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Abstract

This paper is concerned with the estimators problems of the generalized Weibull distribution based on Type-I hybrid progressive censor-
ing scheme (Type-1 PHCS) in the presence of competing risks when the cause of failure of each item is known. Maximum likelihood
estimates and the corresponding Fisher information matrix are obtained. We generalized Kundu and Joarder [7] results in the case of the
exponential distribution while, the corresponding results in the case of the generalized exponential and Weibull distributions may be
obtained as a special cases. A real data set is used to illustrate the theoretical results.
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1. Introduction

The two most common censoring schemes in life testing experi-
ments are Type-1 and Type-I1 censoring schemes and both censor-
ing scheme have their own advantages whereas Type-Il censoring
scheme controls the efficiency of the test but time of the test is
uncertain. The mixture of Type-I and Type-1l censoring schemes,
named as hybrid censoring scheme have been discussed in Epstein
[4]. The hybrid censoring scheme is of two types namely Type-I
hybrid and Type-Il hybrid censoring scheme. Hybrid censored
schemes have been introduced in the context of progressive cen-
soring by Kundu and Joarder [7] and Childs et al. [2]. In Type-I
progressive hybrid censoring scheme (Type-1 PHCS) introduced
by Kundu and Joarder [7] and Hashemi and Azar [5] in the pres-
ence of competing risks data and can be described as follows:
Suppose n identical items are put to the test and the life time
distributions of the n items are denotes by X1,X5,..,X . The

integer r<n is fixed at the beginning of the experiment, and
(Ri,Rp,...,Ry) are r  per-fixed integers satisfying
Ri+Ro+. .. +R, +r=n. The time point is also fixed beforehand.
At the time of the first failure X(1) - Ry of remaining (the n-1

surviving) units are randomly removed. Similarly, at the time of
the second failure x(2) Ra of the n—R;—2 surviving units are

removed, and so on. Finally at the time of the ri failure all
Ry =n—R;—..—Ry_—r surviving units are removed from the
life-test. In this type, the experiment would terminate at the ran-
dom timeT * = min (X (), T).

The main aim of this paper is to analyse the competing risk model
when lifetimes have independent generalized Weibull distribution

based on Type-l hybrid progressive censoring scheme (Type-I
PHCS) when the cause of failure of each item is known. Maxi-

mum likelihood estimates and the corresponding Fisher infor-
mation matrix are obtained. We also obtain the results in the case
of the generalized exponential distribution.

The rest of this paper is organized as follows: In section 2, we
introduce the model and the notation used throughout this paper.
In section 3, we discuss the maximum likelihood estimation and
asymptotic confidence interval in the case of the generalized
Weibull distribution. We discuss the results in the case of the gen-
eralized exponential distribution in section 4. In section 5, confi-
dence intervals and goodness of fit will be discussed. Finally, in
section 6, a real data set is used to illustrate the theoretical.

2. Model description and notation

A competing risks model arise from situations in which a unit is
exposed to several risks at the same time, but the eventual failure
of the unit is due to only one of these risks, which is called the
“cause of failure”. Usually, competing risks data are frequently
obtained from industrial reliability life testing, epidemiological
and biomedical studies. Consider a life time experiment with n
identical units, where its lifetimes are described by independent
and identically distributed (i.i.d) random variables X1,X 5,...Xp, .
Without loss of generality; assume that there are only two causes

of failure. We have X;j=min {Xy3,X 5} for i=1..n, where
X i, j =12, denotes the latent failure time of the i™ unit under
the jth cause of failure. We assume that the latent failure times

Xy and X, are independent, and the pairs (Xg;,X ;) are i.i.d.

Assume that the failure times follows the generalized Weibull
distributions  with probability density function f;(x) survival

function Fj(x) have the form
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PHCS) and in presence of competing risks data we have the fol-
lowing forms of observation:

if X(r) >T.

