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Abstract 
 

A decade ago, two-parameter Burr Type X distribution was introduced by Surles and Padgett [14] which was described as Generalized 

Rayleigh Distribution (GRD). This skewed distribution can be used quiet effectively in modelling life time data. In this work, Bayesian 

estimation of the shape parameter of GRD was considered under the assumption of non-informative prior. The estimates were obtained 

under the squared error, Entropy and Precautionary loss functions. Extensive Monte Carlo simulations were carried out to compare the 

performances of the Bayes estimates with that of MLEs. It was observed that the estimate under the Entropy loss function is more stable 

than the estimates under squared error loss function, Precautionary loss function and MLEs. 

 
Keywords: Bayes Estimators; Extended Jeffrey’s Prior; Entropy Loss Function; Precautionary Loss Function; Squared Error Loss Function. 

 

1. Introduction 

Twelve different families of cummulative distribution function 

used in modelling lifetime data was suggested by Burr [3]. Burr 

Type X distribution is among the most popular distributions that 

receives the most attention among these families of cummulative 

distributions. In 2001, two parameter Burr Type X distribution 

was introduced by Surles and Padgett [14]. Abdel-Hady [1], 

Kundu and Raqab [8] and Lio, Chen and Tsai [9] prefer to call this 

distribution GRD; this name will be adopted in this work. For α>0 

and λ>0, the two-parameter GRD will be denoted by GRD(α, λ) 

and its cumulative distribution function is given by: 

F(x; α, λ)= (1 − e−(λx)2
)

α
 for x, α, λ >0         (1) 

Its probability density function (pdf) is given by: 

F(x; α, λ) = 2αλ2x(1 − e−(λx)2
)

α−1
e−(λx)2

           (2) 

where α and λ are the shape and scale parameters respectively. 

The survival as well as the hazard functions are respectively given 

by: 

S(x;  α, λ) =  1 − F(x;  α, λ) =  1 − (1 − e−(λx)2
)

α
          (3) 

h(x;  α, λ)  =  
f(x; α,λ)

S(x; α,λ)
=

2αλ2x(1−e−(λx)2
)

α−1
e−(λx)2

1− (1−e−(λx)2
)

α           (4) 

 

GRD is widely used in modelling events that occur in different 

fields such as medicine, social and natural sciences. In Physics for 

instance, the GRD is used in the study of various types of radia-

tions such as light and sound measurements. It is used as a model 

for wind speed and is often applied to wind driven electrical gen-

eration. It can also be used in modelling strength and lifetime data 

(we refer an interested reader to, Kundu & Raqab [8], Lio, Chen 

and Tsai [9], Samaila and Cenac [13] and Surles and Padgett [14]). 

The graph of the GRD is shown in figure 1 for different shape 

parameter values. It is clear from figure 1 that, the pdf of GRD is a 

decreasing function if α ≤ ½ and it is right skewed uni-modal 

when α > ½ see also Kundu and Raqab [8]. 

Kundu & Raqab [8] used the methods of maximum likelihood, 

modified moment estimator, least squares estimator, weighted 

least squares estimator, percentile-based estimator and modified 

L-moment estimator to estimate the unknown parameters of GRD. 

The study compared the performances of the different estimators 

using Monte-Carlo simulations mainly with respect to their biases 

and mean squared errors (MSE) for different sample sizes and 

different parameter values. It was further shown that when the 

sample size is small (say n=10), the performances of most of the 

methods are quite discouraging. In particular, the estimation of α 

becomes very difficult for small sample sizes. The biases of all the 

methods are quite severe for small and moderate sample sizes (say 

n ≤ 20). It was also shown that the least square estimate (LSE) 

performs quite well for n≤20 and for n ≥ 30, the weighted LSE 

outperforms the LSE marginally. If MSE is considered, the 

weighted LSE performs better than the rest in most of the cases 

considered. Also in Raqab and Kundu [12], a comparison was 

made on different methods of estimating R = P (Y <X) when Y 

and X both follow GRD with different shape parameters but the 

same scale parameter (ie. X~GRD(α1, λ) and Y~GRD(α2, λ) ). 

