43)

• Prediction coefficient of future record based on gOSs case II, is given by:

φ3 (i, m̃;r,−1) =
ci−1

(r−1)!

i

∑
ν=1

aν (i)
γν

(r−1)!
(γν +1)r . (44)

Under assumptions of theorem3, then (Xi,n,m̃,k,X j,n,m̃,k), 1 ≤ i < j ≤ n, is a distribution-free PIs for Yr,n∗,m∗,k∗(1 ≤ r ≤ n∗), whose
coverage probability is free of the parent distribution F , is given by:

p
(
Xi,n,m̃,k ≤ Yr,n∗,m∗,k∗ ≤ X j,n,m̃,k

)
= φ3 ( j, m̃;r,m∗)−φ3 (i, m̃;r,m∗) . (45)

where φ3 is given in (??).
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T heorem4. Let {Xi,n,m̃,k,1 ≤ i ≤ n} under assumption γi 6= γ j,
i, j = 1,2, . . . ,n− 1 and i 6= j and {Yr,n∗,m̃∗,k∗ ,1 ≤ r ≤ n∗} under
assumption γ∗i 6= γ∗j , i, j = 1,2, . . . ,n∗−1 and i 6= j be two indepen-
dent gOSs from continuous cdf F . then (−∞,Xi,n,m̃,k), 1 ≤ i ≤ n,
is distribution-free one-sided PI for the future Yr,n∗,m̃∗,k∗ , with the
corresponding prediction coefficient φ4 (i,µ;r), that does not depend
on the sampling distribution F , and is given by:

φ4 (i, m̃;r, m̃∗) = ci−1c∗r−1

i

∑
ν=1

aν (i)
γν

r

∑
µ=1

a∗µ (r)

γν + γ∗µ
. (46)

Proo f . Using assumptions, we found that

φ4 (i, m̃;r, m̃∗) = P
(
Xi,n,m̃,k > Yr,n∗,m̃∗,k∗

)
=

∫
∞

−∞

P
(
Xi,n,m̃,k > y

)
fYr,n∗ ,m̃∗ ,k∗ (y)dy. (47)

Using (4) and (5), φ4 has the following form

φ4 (i, m̃;r, m̃∗) =
∫

∞

−∞

ci−1

i

∑
ν=1

aν (i)
γν

(1−F(y))γν c∗r−1 f (y)
r

∑
µ=1

a∗µ (r)(1−F(y))γ∗µ−1dy

= ci−1

i

∑
ν=1

aν (i)
γν

c∗r−1

r

∑
µ=1

a∗µ (r)
∫

∞

−∞

(1−F(y))γν+γ∗µ−1 f (y)dy. (48)

Using the transformation F(y) = u, and solving the integration,
easily we obtain the required result. Based on φ4 that given in (46)
and under theorem4 assumptions, then (Xi,n,m̃,k,X j,n,m̃,k), 1 ≤ i <
j ≤ n, is a distribution-free PIs for Yr,n∗,m̃∗,k∗(1 ≤ r ≤ n∗), whose
coverage probability is free of the parent distribution F , given by:

p
(
Xi,n,m̃,k ≤ Yr,n∗,m̃∗,k∗ ≤ X j,n,m̃,k

)
= φ4 ( j, m̃;r, m̃∗)−φ4 (i, m̃;r, m̃∗) ,

(49)

4. Numerical Results

In section 3, distribution-free PIs for future gOSs based on
also gOSs is constructed. To illustrate the productive prediction
coefficient for some choices of i, j and r, and by using some different
choices of γi and γ∗r in table 1 to gaining the special schemes of the
gOSs. Table 2 presents some values of the coverage probability
p
(
Xi,20,m,k ≤ Yr,n∗,m∗,k∗ ≤ X j,20,m,k

)
of future, oOSs (by setting

γ∗r = n∗ − r + 1) with n∗ = 25 and Krecord (by setting γ∗r = K)
with K = 1,2,3,4 and 5, based on oOSs and record consecutively,
such that p

(
Xi,n,m,k ≤ Yr,n∗,m∗,k∗ ≤ X j,n,m,k

)
does not depend on the

parent distribution F , given by (13). Some values of the coverage
probability p

(
Xi,n,m,k ≤ Yr,20,m̃∗,k∗ ≤ X j,n,m,k

)
of future oOSs,

nonI(by setting γr = (n∗ + 0.9)− r + 1), Seque (using αr = r2),
P f ei f (by setting γr = r2), PCOs (using r1 = 5,n1 = 5), Trunc
(using αr = r2,kr = n∗− r) and Knrec (using βr = r2,kr = r+ 2),
based on oOSs with n = 30 and record are presented respectively, in
table 3, with the coverage probability that given by (34).

Table 4(a) presents some values of
p
(
Xi,30,m̃,k ≤ Yr,n∗,m∗,k∗ ≤ X j,30,m̃,k

)
of future oOSs and Krecord,

K = 1,2,3,4 and 5 based on PCOs (using r1 = 5,n1 = 5) and
Trunc (using αr = r−1,kr = n∗− r), respectively. Under the same
assumption, table 4(b) holds based on Seque (using αr = 2r−1)
and P f ei f (by setting γr = r2), respectively. Table 5 presents
some values of p

(
Xi,30,m̃,k ≤ Yr,20,m̃∗,k∗ ≤ X j,30,m̃,k

)
based on Seque

(using αr = r−1), P f ei f (by setting γr = n− r) and PCOs (using
r1 = 5,n1 = 5), respectively, the prediction coefficient of future
oOSs, nonI (using αr = (n∗−0.1)− r+1)), Seque (using αr = r2),
P f ei f (by setting γr = r2), PCOs (using r1 = 5,n1 = 5), Trunc
(using αr = r2,kr = n∗− r) and Knrec (using βr = r2,kr = r+ 2),
respectively.

Under table 3 assumptions, figure 1 plots
p
(
X3,30,0,1 ≤ Y5,20,m̃∗,k∗ ≤ X j,30,0,1

)
, which presents the coverage

probability of future 5th gOSs case II based on oOSs. Therefore,
(X3:30,X j:30), 1 ≤ j ≤ 30, is a distribution-free PIs for Y5,20,m̃∗,k∗ .
Under table 4(a) assumptions, figure 2 plots the coverage probability
of future 5th gOSs case I based on PCOs. Then, (X1:25:30,X j:25:30),
1 ≤ j ≤ 30, is a distribution-free PIs for Y5,20,m∗,k∗ .

5. Conclusions

The prediction of unobserved statistics arises naturally in several real
life situations. In This paper, nonparametric PIs for some statistics in
a future unobserved gOSs based on gOSs from the same underlying
distribution F() are constructed. The proposed procedure can be
extended to construct the outer and inner prediction intervals for
future gOSs based on gOSs. The following conclusions are noted
here:
◦ The prediction coefficient are decreasing with i and increasing with
j, as it was expected.
◦ All prediction coefficients under the same assumptions are equiva-
lent, for example

φ1(i,0;r;0)= φ2(i,0;r; 0̃)= φ3(i, 0̃;r;0)= φ4(i, 0̃;r; 0̃)= p(Xi:n ≥ Yr:n∗) .

◦ The generality of our work enabled us to compare the values of
different future sampling schemes at the same time, and choose the
best one corresponding with the practical work.
◦ Under the same assumptions, the prediction coefficients of future
Krecord are increasing with K.
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