Following Kundu and Joarder [7] and Hashemi and Azar [5], the
likelihood function for the present censoring schemes competing
risks models when the cause of failure is known is given by

[fl(xi )-Fa(xi )]I g =1)-
Case |:|_(.9)af[ [fz(xi).ﬁ(xi)}'(cizz). ,

_ _ R;

[AK)R)]

i=1

[F106) R (i )]I €=
5 -
Case 11:L(O)a| T1[F,(x; ) Fy(x, )}'(Ci 2| (A& .

i=1

[P )}Ri

Thus combined likelihood can be written as;
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Where x; =xjy for simplicity of notation, m =r ,RB =0 incasel
and m =D in case Il. Further, we define

1, Cj =1 1, Cj =2
I1(ci =1)= And 15(ci =2)=
1(C' ) {0 else Z(C' ) {O else
Thus, the random variables n=37_l;(ci=1) and

r; =X _412(ci =2) describe the number of failures due to the first
and the second cause of failures, respectively.

3. Results in the case of the generalized
weibull distribution

Using likelihood function (2) and the generalized Weibull distri-
bution (1), the likelihood function of the observed data can be
written as

i=1

Where L =L (4,42,61,62. 4. 82), M=, my=rp,,m=r in case |

my =Dy, m, =D, m=D in case I,
35 5
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j =1,2. Now, the log likelihood function is given by
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The first derivations of (4) with respect to 4,,4,,6,,0,, 3,
and f3, are given, respectively, by
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The elements of 1(6) will be as follows
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Equating the first derivations (5) to zero and solving for
/11 ﬂ,z 51,52”31 and j, to obtain the MLE of the unknown pa-

rameters /11,12,51,52,@ and g, , we need numerical results and

computer facilities.
The asymptotic variance-covariance matrix for 4, 4,4,8,, 4 and

[, can be obtained by inverting the information matrix with the

elements that are negative of the expected values of the second
order derivatives of logarithms of the likelihood functions. Cohen
[3] concluded that the approximate variance covariance matrix
may be obtained by replacing expected values by their MLEs.
Now the approximate sample information matrix associated with

0=(4,2,6,8,, 1, o) is defined as
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In the case of generalized Weibull distribution, Sarhan et al. [10]
introduced the relative risk rates, z; and z,, due to cause 1 and 2,

the relative risk due to cause 1 and cause 2 is defined as
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i=0j=o\ !

©

And
T =1- m.

As the integral in the right side of (6) has no analytical solution,
we have to use a numerical technique to solve the integral. Ac-
cording to the invariance property of the MLE of the relative risk

rates m and z,, can be obtained by replacing of 4, 45,81,6,, 4

and S, in (6) respectively.

Special cases:

1) Wheng =6 =p4=p4 =1, the MLE's of 4 and 4, and the
relative risk rates z; and =, , we obtain the corresponding
results of the exponential distribution obtained by Kundu
and Joarder [7], when the cause of failure is known, i.e., we
generalized this results.

2) When g =p,=1, the MLE's of &, d, 4 and A, and the
relative risk rates =; and x5, corresponds to the results of
the Weibull distribution may be obtained.

4. Results in the case of the generalized expo-
nential distribution

Using results in section (3), we obtain the present section results
in the case of generalized exponential distribution. The pdf of the
generalized exponential distribution is given by
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And using the likelihood function (2) and (7), the likelihood func-
tion of the observed data ignoring the constant can be written as
follows
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The first derivations of (8) with respect to 4,4y, and f, are
given, respectively, by
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Equating the first derivations (9) to zero and solving functions for
J1.79,5 and B, to obtain the MLE of the unknown parameters
A4, B and B, , we need an illustrative examples and computer
facilities. The Fisher information matrix associated with
0= (2.4, 8. 8,) is defined as
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In the case of generalized exponential distribution, Sarhan [9]
introduced the relative risk rates, z; and z,, due to cause 1 and 2,

respectively. The corresponding = and 75 in the present case will
be

n=1-4AY [ﬁ?j(-l)‘ e (1o i
i=o\J 0

And

my=1-m (10)

According to the invariance property of the MLE, the MLE of the
relative risk rates m and z,, can be obtained by replacing the

MLE of 4,4, and S, in (10).