When the scale parameter is unknown, it is observed that the 

MLEs of the three unknown parameters can be obtained by solv-

ing one non-linear equation. An iterative procedure for computing 

the MLEs of the unknown parameters and the MLE of R was de-

veloped. The asymptotic distribution of R was obtained and this 

was used to compute the asymptotic confidence intervals. It is 

observed that even when the sample size is quite small the asymp-

totic confidence intervals work quite well. Two bootstrap confi-

dence intervals were also proposed and their performances were 
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also quite satisfactory. On the other hand, when the scale parame-

ter is known they compared MLE and UMVUE with different 

Bayes estimators. It is observed that the Bayes estimators with 

non-informative priors behave in similar fashion as the MLEs 

Mahdi [10] estimate the parameters of a Rayleigh distribution 

using five point estimation techniques; maximum likelihood esti-

mates, moment method, probability weighted moment method, 

least square method and least absolute deviation method. The 

researcher also proposed the modified maximum likelihood esti-

mation method for the parameters and compared it with the 

aforementioned methods. It was observed that, all the methods 

performed reasonably well except the method of moments. On the 

other hand, the modified maximum likelihood method provides 

better estimates for the parameters when the sample sizes are not 

small (say n≥10), while in the case of small samples, the probabil-

ity weighted moment method outperforms the maximum likeli-

hood method for the estimation of the threshold parameter and 

performs almost as good as the maximum likelihood method for 

the estimation of the scale parameter. Hence, Mahdi [10] recom-

mends using the modified maximum likelihood method for the 

parameter estimation of the Rayleigh distribution if the sample 

size is large. 

The rest of the paper is organized as follows: in section two, we 

briefly describe the MLE. In section 3 we describe the Bayesian 

method, Numerical comparisons are presented in section 4 and we 

finally conclude in section 5. 

 

 

 
Fig.1: The Graph of Generalized Rayleigh Distribution for Different Values of Shape Parameters When the Scale Parameter Takes the Value One 

 

2. Maximum likelihood estimation 

Let x1, x2, ⋯ , xn  be a random sample from a population X with 

pdf f(x; θ), where θ is an unknown parameter. The likelihood 

function, L(θ), is defined to be the joint density of the random 

variables x1 , x2, ⋯ , xn.  

That is, 

( ) ( ; )
1

n
L f xi

i
  


 

The value of the statistic that maximizes the likelihood function, 

L(θ) is called the maximum likelihood estimator of θ and it is 

denoted by  . If the scale parameter λ is known and without loss 

of generality let λ=1, then the pdf of GRD(α, 1) is given by: 

f(x;  α, 1)  =  2αx(1 − e−x2
)

α−1
e−x2

           (5) 

and the likelihood of (5) is given by: 

2
2

1

1

1 2
1

( , , , ; ,1) 2 1

n

i
i i

x n
xn n

n i
i

L x x x e x e



  






  
  

 


       
(6) 

Differentiating (6) with respect to α, equating to zero and solving 

for α yeilds the MLE of α which will be denoted by α̂MLE. Hence, 

α̂MLE is given by: 

α̂MLE = −
n

∑ ℓn (1−e−xi
2

)n
i=1

            (7) 

 

 

and its variance is obtained as 

var(α̂MLE) =
n2

(n−1)2(n−2)
α̂MLE

2             (8) 

3. Bayesian estimation of the shape parameter 

Bayesian estimation technique will be used to estimate the shape 

parameter of the GRD assuming Extended Jeffrey’s prior under 

the squared error loss function which is classified as symmetric 

loss function as well as Entropy and precautionary loss functions 

which are classified as asymmetric loss function. 

3.1. Squared error loss function 

The squared error loss function is defined as 

L(θ, θ̂) = (θ̂ − θ)2             (9) 

 

The Bayes estimator of θ denoted by θ̂SL relative to the squared 

error loss function is given by 

θ̂SL = E(θ/x)           (10) 

 

The squared error loss function is classified as symmetric loss 

function, because it assigns equal importance to the losses due to 

overestimation and underestimation. This is impractical in real life 
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situations since overestimation of a parameter can lead to more or 

less severe consequences than underestimation and vice versa as 

in the case of estimation of reliability or failure rate function. 

