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Abstract 
 

This paper is concerned with the estimators problems of the generalized Weibull distribution based on Type-I hybrid progressive censor-

ing scheme (Type-I PHCS) in the presence of competing risks when the cause of failure of each item is known. Maximum likelihood 

estimates and the corresponding Fisher information matrix are obtained. We generalized Kundu and Joarder [7] results in the case of the 

exponential distribution while, the corresponding results in the case of the generalized exponential and Weibull distributions may be 

obtained as a special cases. A real data set is used to illustrate the theoretical results. 
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1. Introduction 

The two most common censoring schemes in life testing experi-

ments are Type-I and Type-II censoring schemes and both censor-

ing scheme have their own advantages whereas Type-II censoring 

scheme controls the efficiency of the test but time of the test is 

uncertain. The mixture of Type-I and Type-II censoring schemes, 

named as hybrid censoring scheme have been discussed in Epstein 

[4]. The hybrid censoring scheme is of two types namely Type-I 

hybrid and Type-II hybrid censoring scheme. Hybrid censored 

schemes have been introduced in the context of progressive cen-

soring by Kundu and Joarder [7] and Childs et al. [2]. In Type-I 

progressive hybrid censoring scheme (Type-I PHCS) introduced 

by Kundu and Joarder [7] and Hashemi and Azar [5] in the pres-

ence of competing risks data and can be described as follows: 

Suppose n  identical items are put to the test and the life time 

distributions of the n  items are denotes by , ,...,1 2X X X n . The 

integer r n  is fixed at the beginning of the experiment, and 

1 2,  . . . ),( , rR R R  are r  per-fixed integers satisfying

1 2+. . . rR R R r n    . The time point is also fixed beforehand. 

At the time of the first failure (1)x , 1R  of remaining (the 1n   

surviving) units are randomly removed. Similarly, at the time of 

the second failure (2)x , 2R  of the 1 2n R   surviving units are 

removed, and so on. Finally at the time of the thr  failure all 

1 1...r rR R rn R      surviving units are removed from the 

life-test. In this type, the experiment would terminate at the ran-

dom time ( , )( )T X Tn rmi  . 

The main aim of this paper is to analyse the competing risk model 

when lifetimes have independent generalized Weibull distribution 

based on Type-I hybrid progressive censoring scheme (Type-I 

PHCS) when the cause of failure of each item is known. Maxi-

mum likelihood estimates and the corresponding Fisher infor-

mation matrix are obtained. We also obtain the results in the case 

of the generalized exponential distribution. 

The rest of this paper is organized as follows: In section 2, we 

introduce the model and the notation used throughout this paper. 

In section 3, we discuss the maximum likelihood estimation and 

asymptotic confidence interval in the case of the generalized 

Weibull distribution. We discuss the results in the case of the gen-

eralized exponential distribution in section 4. In section 5, confi-

dence intervals and goodness of fit will be discussed. Finally, in 

section 6, a real data set is used to illustrate the theoretical. 

2. Model description and notation 

A competing risks model arise from situations in which a unit is 

exposed to several risks at the same time, but the eventual failure 

of the unit is due to only one of these risks, which is called the 

“cause of failure”. Usually, competing risks data are frequently 

obtained from industrial reliability life testing, epidemiological 

and biomedical studies. Consider a life time experiment with n  

identical units, where its lifetimes are described by independent 

and identically distributed (i.i.d) random variables 1 2, ,..., nX X X . 

Without loss of generality; assume that there are only two causes 

of failure. We have  1 2, i i iX Xin Xm  for 1,..., ,i n  where 

, 1,2,jiX j   denotes the latent failure time of the thi unit under 

the thj  cause of failure. We assume that the latent failure times 

1iX  and 2iX  are independent, and the pairs  1 2,i iX X  are i.i.d. 

Assume that the failure times follows the generalized Weibull 

distributions with probability density function ( )jf x survival 

function ( )jF x
 
have the form 
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Under Type-I progressive hybrid censoring scheme (Type-I 

PHCS) and in presence of competing risks data we have the fol-

lowing forms of observation:  

 

I:      (1) 1 1 (2) 2 2 ( ) ( ), , , , , ,..., , , ;r r r rX c R X c R X c R if X T  

 

Case  

 

II:      *
(1) 1 1 ( ) ( ), , ,..., , , , , .

