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Abstract 
 

In this paper, we prove there exists a coupled fixed point for a set- valued contraction mapping defined on X× X , where X is incomplete 

ordered G-metric. Also, we prove the existence of a unique fixed point for single valued mapping with respect to implicit condition de-

fined on a complete G- metric. 
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1. Introduction 

Nadler [1] initiated the study of fixed points for multi-valued con-

traction mappings and generalized the well-known Banach’s fixed 

point principle. And then, many authors studied many fixed point 

results for multi-valued contraction mappings, see [2-3]. 

Mustafa and Sims [4] introduced the G-metric spaces as a general-

ization of the notion of metric spaces. Mustafa et al. [5- 6] ob-

tained some fixed point theorems for mappings satisfying different 

contractive conditions. Abbas and Rhoades [7] initiated the study 

of common fixed point in G-metric spaces. While, Saadati et 

al. [8] studied some fixed point theorems in generalized partially 

ordered G-metric spaces. 

Ran and Reurings [9] extended Banach's principle in partially 

ordered metric space to obtained some fixed point results for set 

valued mappings where the contraction condition is assumed only 

for the comparable elements of the partially ordered set. 

In[10], Bhaskar and Lakshmikantham introduced the notions of 

mixed monotone property and coupled fixed point for the contrac-

tive mapping F:X×X→X, where X is a partially ordered metric 

space, and proved some coupled fixed point theorems for a mixed 

monotone operator. As an application of the coupled fixed point 

theorems, they determined the existence and uniqueness of the 

solution of a periodic boundary value problem. Recently, Laksh-

mikantham and Ćirić [11] have proved coupled coincidence and 

coupled common fixed point theorems for nonlinear contractive 

mappings in partially ordered complete metric spaces.  

In this paper, firstly, we prove coupled fixed point theorem for set- 

valued mappings by weaken the hypotheses and replace the com-

petence by some other conditions depending on ordering. Second-

ly, we prove the existence of unique fixed point for single valued 

mappings in incomplete G- metric space by using implicit condi-

tion. Throughout this paper 2X is the class of all non-empty sub-

sets of X, CB(X) is the class of all closed and bounded subsets of 

X and “⤳ “denote to set-valued mappings. 

2. Preliminaries 

We begin with some basic definitions and facts. 

Definition 2.1: [4] Let X be a non-empty set and G: X × X × X → 

[0, +∞) be a function for all x, y, z, a in X satisfying the following 

conditions:  

1) G(x, y, z) = 0 ⇔ x = y = z  

2)  0 < G(x, x, y) with x ≠ y  

3) G(x, x, y) ≤ G(x, y, z) with y ≠z  

4) G(x, y, z) = G(p(x, z, y)), p(x, y, z) is a permutation of x, y, z 

5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) . 

Then the ordered pair (X, G) is called a generalized metric space 

or G- metric space.  

 

Example 2.2: [12] Consider X= R, with usual distance  

d(x, y) =|x − y|, for all x, y in X. Define G: X3→ R+ by  

 
G(x, y, z) = d(x, y) + d(y, z) + d (z, x), for all x, y, z ∈ X. 

 

Then, X is a G-metric space. 

 

Definition 2.3: [4] Let (X, G) be a G- metric space. The sequence 

{𝑥𝑛} is called  

 

1) A G-Cauchy if, ∀ε > 0, there is k ∈ N such that for all posi-

tive integers n, m, l ≥ k, G(xn , xm, xl ) < ε . 

2) A G-convergent to x ∈ X if, ∀ε > 0, there is k ∈N such that 

for all n, m ≥ k, G(x , xn, xm) < ε . 

Also, (X, G) is said to be complete G-metric space if every G- 

Cauchy sequence in X is G- convergent in G. 

 

A modification for the Husdorff distance is: 

Definition 2.4: [13] Let X be a G-metric space. H is called the 

Hausdorff  G- distance on CB(X), if  

 
HG (A, B, C) = max{supx∈A G(x, B,C), supx∈B G(x, C, A) , supx∈C G(x, A, 
B) }, 

 

Where 
G(x, B, C) = dG (x, B) + dG (B, C) + dG (x, C), 

 
dG (x, B) = inf {dG (x, y), y ∈ B }, 

 
dG (A, B) = inf {dG (a, b), a ∈ A, b ∈ B}. 
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Lemma 2.5: [13] If A, B ∈ CB(X) and a ∈ A, then for each ε > 0, 

there exists b ∈ B such that 

 
G(a, b , b) ≤ HG (A, B, B) + ε 

 

Lemma 2.6: Let A ∈ CB(X) and B ∈ K(X) then for any a ∈ A, 

there is b∈ B such that: 

 
G(a, b , b) ≤ HG (A, B, B). 