Hence, the loss function which associate greater importance to 

overestimation or underestimation and serves as alternative to 

symmetric loss function is the asymmetric loss function. Several 

asymmetric loss functions such as Entropy loss function, 

Precautionary loss function, LINEX loss function, weighted loss 

function, etc have been proposed and studied by many researchers. 

This paper will consider only Entropy loss function and 

Precautionary loss function 

3.2. Entropy loss function 

The Entropy loss function discussed by Dey [5] and Dey and Liu 

[6] is defined as: 

LEL(θ̂, θ) ∝ (
θ̂

θ
)

k

− klog (
θ̂

θ
) − 1 k ≠ 0         (11) 

 

where θ̂ is an estimate of θ. 

The Bayes estimator of θ denoted by θ̂EL relative to the entropy 

loss function is given by: 

θ̂EL =  [Eθ(θ−k/x)]−
1

k           (12) 

 

Provided Eθ(θ−k/x)  exist. If k=-1, the bayes estimator (12) 

coincides with the bayes estimator under the squared error loss 

function and for k=1, it coincides with the weighted squared error 

loss function. 

3.3. Precautionary loss function 

Precautionary loss function is defined by Norstrom [11] as:  

LPL(θ̂, θ) =
(θ̂−θ)

2

θ̂
           (13) 

 

The Bayes estimator of θ  denoted by θ̂PL  relative to the 

precautionary error loss function is given by: 

𝜃𝑃𝐿 = (𝐸(𝜃2/𝑥))
1

2           (14) 

 

3.4. Bayes estimation of the shape parameter under the 

extended Jeffrey’s prior 

In this section, the bayes estimation of the unknown parameter of 

the 𝐺𝑅𝐷(𝛼, 1)  assuming Extended Jeffrey’s prior is obtained. 

Jeffrey [7] proposed a method for generating non-informative 

priors which is based on the Fisher Information Matrix given by: 

𝐼(𝛼) = −𝐸 (
𝜕2𝑙𝑛𝑓(𝑋; 𝛼)

𝜕𝛼𝑖𝜕𝛼𝑗
)          (15) 

 

The Jeffrey’s prior is defined by: 

𝜋(𝛼) ∝ √𝐼(𝛼)           (16) 

 

Al-Kutubi [2] proposed an extension to Jeffrey’s prior which is 

defined as: 

𝜋(𝛼) ∝ (𝐼(𝛼))
𝑟
, 𝑟 ∈ ℝ+          (17) 

 

where 𝐼(𝛼) is as defined in equation (15) 

In other to obtained 𝐼(𝛼), we differentiate equation (6) twice with 

respect to 𝛼 resulting in: 

𝜕2𝑙𝑛𝑓(𝑋; 𝛼)

𝜕𝛼2
= −

1

𝛼2
           (18) 

 

and hence the fisher information 𝐼(𝛼) =
1

𝛼2
 

Hence, from equation (17), it is easy to conclude that the extended 

Jeffrey’s prior is defined as: 

 

 
1

r
 




          

(19) 

 

Let’s assume the shape parameter 𝛼 is a random variable having 

Extended Jeffrey’s prior given by (19) and let 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 be a 

random sample from 𝐺𝑅𝐷(𝛼, 1) , then the likelihood of the 

observed data is given in (6), the product of the likelihood and the 

prior is given by: 

2
2

1

1

1 2
1

( , , , ; ,1) ( ) 2 1

n

i
i i

x n
xn n r

n i
i

L x x x e x e



    






  
  

 


      

(20) 

 

while the posterior distribution of 𝛼 is given by: 

 

  1 2
1 2

1 2
0

( , , , ; ,1) ( )
/ , , ,

( , , , ; ,1) ( )

n
n

n

L x x x
x x x

L x x x d

  
 

   





      

(21) 

 

Integrating (20) with respect to 𝛼, yeilds: 