DD D D rX c R X c R T R if X T  

 

Following Kundu and Joarder [7] and Hashemi and Azar [5], the 

likelihood function for the present censoring schemes competing 

risks models when the cause of failure is known is given by 
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Thus combined likelihood can be written as; 
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Where ( )i ix x  for simplicity of notation, m r , * 0DR   in case I 

and m D in case II. Further, we define 
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Thus, the random variables  1 11 1
r

iir I c   and 

 2 21 2
r

iir I c   describe the number of failures due to the first 

and the second cause of failures, respectively.  

3. Results in the case of the generalized 

weibull distribution 

Using likelihood function (2) and the generalized Weibull distri-

bution (1), the likelihood function of the observed data can be 

written as 
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Where  1 2 1 2 1 2, , , , , ,L L       1 1 2 2, ,m r m r m r   in case I 

1 1,m D  2 2,m D m D  in case II,
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1,2j  . Now, the log likelihood function is given by 
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The first derivations of (4) with respect to  

and are given, respectively, by 
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Equating the first derivations (5) to zero and solving for 

 and to obtain the MLE of the unknown pa-

rameters  and , we need numerical results and 

computer facilities. 
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In the case of generalized Weibull distribution, Sarhan et al. [10] 

introduced the relative risk rates, 1  and 2 , due to cause 1 and 2, 

the relative risk due to cause 1 and cause 2 is defined as 

 

 
1 2

1 2
1

1

2

1 1 1 1
0 0

( 1)1

0

1

1 .

1

i j

i x j xi j
x e dx

j

i

 
 

   



 

 

       

 
    

 

 
 

 


 



                                (6) 

 

And  

 

2 11 .    

 

As the integral in the right side of (6) has no analytical solution, 

we have to use a numerical technique to solve the integral. Ac-

cording to the invariance property of the MLE of the relative risk 

rates 1  and 2 , can be obtained by replacing of 1 2 1 2 1
ˆ ˆ ˆ ˆ ˆ, , , ,      

and 2̂  in (6) respectively. 

 

Special cases: 

1) When 1 2 1 2 1       , the MLE's of 1  and 2  and the 

relative risk rates 1  and 2 , we obtain the corresponding 

results of the exponential distribution obtained by Kundu 

and Joarder [7], when the cause of failure is known, i.e., we 

generalized this results.  

2) When 1 2 1   , the MLE's of 1 2 1, ,    and 2  and the 

relative risk rates 1  and 2 , corresponds to the results of 

the Weibull distribution may be obtained. 

4. Results in the case of the generalized expo-

nential distribution 

Using results in section (3), we obtain the present section results 

in the case of generalized exponential distribution. The pdf of the 

generalized exponential distribution is given by  
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And using the likelihood function (2) and (7), the likelihood func-

tion of the observed data ignoring the constant can be written as 

follows 
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The first derivations of (8) with respect to 1 2 1, ,    and 2 are 

given, respectively, by 
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Equating the first derivations (9) to zero and solving functions for 

1 2 1
ˆ ˆ ˆ, ,    and 2̂ to obtain the MLE of the unknown parameters 

1 2 1, ,    and 2 , we need an illustrative examples and computer 

facilities. The Fisher information matrix associated with 

 1 2 1 2, , ,      is defined as 

 

1 2 1 2

2 2

2
1 1 1

2 2

2
2 2 2

2 2

2
1 1 1

2 2

2
2 2 2 ˆ ˆ ˆ ˆ, , ,

ln ln
0 0

ln ln
0 0

( )
ln ln

0 0

ln ln
0 0

L L

L L

I
L L

L L

   

  

  


  

  

  
  
   
 
  

  
   

 
  

  
   

 
   

    

 

 

The elements of ( )I   will be as follows 
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In the case of generalized exponential distribution, Sarhan [9] 

introduced the relative risk rates, 1  and 2 , due to cause 1 and 2, 

respectively. The corresponding 1  and 2 in the present case will 

be 
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And 

2 11                                                                                      (10) 

 

According to the invariance property of the MLE, the MLE of the 

relative risk rates 1  and 2 , can be obtained by replacing the 

MLE of 1 2 1, ,    and 2 in (10). 