 

Lemma 2.7: Let X be a G-metric space, if A, B and C ∈ CB(X) 

with HG(A,B,C) ≤ ϵ , then for each a ∈A there exist elements b ∈ 

B, c ∈ C such that 𝐺(𝑎, 𝑏, 𝑐) ≤ ϵ . 

 

Lemma 2.8: Let X be a G-metric space, and {𝐴𝑛} be sequence in 

CB(X) and limn→∞ ‎ HG (𝐴𝑛, A, A) = 0 for A ∈ CB(X). If‎𝑥𝑛∈ 𝐴𝑛 

and limn→∞‎ 𝐺(𝑥𝑛  , x ,x) = 0, then x ‎∈‎‎A. 

 

Proof: It is enough to prove that G(xn, An, An) → G(x, A, A) .  

 

Definition 2.9: [14] Let (X , ≼ ) be a partially ordered set . Then 

x , y ∈ X are called comparable if x ≼ y or y ≼ x holds . 

 

Definition 2.10: [13] The point x in X is called a fixed point of the 

multivalued mapping T: X⤳2𝑥 if x ∈ Tx and x is fixed point of a 

single mapping T: X→ X if x = Tx. 

 

Definition 2.11: An element (x, y) ∈ X× X is called a coupled 

fixed point of mapping T: X×X ⤳ 2X if x ∈ T(x, y) and y ∈ T(y, x) . 

 

The following lemmas are needed: 

3. Coupled fixed point 

Theorem 3.1: Let X is ordered G-metric space and let ‎ T: X × X 

⤳ K (X) satisfying: 

1) There exists k ∈ (0,1) with  

 

HG(T(x, y), T (u, v), T (w, z)) ≤ 
k

2
 G( (x, y), (u, v), (w, z)) 

           For all (w, z)  ≼ (u, v) ≼(x, y).  

 

2) Let u1∈ T(x1, y1), v1∈ T(y1, x1) If x2≼ x3 , y3≼ y2, xi , yi∈ 

X (i = 2,3) then for all u2∈ T(x2, y2) there exists u3 ∈ T(x3, 

y3) with u2≼ u3 ,and for all v1∈ T(y1, x1) there exists v2 ∈ 

T(y2, x2) with v3≼ v2 provided G( (u1, v1) , (u2, v2) , (u3, 

v3) ) < 1 

3) There exist x0 ,  y0 ∈ X, and some x1 ∈ T( x0 , y0 ) , y1 ∈ 

T(y0,x0) , x2∈ T(x1 , y1) , y1∈ T(y0 ,x0) with x0≼ x1≼x2 

, y2 ≼ y1≼ y0 such that G( (x0, y0), (x1, y1) ,(x2, y2) ) < 1- 

k , wherek ∈ (0,1). 

4) If a non-decreasing sequence xn→x in X then xn≼ x , for all 

n and if a non-increasing sequence yn→y in X , then y ≼ 

yn, for all n 

Then T has a coupled fixed point. 

 

Proof:  Let x0 , y0∈ X then by hypotheses (3) there exists x1 ∈ 

T(x0, y0), y1∈ T(y0, x0), x2∈ T(x1, y1) , y2∈ T(y1,x1) with x0≼ 

x1≼x2, y2≼ y1≼ y0 such that  

 

G( (x0, y0), (x1,y1), (x2, y2) ) < 1- k.         …      (3.1) 

 

Since (x0,y0) ≼ (x1, y1) ≼( x2, y2).By using assumption (1) and 

(3.1), we have  

 

HG(T(x0, y0), T(x1, y1), T(x2, y2) ) ≤ 
k

2
 G( (x0, y0), (x1, y1), (x2, y2) ) 

 

                                                         < 
k

2
 (1- k) 

 

And similarly  

HG (T (y0, x0), T(y1, x1), T(y2, x2) ) < 
k

2
 (1- k) 

 

Using assumption (2) and lemma (2.7), there exist x3 ∈ T (x2, y2), 

y3∈ T(y2, x2) with x2≼x3 and y3≼ y2 such that 

 