2
2

1

2

1 2

0

1

1
1

1

1

( , , , ; ,1) ( )

2 1

1

1

n

i
i i

i

n

x n
xn

i
i

n r
n

x

i

L x x x d

e x e

n r

n e

   









 








  
 

 
 

 
   

  
 







       

(22) 

 

Hence, the posterior distribution (21) becomes: 

n-r 1

1 2( / , , , )=
1

n r M

n
M e

x x x
n r


 

  

         
(23) 

 

which is gamma distributed with parameters  1n r   and M. 

where
2

1

1

(1 )i

n
x

i

M n e
 



 

 
Therefore, the Bayesian estimators of the parameter 𝛼 under the 

Squared error, Entropy and Precautionary loss functions denoted 

by SL , EL and PL are respectively given by (24), (25) and (26) 

1
SL

n r

M


 


         
(24) 

1

1 1

1

k
EL

n r

M n r k


  
  

    

        

(25) 

  
1

2 1PL n r n r
M

     

       
(26) 

 

where 
2

1

1

n 1 i

n
x

i

M e






 
  

 
  

3.4.1. Variance 

If
2

1

1

n 1 i

n
x

i

M e






 
  

 
 , and X ~ 𝐺𝑅𝐷(𝛼, 1), it is easy to show 

that M ~ Gamma(𝑛, 𝛼) that is  
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 
1n n mm e

f m
n

  



        (27)

 

and 

 g

g

n g
E m

n




         (28) 

Hence, the variance of the shape parameter under the aforemen-

tioned loss functions are given by: 

 
 

   

2
2

2

1
var

1 2
SL

n r

n n

 
 



 
        (29) 

 
   

2
2

2

1
var

11 2

k
EL

n r

n r kn n




  
  

      
      (30)

 
  

   

2

2

2 1

1 2
PL

n r n r
Var

n n

 
   



 
       

(31)

 

3.4.2. Relative efficiency 

Various statistical properties of point estimators are used to decide 

which estimator is most appropriate, will give the least risk and 

the most information at the lowest cost. Relative Efficiency (R.E) 

is one of these desirable properties. In this section, the relative 

efficiency of the proposed estimators will be obtained. 

The relative efficiency of EL with respect to SL  of   is 

 
 

 

2

2
1

1
1

1

SL k

EL

Var n r k
E n r

n rVar





   
     

   
      

(32) 

 

1 1E  for 1k  , 1 1E  for 1k    and 1 1E  for 1k    (see fig. 2 & 

3) 

The relative efficiency of EL with respect to PL  of   is 

 
 

  

2

2
1

2 1
1

PL k

EL

Var n r k
E n r n r

n rVar





   
       

   
     

(33) 

 

2 1E  for 1k   , 2 1E  for 2k    and 2 1E  for 2k    (see fig. 

4 & 5) 

The relative efficiency of SL with respect to PL  of   is 

 
 

 
 3

2

1

PL

SL

Var n r
E

n rVar





 
 

 
        (34) 

 

3 1E  when 1r  (see fig. 8) 

The relative efficiency of SL with respect to MLE  of   is 

 
   

2

4 2
1

MLE

SL

Var n
E

Var n r




 

 
       

(35) 

 

4 1E  when 1r  (see fig. 8) 

The relative efficiency of EL with respect to MLE  of   is 

 
 

2

2
5

1

1

MLE k

EL

Var n r k
E n

n rVar





   
   

   
   

     (36) 

 

5 1E  when 1k  (see fig. 6 & 7) 

The relative efficiency of PL with respect to MLE  of   is 

 

 
    

2

6
2 1

MLE

PL

Var n
E

n r n rVar




 

   

       

(37) 

 

6 1E  when 2r  (see fig. 8) 

 

 

 
Fig. 2: Graph of Relative Efficiency of Entropy Loss Function with Respect to Squared Error Loss Function under Extended Jeffrey’s Prior for Different 

Values of k=1, 2, 3, 4 and r=1, 2 when n=15, 20, 30, 50 and 100 
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Fig. 3: Graph of Relative Efficiency of Entropy Loss Function With respect to Squared Error Loss Function under Extended Jeffrey’s Prior for Different 