5. Confidence intervals and goodness of fit

In this section we derive the confidence intervals of the vector of
the unknown parameters 6 = (4, 4,81,5,,4.5;) . Based on the

asymptotic distribution of the MLE of the parameters, it is known
that

(é—e)—ms(o,l‘l(e))

Where 1(0) is the Fisher information matrix. The elements of
matrix 1;; (¢) can be approximated by 1; (6) , where

a2InL
26,06

lij (0)=-

0=0

And 2%InL/0606; is the second derivations. The 100(1-a)

approximate confidence intervals of the vector of the unknown
parameters 6 =(4,2,,61,62. 5. 52) can be obtained as follows

é] iza,ZQ'Var(éj) s ]=l,,6

Where Var(6;) is the elements on the main diagonal of 1-%(9)

and z(a) is the upper (%)th percentile of a standard normal dis-
2

tribution. The procedures discussed above can be easily modified
to the case of ED, GED and WD.

Now, we investigate whether the generalized Weibull model can
better fit a real data set rather than (1) exponential distribution
model (ED), (2) generalized exponential distribution model (GED)
and (3) Weibull distribution model (WD). We discuss the problem
of testing goodness of fit of a competing risks model when the
causes of failures follow generalized Weibull distributions against
exponential distributions, generalized exponential distributions
and Weibull distributions. The likelihood ratio test statistics will
be used to this purpose. The null and alternative hypotheses are
First case: Testing the competing risks with exponential distribu-
tion against competing risks with generalized Weibull distribution:

m BN BN |
+Y Riﬁj‘lsji {1—ﬂj Inu ji )(ujﬂil —1) } RD ﬁj_lsj {1—,8] In(zmk{?{’:—&}%:ﬂz =1, the causes of death follow ED,
i=1

Hq:81 # 6 = B # Pp #1, the causes of death follow GWD.

The log-likelihood ratio test statistic is
X =2(Lewp ~Lep)

Where Lgp and Lgyp are the log-likelihood functions under

Hq and Hq, respectively, after replacing the unknown parameters

with their MLE. The test statistic is asymptotically distributed as a
chi-squared distribution with 4 degrees of freedom.

Second case: Testing the competing risks with generalized expo-
nential distribution against competing risks with generalized
Weibull distribution:

H : 61 = 6, =1, the causes of death follow GED,
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H1 : 81 # 6o #1, the causes of death follow GWD.

The log-likelihood ratio test statistic is
X =2(Lewp ~Leep )

Asymptotically, the test statistic is distributed as a chi-squared
distribution with 2 degrees of freedom. Here, Lgep and Lgywp
are the log-likelihood functions under Hgy and Hq, respectively,

after replacing the unknown parameters with their MLE.
Third case: Testing the competing risks with Weibull distribution
against competing risks with generalized Weibull distribution:

Ho: £ = B =1 the causes of death follow WD,
Hq: /4 # po #1,the causes of death follow GWD.
The log-likelihood ratio test statistic is

X =2(Lewp ~Lwp)

Asymptotically, the test statistic is distributed as a chi-squared
distribution with 2 degrees of freedom. Here, Lyp and Lgyp are

the log-likelihood functions under Hg and Hyq, respectively, after

replacing the unknown parameters with their MLE. For compari-
son purposes between the candidate models, we can use two mod-
el criterion selection, the Akaike information criterion (AIC)
(Akaike [1]) and Bayes information criterion (BIC) (Schwarz [8])
defined as

AIC=-2L +2p
And
BIC=-2L +p.In(n) .

Where p is the number of parameters in the model, and L is the
maximized value of the likelihood function for the model. As a
model selection criterion, the researcher should choose the model
that minimizes AIC and BIC.

6. Numerical illustration

In this section, we re-analyze one data set which was originally by
Hoel [6] and later by Kundu and Joardar [7]. The data was ob-
tained from a laboratory experiment in which male mice received
a radiation dose of 300 roentgens at 5 to 6 weeks of age. The
cause of death for each mouse was determined by reticulum cell
sarcoma is considered as cause 1 and the other causes of death as
cause 2. There were n =77 observations remain in the analysis.