G(x1, x2, x3) ≤ 
k

2
 ( 1- k)        …                    (3.2) 

 

and  

 

G(y1, y2, y3) ≤ 
k

2
 (1- k)               …          (3.3) 

 

From (3.2) and (3.3) 

 

G( (x1, y1), (x2, y2), (x3, y3) ) ≤ k(1- k)             …          (3.4) 

 

Again by assumption (1) and (3.4), we have  

 

HG(T(x1, y1), T(x2, y2), T(x3, y3)) ≤ 
k2

2
 (1- k) 

 

and  

 

HG(T(y1, x1), T(y2, x2), T(y3, x3)) ≤ 
k2

2
 (1- k) 

 

Further from lemma (2.7) and assumption (2), there exist x4 ∈ 

T(x3, y3), y4∈ T(y3, x3) with x3≼ x4, y4≼ y3 such that  

 

G(x2 , x3,  x4) ≤  
k2

2
 (1- k). 

 

and 

 

G(y2, y3, y4) ≤ 
k2

2
 (1- k). 

 

It follows that 

 
G( (x2, y2), (x3, y3), (x4, y4) ) ≤ k2 (1- k). 

 

Continue in this way, we obtain xn+2 ∈ T (xn+1 , yn+1 ), yn+2 ∈ 

T(yn+1, xn+1) with xn+1 ≼ xn+2 , yn+2≼ yn+1 such that  

 

G(xn, xn+1, xn+2) ≤ 
kn

2
 (1- k) 

 

and 

 

G(yn, yn+1, yn+2) ≤ 
kn

2
 (1- k) 

 

thus  

 

G( (xn, yn), (xn+1,  yn+1), (xn+2, yn+2) ) ≤ kn(1- k) …    (3.5) 

 

Next, we show that {xn} is a G-Cauchy sequence in X. Let m > n. 

Then 

 
G(xn , xn+1 , xm ) ≤ G(xn , xn+1 ,  x𝑛+1 ) + 𝐺(𝑥𝑛+1 , 𝑥𝑛+1 , 𝑥𝑚 ) ≤ 𝐺(𝑥𝑛 , 

𝑥𝑛+1, 𝑥𝑛+2) + 𝐺(𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑚) 

 

[by using definition (2.1-3)] 

 
      ≤ 𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2) + 𝐺(𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2) + 𝐺(𝑥𝑛+2, 𝑥𝑛+2, 𝑥𝑚) 

 

[by using definition (2.1-5)] 

 

≤  𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2) + 𝐺(𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+3) + 𝐺(𝑥𝑛+2, 𝑥𝑛+3, 𝑥𝑚)  

 

[by using definition (2.1-3)] 

 
≤ 𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2) + 𝐺(𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑚) +𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) +…+    

        𝐺(𝑥𝑚−2, 𝑥𝑚−1, 𝑥𝑚)  
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≤ [ 𝑘𝑛+ 𝑘𝑛+1 +…+ 𝑘𝑚−2 ] 

(1−𝑘)

2
  

 

= 𝑘𝑛[1+ k+...+ 𝑘𝑚−𝑛−2 ] 
(1−𝑘)

2
  

 

= 𝑘𝑛 [
(1−𝑘𝑚−𝑛−1)

1−𝑘
] 

(1−𝑘)

2
  

 

= 
𝑘𝑛

2
 (1- 𝑘𝑚−𝑛−1 ) < 

𝑘𝑛

2
,  

Since  k ∈ (0, 1), 1- 𝑘𝑚−𝑛−1 < 1, we obtain  𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑚)→0 

as n→∞. This implies that {𝑥𝑛 } is a G-Cauchy sequence and 

hence converges to some point x in the complete in X. 

Similarly, we can show that {𝑦𝑛} is also a G-Cauchy sequence in 

X.By completeness of X, there exist x, y ∈ X such that 𝑥𝑛→ x and 

𝑦𝑛→ y as n→ ∞. 

Finally, we show that x ∈ T(x, y) and y ∈ T(y, x). 

Since {𝑥𝑛 } is a non-decreasing sequence and {𝑦𝑛 } is a non-

increasing sequence in X such that 𝑥𝑛→ x and 𝑦𝑛→ y, therefore 

we have 𝑥𝑛≼ x, y ≼ 𝑦𝑛 for all n. 