Values of k=-1, -2, -3, -4 and r=1, 2 when n=15, 20, 30, 50 and 100 

 

 

 

 

 
Fig. 4: Graph of Relative Efficiency of Entropy Loss Function with Respect to Precautionary Loss Function under Extended Jeffrey’s Prior for Different 

Values of k=1, 2, 3, 4 and r=1, 2 when n=15, 20, 30, 50 and 100 
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Fig. 5: Graph of Relative Efficiency of Entropy Loss Function with Respect to Precautionary Loss Function under Extended Jeffrey’s Prior for Different 

Values of k=-1, -2, -3,- 4 and r=1, 2 when n=15, 20, 30, 50 and 100 

 

 
 

 
Fig. 6: Graph of Relative Efficiency of Entropy Loss Function with Respect to MLE under Extended Jeffrey’s Prior for Different Values of k=1, 2, 3, 4 
and r=1, 2 when n=15, 20, 30, 50 and 100 
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Fig. 7: Graph of Relative Efficiency of Entropy Loss Function with Respect to MLE under Extended Jeffrey’s Prior for Different Values of k=-1, -2, -3, -

4 and r=1, 2 when n=15, 20, 30, 50 and 100 

 

 
 

 
Fig. 8: Graph of Relative Efficiency of Squared Error with Respect to Precautionary, Squared Error with Respect to MLE and Precautionary Loss Func-

tion with Respect to MLE under Extended Jeffrey’s Prior for Different Values of k=1, 2, 3, 4 and r=1, 2 when n=15, 20, 30, 50 and 100 

 

3.4.3. Posterior risk 

Posterior risk under squared error loss function 

𝑅(�̂�SL, 𝛼) = 𝐸(𝐿(�̂�SL, 𝛼)) = 𝐸(𝛼2) − (𝐸(𝛼))
2
        (38) 

Therefore, the posterior risk of �̂�𝑆𝐿 is given by: 

𝑅(�̂�SL, 𝛼) =
(𝑛−𝑟+1)

𝑀2           (39) 

 

The posterior risk under entropy loss function is obtained as fol-

lows: 

    
ˆ ˆ

ˆ ˆ, , log 1

k
EL EL

EL ELR E L wE k
 

   
 

 
   
       
    
 

 



8 International Journal of Advanced Statistics and Probability 

 

 
1 1

log log 1 1
1 1

n k n r n r
w k n

n n r k n r k

      
      

               
(40)

 

 

and finally, the posterior risk under the precautionary loss function 

is obtained as follows: 

      ˆ ˆ ˆ, , 2R E EPL PL PL       
 

    

(41) 

 

Therefore, the posterior risk of �̂�𝑃𝐿, is given by: 

 
  2 1 1

ˆ , 2PL

n r n r n r
R

M M
 

        
  
        (42)

 

4. Numerical comparisons 

In this section, results of some numerical experiments were ob-

tained in order to compare the performances of the different esti-

mators proposed in the previous section with that of MLE. Exten-

sive Monte Carlo simulations were carried out to compare the 

performance of the different estimators with respect to biases and 

mean-squared errors (MSEs) for different sample sizes (n= 15, 20, 

30, 50 and 100) against different shape (α) parameter values of 

0.25, 0.5, 1.0, 1.5, 2.0 and 2.5. The Monte Carlo simulations were 

replicated 10000 times and averaged over. 

 

 
Table 1:Average Estimates and Corresponding MSEs (within Parenthesis) for n=15 and n=20 

n        Method       α= 0.25                             α= 0.5                             α=1.0                             α=1.5                         α=2                               α =2.5 

15 

MLE 

 

SL, r=1 
 

SL, r=2 

 
EL, k=1, r=1 

 

EL, k=-1, r=1 
 

EL, k=1, r=2 

 
EL, k=-1, r=2 

 

PL, r=1 
 

PL, r=2 
 

0.285558819 

(0.018256535) 

0.2678848 
(0.012869844) 