5. Confidence intervals and goodness of fit 

In this section we derive the confidence intervals of the vector of 

the unknown parameters  1 2 1 2 1 2, , , , ,       . Based on the 

asymptotic distribution of the MLE of the parameters, it is known 

that 
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Where ( )I  is the Fisher information matrix. The elements of 

matrix ( )ijI   can be approximated by ˆ( )ijI  , where 
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And 2 ln / i jL      is the second derivations. The 100(1 )  

approximate confidence intervals of the vector of the unknown 

parameters  1 2 1 2 1 2, , , , ,        can be obtained as follows 

 

/2
ˆ ˆVar( )j jz   , 1,...,6j  . 

 

Where ˆVar( )j  is the elements on the main diagonal of 1 ˆ( ) I

and 
( )

2

z   is the upper ( )
2

th
 percentile of a standard normal dis-

tribution. The procedures discussed above can be easily modified 

to the case of ED, GED and WD. 

Now, we investigate whether the generalized Weibull model can 

better fit a real data set rather than (1) exponential distribution 

model (ED), (2) generalized exponential distribution model (GED) 

and (3) Weibull distribution model (WD). We discuss the problem 

of testing goodness of fit of a competing risks model when the 

causes of failures follow generalized Weibull distributions against 

exponential distributions, generalized exponential distributions 

and Weibull distributions. The likelihood ratio test statistics will 

be used to this purpose. The null and alternative hypotheses are  

First case: Testing the competing risks with exponential distribu-

tion against competing risks with generalized Weibull distribution: 

 

: 1, the causes of death follow ED,0 1 1 1 2H          

 

: 1, the causes of death follow GWD.1 1 2 1 2H         

 

The log-likelihood ratio test statistic is 

 

 2L GWD EDL L    

 

Where EDL  and GWDL  are the log-likelihood functions under 

0H  and 1H , respectively, after replacing the unknown parameters 

with their MLE. The test statistic is asymptotically distributed as a 

chi-squared distribution with 4 degrees of freedom.  

Second case: Testing the competing risks with generalized expo-

nential distribution against competing risks with generalized 

Weibull distribution: 

 

: 1, the causes of death follow GED,0 1 2H      
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: 1, the causes of death follow GWD.1 1 2H     

 

The log-likelihood ratio test statistic is 

 

 2L GWD GEDL L    

 

Asymptotically, the test statistic is distributed as a chi-squared 

distribution with 2 degrees of freedom. Here, GEDL  and GWDL  

are the log-likelihood functions under 0H  and 1H , respectively, 

after replacing the unknown parameters with their MLE. 

Third case: Testing the competing risks with Weibull distribution 

against competing risks with generalized Weibull distribution: 

 

: 1, the causes of death follow WD,0 1 2H      

 

: 1, the causes of death follow GWD.1 1 2H     

 

The log-likelihood ratio test statistic is 

 

 2L GWD WDL L    

 

Asymptotically, the test statistic is distributed as a chi-squared 

distribution with 2 degrees of freedom. Here, WDL and GWDL  are 

the log-likelihood functions under 0H  and 1H , respectively, after 

replacing the unknown parameters with their MLE. For compari-

son purposes between the candidate models, we can use two mod-

el criterion selection, the Akaike information criterion (AIC) 

(Akaike [1]) and Bayes information criterion (BIC) (Schwarz [8]) 

defined as 

 

AIC 2 2L p    

 

And  

 

BIC 2 .ln( )L p n   . 

 

Where p  is the number of parameters in the model, and L  is the 

maximized value of the likelihood function for the model. As a 

model selection criterion, the researcher should choose the model 

that minimizes AIC and BIC. 

6. Numerical illustration 

In this section, we re-analyze one data set which was originally by 

Hoel [6] and later by Kundu and Joardar [7]. The data was ob-

tained from a laboratory experiment in which male mice received 

a radiation dose of 300 roentgens at 5 to 6 weeks of age. The 

cause of death for each mouse was determined by reticulum cell 

sarcoma is considered as cause 1 and the other causes of death as 

cause 2. There were 77n  observations remain in the analysis. 

Using the censoring scheme 25m   and 1 2 24... 2R R R    and 

25 4R  , the progressive Type-II censored sample from the origi-

nal data is given by 

 

(40, 2), (42, 2), (62, 2), (163, 2), (179, 2), (206, 2), (222, 2), (228, 

2), (252, 2), (259,2), (318, 1), (385, 2), (407, 2), (420, 2), (462, 2), 

(517, 2), (517, 2), (524, 2), (525, 1),(536, 1),( 558, 1), (605, 1), 

(612, 1), (620,2), (621, 1). 

 

The first component denotes the life time and the second compo-

nent indicate the cause of failure. 