From hypothesis (1) it follows that  

 
HG (T (𝑥𝑛, 𝑦𝑛), T(x, y), T(x, y) ) ≤ k 𝐺( (𝑥𝑛, 𝑦𝑛), (x, y), (x, y) ) → 0. 

 

Now, since  𝑥𝑛+1 ∈ T (𝑥𝑛, 𝑦𝑛) and limn→∞ 𝐺(𝑥𝑛+1, x, x) = 0, it 

then by using lemma (2.8)  follows that x ∈ T(x, y). Again by 

assumption (1) 

 
HG(T(𝑦𝑛, 𝑥𝑛), T(y, x), T(y, x) ) ≤ k 𝐺( (𝑦𝑛, 𝑥𝑛), (y, x), (y, x) ) → 0. 

 

Since 𝑦𝑛+1 ∈ T (𝑦𝑛,  𝑥𝑛) and limn→∞ 𝐺(𝑦𝑛+1, y, y) = 0, it then by 

using lemma ( 2.8 ) y ∈ T(y, x). Hence (x, y) is a coupled fixed 

point of T. ∎ 

 

Corollary 3.2: Let X be an ordered G-metric space and let T: X 

×X ⤳ K(X) satisfying: 

1) There exists k ∈ (0,1) with  
 

HG (T(x, y), T(u, v) ,T(u, v) ) ≤ 
k

2
 G( (x, y), (u, v), (u , v) ) 

          for all (u ,v) ≼ (x ,y) . 

 

2) If 𝑥1≼ 𝑥2  , 𝑦2  ≼ 𝑦1 , 𝑥𝑖  , 𝑦𝑖 ∈ X (i = 1,2) then for all 𝑢1 ∈ 

T(𝑥1, 𝑦1) there exists 𝑢2 ∈ T(𝑥2, 𝑦2) with 𝑢1≼ 𝑢2 , and for 

all 𝑣1∈ T(𝑦1, 𝑥1) there exists 𝑣2  ∈ T(𝑦2, 𝑥2) with 𝑣2≼ 𝑣1 

provided 𝐺( (𝑢1, 𝑣1) , (𝑢2, 𝑣2) , (𝑢2, 𝑣2) ) < 1 

3) There exists 𝑥0 ,  𝑦0 ∈ X, and some 𝑥1 ∈ T(𝑥0 , 𝑦0 ) , 𝑦1 ∈ 

T(𝑦0,𝑥0) with 𝑥0≼ 𝑥1  , 𝑦1≼ 𝑦0 such that 𝐺( (𝑥0 , 𝑦0), (𝑥1 , 

𝑦1) ,(𝑥1, 𝑦1) ) < 1- k , where k ∈ (0,1). 

4) If a non-decreasing sequence 𝑥𝑛→x in X , then 𝑥𝑛≼ x , for 

all n and if a non-increasing sequence 𝑦𝑛→y in X , then y ≼ 

𝑦𝑛, for all n 

Then T has a coupled fixed point. 

  

As a consequence the above theorem also true for single valued 

mappings.  

4. Implicit condition 

For a nonempty subset S of the G-metric space X , the diameter of 

S is defined as 

 
𝛿𝐺(S) = sup {G(x, y, z) : x, y, z ∈ S}. 

 

   If {𝑦𝑛} is a bounded sequence in G-metric space X, let 𝑗𝑛= 𝛿𝐺  

({𝑦𝑛,𝑦𝑛+1, 𝑦𝑛+2,... }) for n ∈ N. Then 𝑗𝑛 ˂ ∞ .for all n ∈ N, and 

{𝑗𝑛} is non-increasing and 𝑗𝑛 ≥ 0 for all n ∈ N, and so there exists 

an j ≥ 0 such that limn→∞𝑗𝑛= j.  
 

Theorem 4.1: Let X be a complete bounded G-metric space and T 

: X→ X be a mapping such that for all x, y, z ∈ X , 

 
𝜙(𝐺(𝑥, 𝑦, 𝑧), 𝐺(𝑥, 𝑇𝑥, 𝑧), 𝐺(𝑦, 𝑇𝑦, 𝑧), 𝐺(𝑥, 𝑇𝑦, 𝑧) , 𝐺(𝑦, 𝑇𝑥, 𝑧), 

𝐺(𝑇𝑥, 𝑇𝑦, 𝑇𝑧))  ≥  0                    …..                 (4.1) 

 

and ϕ : R5
+×R+ → R+ be upper - semi continuous and be non-

decreasing on R5
+ ϕ ((u, u, u, u, u), v) ≥ 0 implies v ≤ ψ(u),where 

ψ : R+ → R+ is a non-decreasing upper semi- ‎continuous function 

with ψ (0) = 0 and ψ (t) < t for t > 0‎,Then T has a unique fixed 

point p in X and T is continuous at p . 