Using the censoring scheme m =25 and R{=R,=...=Ryy=2and
Ros =4, the progressive Type-Il censored sample from the origi-
nal data is given by

(40, 2), (42, 2), (62, 2), (163, 2), (179, 2), (206, 2), (222, 2), (228,
2), (252, 2), (259,2), (318, 1), (385, 2), (407, 2), (420, 2), (462, 2),
(517, 2), (517, 2), (524, 2), (525, 1),(536, 1),( 558, 1), (605, 1),
(612, 1), (620,2), (621, 1).

The first component denotes the life time and the second compo-
nent indicate the cause of failure.

Example 1: ConsideringT =700, thenm =r=25, m;=r;=7 and
my =r, =18 . From the above data, the MLEs of the unknown
parameters , the corresponding approximate 95% two sided confi-

dence intervals distributions and the relative risk due to cause one
are obtained and given in table (1). The log-likelihood values (L ),
AIC, BIC, x| and p-values shown in Table (2). All of the com-
putations were performed using MATHCAD program version
2007.

Example 2 Now we use the same data, but use T =600 instead of
T =700, while m=D =21, m1=D1=4 and mo =D2 =17 . The
results are reported in Tables (3) and (4).

Table 1: The MLE, Approximate 95% Two Sided Confidence Intervals of

the Parameters and the Estimated Relative Risk Due Cause One in Each
Model (ED, GED, WD and GWD).

Parameters Model
ED GED WD GWD
0.0002417 _ 0.0049 __ 0.00000001 0.00000192
A (0.000063,  (0.0023, (O, o,
0.000421)  0.008) 0.0000000231747)  0.00002782)
0.0006215  0.0011  0.00003909 0.00000085
A, (0.000334,  (0.0004, (0, (0, 0.0000398)
0.000909)  0.002) 0.0001831256445)
210137652
250885355 (0.108550.
o = = (2.45663, 4.00419)
2.7410701) :
1.9692305
1.45195511
5, B B (0.858016, (0, 8.2601143
2.045893) X 3)
28.2304 4.81897126
B = ©, - @
68.86) 11.98389969)
0.70162976
1.5537
B, B 0.0, (0, 3.1593565
2.167) X, 9
Sies'ﬁt"’e 0.28 05605  0.4525 0.5558933

Table 2: The Log-Likelihood Values (L ), AIC, BIC, and P-Values for
the Compared Models.

Model L AIC BIC XL p-value
ED -216.195 436.391 441.078 26.36 0.00002
GED -203.736 415.471 424.846 1.442 0.486
WD -207.272 422.544 431.919 8.402 0.014
GWD -203.015 418.03 432.093 - =

Table 3: The MLE, Approximate 95% Two Sided Confidence Intervals of
the Parameters and the Estimated Relative Risk Due Cause One in Each
Model (ED, GED, WD and GWD).

Parameters Model
ED GED WD GWD
0.0001966 0.00318 0.00000001 0.00000154
A (0.000004, (0.0003, ©, (0, 0.000034)
0.000389) 0.00606) 0.000000031) O
0.0008355 0.00104 0.00005788 0.00000081
A (0.000438, (0.00037, o, o,
0.001233) 0.00172) 0.000267454)  0.00005947)
5 ~ ~ ?2'521&13 2.04481223
1 20, (0, 4.34409)
2.767905)
LU 1.95179778
o, = = (0.795510, (0,11.711)
1.96594) o 1L
B ~ (102'13171 357286717
A !
e (0, 14.852)
B ~ (1(5487923212 0.67473998
2 S0ey (0, 4.34584)
2.04659)
Eies'z“"e 0.19 0.5062 0.3828 05171969

Table 4: The Log-Likelihood Values (L ), AIC, BIC, and P-Values for
the Compared Models.

Model L AIC BIC XL p-value
ED -184.294 372.587 377.275 14.704 0.00471
GED -177.074 362.149 371.524 0.264 0.876341
WD -178.354 364.708 374.083 2.824 0.244
GWD -176.942 365.883 379.946 -- --
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From Tables (1): (4), it is observed that T plays a major role in the
estimation and for the construction of the corresponding confi-
dence intervals. We also conclude that based on the values of x|
and the p-value, AIC and BIC, the GWD fits the data better than
ED and WD, while the GED fits the data better than GWD. We
have observed that the assumptions that the GED may be used to
analyze this set of real data better that the ED, WD and GWD.
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