Example 1: Considering 700T  , then 25m r  , 1 1 7m r   and

2 2 18m r  . From the above data, the MLEs of the unknown 

parameters , the corresponding approximate 95% two sided confi-

dence intervals distributions and the relative risk due to cause one 

are obtained and given in table (1). The log-likelihood values ( L ), 

AIC, BIC, L  and p-values shown in Table (2). All of the com-

putations were performed using MATHCAD program version 

2007. 

Example 2 Now we use the same data, but use 600T   instead of

700T  , while 21m D  , 1 1 4m D   and 2 2 17m D  . The 

results are reported in Tables (3) and (4). 

 
Table 1: The MLE, Approximate 95% Two Sided Confidence Intervals of 
the Parameters and the Estimated Relative Risk Due Cause One in Each 

Model (ED, GED, WD and GWD). 

Parameters 
Model 

ED GED WD GWD 

1  

0.0002417  

(0.000063, 

0.000421) 

0.0049  

(0.0023, 

0.008) 

0.00000001  

(0, 

0.0000000231747) 

0.00000192  

(0, 

0.00002782) 

2  

0.0006215  

(0.000334, 

0.000909) 

0.0011 

(0.0004, 

0.002) 

0.00003909  

(0, 

0.0001831256445) 

0.00000085  

(0, 0.0000398) 

 

1  -- -- 

2.59885355  

(2.45663, 

2.7410701) 

2.10137652  

(0.108559, 

4.09419) 

 

2  -- -- 

1.45195511  

(0.858016, 

2.045893) 

1.9692305  

(0, 8.2601143

L 3) 

1  -- 

28.2304  

(0, 

68.86) 

-- 

4.81897126  

(0, 

11.98389969) 

2  -- 

1.5537  

(0.94, 

2.167) 

-- 

0.70162976  

(0, 3.1593565

L 8) 

Relative 

Risk 
0.28 0.5605 0.4525 0.5558933 

 
Table 2: The Log-Likelihood Values ( L ), AIC, BIC, and P-Values for 

the Compared Models. 

Model L  AIC BIC L  p-value
 

ED -216.195 436.391 441.078 26.36 0.00002 

GED -203.736 415.471 424.846 1.442 0.486 
WD -207.272 422.544 431.919 8.402 0.014 

GWD -203.015 418.03 432.093 -- -- 

 
Table 3: The MLE, Approximate 95% Two Sided Confidence Intervals of 

the Parameters and the Estimated Relative Risk Due Cause One in Each 
Model (ED, GED, WD and GWD). 

Parameters 
Model 

ED GED WD GWD 

1  

0.0001966 

(0.000004, 

0.000389) 

0.00318  

(0.0003, 

0.00606) 

0.00000001  

(0, 

0.000000031) 

0.00000184  

(0, 0.000034) 

1  

0.0008355  

(0.000438, 

0.001233) 

0.00104  

(0.00037, 

0.00172) 

0.00005788 

(0, 

0.000267454) 

0.00000081  

(0, 

0.00005947) 

1  -- -- 

2.51613 

(2.264, 

2.767905) 

2.04481223  

(0, 4.34409) 

2  -- -- 

1.38072  

(0.795510, 

1.96594) 

1.95179778  

(0, 11.711) 

1  -- 

12.13171  

(0, 

31.78391) 

-- 
3.57286717  

(0, 14.852) 

2  -- 

1.47291  

(0.89922, 

2.04659) 

-- 
0.67473998 

(0, 4.34584) 

Relative 

Risk
 0.19 0.5062 0.3828 0.5171969 

 
Table 4: The Log-Likelihood Values ( L ), AIC, BIC, and P-Values for 

the Compared Models. 

Model L  AIC BIC L  p-value 

ED -184.294 372.587 377.275 14.704 0.00471 
GED -177.074 362.149 371.524 0.264 0.876341 

WD -178.354 364.708 374.083 2.824 0.244 

GWD -176.942 365.883 379.946 -- -- 

 

http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Likelihood_function
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From Tables (1): (4), it is observed that T plays a major role in the 

estimation and for the construction of the corresponding confi-

dence intervals. We also conclude that based on the values of L  

and the p-value, AIC and BIC, the GWD fits the data better than 

ED and WD, while the GED fits the data better than GWD. We 

have observed that the assumptions that the GED may be used to 

analyze this set of real data better that the ED, WD and GWD. 
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