 

Proof: Suppose that 𝑥0 in X and 𝑥𝑛+1 = T𝑥𝑛 . Then the orbit {𝑥𝑛} 

is bounded. 

Let   
               𝑗𝑛 = 𝛿𝐺 ({𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2, …}), n ∈ N. 
 

from, the above remark limn→∞ 𝑗𝑛= j for some j ≥ 0. If 𝑥𝑛+1= 𝑥𝑛 

for some n ∈ N , then T has a fixed point, say p ∈ X .  

Assume that 𝑥𝑛+1≠ 𝑥𝑛 for each n ∈ N . Let k ∈ N be fixed Taking 

x = 𝑥𝑛−1, y = 𝑥𝑛+𝑚−1 and z = 𝑥𝑛+𝑚+𝑣−1 in (4.1) where n ≥ k and 

m , v ∈ N, we have 

 
𝜙(𝐺(𝑥𝑛−1, 𝑥𝑛+𝑚−1, 𝑥𝑛+𝑚+𝑣−1),𝐺(𝑥𝑛−1, T𝑥𝑛−1, 𝑥𝑛+𝑚+𝑣−1) , 𝐺(𝑥𝑛+𝑚−1,  
 

  T𝑥𝑛+𝑚−1, 𝑥𝑛+𝑚+𝑣−1) ,𝐺(𝑥𝑛−1, T𝑥𝑛+𝑚−1, 𝑥𝑛+𝑚+𝑣−1) , 𝐺(𝑥𝑛+𝑚−1, T𝑥𝑛−1,  

          𝑥𝑛+𝑚+𝑣−1) , 𝐺(T𝑥𝑛−1, T𝑥𝑛+𝑚−1, T𝑥𝑛+𝑚+𝑣−1)) 

 
= 𝜙(𝐺(𝑥𝑛−1, 𝑥𝑛+𝑚−1, 𝑥𝑛+𝑚+𝑣−1),𝐺(𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛+𝑚+𝑣−1), 𝐺(𝑥𝑛+𝑚−1,  
 

 𝑥𝑛+𝑚, 𝑥𝑛+𝑚+𝑣−1), 𝐺(𝑥𝑛−1, 𝑥𝑛+𝑚, 𝑥𝑛+𝑚+𝑣−1) , 𝐺(𝑥𝑛+𝑚−1, 𝑥𝑛, 𝑥𝑛+𝑚+𝑣−1)), 

 
  𝐺(𝑥𝑛, 𝑥𝑛+𝑚, 𝑥𝑛+𝑚+𝑣)) ≥ 0  

 

Thus we have 

 
𝜙 ((𝑗𝑛−1, 𝑗𝑛−1, 𝑗𝑛+𝑚−1, 𝑗𝑛−1, 𝑗𝑛+𝑚−1),𝐺(𝑥𝑛, 𝑥𝑛+𝑚, 𝑥𝑛+𝑚+𝑣)) ≥ 0. 

 

Since 𝜙 is non-decreasing on R5
+ and {𝑗𝑛} is non-increasing, we 

have 

 
𝜙 ((𝑗𝑘−1, 𝑗𝑘−1, 𝑗𝑘−1, 𝑗𝑘−1, 𝑗𝑘−1),𝐺(𝑥𝑛, 𝑥𝑛+𝑚, 𝑥𝑛+𝑚+𝑣)) ≥ 0, 

 

which implies 

 
𝐺(𝑥𝑛, 𝑥𝑛+𝑚, 𝑥𝑛+𝑚+𝑣) ≤ ψ(𝑗𝑘−1). 

 

Taking limit sup over n ≥ k, we have 𝑗𝑘≤ ψ (𝑗𝑘−1). Letting k→∞, 

we get j ≤ ψ (j). 

If j > 0, then j ≤ ψ (j) < j, which is a contradiction. Thus j = 0 and 

hence limn→∞ 𝑗𝑛 = 0. 

Thus given 𝜖 ˃ 0, there exists C ∈ N such that 𝑗𝑐  ˂  𝜖 .  

Then we have for n ≥ C and m, v ∈ N , 𝐺(𝑥𝑛, 𝑥𝑛+𝑚, 𝑥𝑛+𝑚+𝑣) < 𝜖. 

Therefore, {𝑥𝑛} is a G-Cauchy sequence in X. By the complete-

ness of X, there exists a p ∈ X such that limn→∞ 𝑥𝑛 = p. 

 Hence limn→∞T𝑥𝑛 = p. 

 

Taking x = 𝑥𝑛−1 , y = 𝑥𝑛+𝑚−1 and z = p in (4.1) , we have 

 
𝜙 (𝐺(𝑥𝑛−1, 𝑥𝑛+𝑚−1, p) ,𝐺(𝑥𝑛−1, T𝑥𝑛−1, p),𝐺(𝑥𝑛+𝑚−1, T𝑥𝑛+𝑚−1, p),  
 

   𝐺(𝑥𝑛−1, T𝑥𝑛+𝑚−1, p) , 𝐺(𝑥𝑛+𝑚−1, T𝑥𝑛−1, p) ,𝐺(T𝑥𝑛−1, T𝑥𝑛+𝑚−1, Tp)) 

 
= 𝜙 (𝐺(𝑥𝑛−1, 𝑥𝑛+𝑚−1, p) ,𝐺(𝑥𝑛−1, 𝑥𝑛, p) ,𝐺(𝑥𝑛+𝑚−1, 𝑥𝑛+𝑚, p) , 𝐺(𝑥𝑛−1,      

        𝑥𝑛+𝑚, p), 𝐺(𝑥𝑛+𝑚−1, 𝑥𝑛, p) , 𝐺(𝑥𝑛, 𝑥𝑛+𝑚, Tp)) ≥ 0. 

Taking limit n→∞, we have 

 
𝜙 𝐺(𝑝, 𝑝, 𝑝), 𝐺(𝑝, 𝑝, 𝑝), 𝐺(𝑝, 𝑝, 𝑝), 𝐺(𝑝, 𝑝, 𝑝), 𝐺(𝑝, 𝑝, 𝑝), 𝐺(𝑝, 𝑝, 𝑇𝑝)) ≥ 0 

 
Which implies 𝐺(𝑝, 𝑝, 𝑇𝑝) ≤ ψ (𝐺(𝑝, 𝑝, 𝑝)) = ψ (0) = 0. Hence Tp = p. 

 

For the uniqueness, let p and w be fixed points of T. 

Taking x = p, y = p and z = w in (4.1), we have 

 



International Journal of Advanced Statistics and Probability 19 

 
𝜙 (𝐺(𝑝, 𝑝, 𝑤), 𝐺(𝑝, 𝑇𝑝, 𝑤), 𝐺 (p, Tp, w), G(p, Tp, w), G(p, Tp, w) 

        , G(Tp, Tp, Tw)) 

= 𝜙 (G(p, p , w), G(p, p , w), G(p, p , w), G(p, p , w), G(p, p , w), 

       G(p, p, w))  ≥ 0                 

 

Which implies G(p, p, w) ≤ ψ (G(p, p , w)) < G(p, p, w) which is a 

contradiction. 

Thus, we have p = w. 

Now, we show that T is continuous at p. 

Suppose that {yn} be a sequence in X and limn→∞yn = p. Taking x 

= p, y = p and z = yn in ‎(4.1), we have 

 
𝜙 (G(p, p, yn) ,G(p, Tp, yn) ,G(p, Tp, yn) ,G(p, Tp, yn) ,G(p , Tp, yn),  

       G(Tp, Tp, Tyn)) 

= 𝜙 (G(p, p, yn),G(p, p, yn),G(p, p, yn),G(p, p, yn),G(p, p, yn) ,     

       G(p, p, Tyn)) ≥ 0 

Which implies  G(p, p, Tyn) ≤ ψ (G(p, p, yn)). 

Taking limit sup, we have 

 
limn→∞ G(p, p, Tyn) ≤ limn→∞ ψ (G(p, p, yn)) ≤ ψ (0) = 0. 

 

Hence limn→∞Tyn= p = Tp and hence T is continuous at p. 
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