0.2492908 

(0.010196861) 
0.2493825  

(0.009956148) 

0.2668379  
(0.012572675) 

0.2328297  

(0.008393783) 
0.2487689  

(0.009990680) 

0.2756039  
(0.014211127) 

0.2590713  
(0.011110291) 

0.57003481 

(0.07320322) 

0.5366244 
(0.05163125) 

0.5008873 

(0.039860973) 
0.5021513  

(0.040652795) 

0.5340911  
(0.049947993) 

0.4668074  

(0.033880761) 
0.4988333  

(0.039378718) 

0.5520761  
(0.05704099) 

0.5196870  
(0.045807915) 

1.1428422 

(0.2865029) 

1.068335 
(0.20115365) 

1.0036856 

(0.16185738) 
1.0037792  

(0.16133926) 

1.076429  
(0.20691504) 

0.9287911  

(0.13066529) 
1.0038150  

(0.16389365) 

1.108530 
(0.22984743) 

1.036857  
(0.18227643) 

1.7143980 

(0.6457930) 

1.599569  
(0.44788102) 

1.493478  

(0.35509398) 
1.505973  

(0.18921062) 

1.607187  
(0.22902922) 

1.393919  

(0.17346072) 
1.498289  

(0.18949971) 

1.655058  
(0.51297245) 

1.558370  
(0.40794722) 

2.2883203 

(1.1616649) 

2.137036 
(0.79415345) 

1.990323 

(0.63012074) 
1.993356  

(0.63244653) 

2.140880  
(0.79776906) 

1.860516  

(0.52451453) 
2.000796  

(0.6301647) 

2.210046  
(0.91548190) 

2.064467  
(0.71430409) 

2.8564236 

(1.8123993) 

2.674835 
(1.2616158) 

2.493080 

(0.9988731) 
2.492782  

(0.9936253) 

2.688444  
(1.2853574) 

2.316363  

(0.8291436) 
2.510327  

(1.0225462) 

2.761320  
(1.4251135) 

2.572892  
(1.0847210) 

20 

MLE 

 
SL, r=1 

 

SL, r=2 
 

EL, k=1, r=1 

 
EL, k=-1, r=1 

 

EL, k=1, r=2 
 

EL, k=-1, r=2 

 
PL, r=1 

 

PL, r=2 
 

0.275584987 

(0.012057978) 
0.2628829 

(0.008711819) 

0.2501973 
(0.007302808) 

0.2493162  

(0.007178969) 
0.2627642  

(0.008469025) 

0.2357043  
(0.006259590) 

0.2490661 

(0.007198945) 
0.2708324  

(0.009712081) 

0.2554200  
(0.007856004) 

0.55015707 

(0.04849609) 
0.5260869 

(0.03425800) 

0.4980418 
(0.028107176) 

0.4993310  

(0.028474062) 
0.5275632  

(0.035018100) 

0.4735176  
(0.024612463) 

0.5008745  

(0.028797338) 
0.5386885  

(0.03764303) 

0.5119489  
(0.031231203) 

1.10877740 

(0.19585357) 
1.050669 

(0.13359683) 

1.0029012 
(0.11420968) 

0.9996719  

(0.11356939) 
1.055632  

(0.13645995) 

0.9476468  
(0.10225101) 

1.0042863 

(0.11592040) 
1.074402 

(0.14737573) 

1.025532  
(0.12482703) 

1.6563635 

(0.4330743) 
1.579870  

(0.30827029) 

1.501863  
(0.25317476) 

1.502225  

(0.25954071) 
1.578531  

(0.30420307) 

1.421842  
(0.22363876) 

1.500916  

(0.25842643) 
1.614923  

(0.33122354) 

1.543432  
(0.27971114) 

2.2164076 

(0.7773101) 
2.106317 

(0.54386593) 

1.994688 
(0.44993798) 

1.999950  

(0.45757285) 
2.116510  

(0.55907192) 

1.888918 
(0.40179501) 

2.000873  

(0.4617222) 
2.160947  

(0.60421021) 

2.050720  
(0.49823157) 

2.7721110 

(1.2144858) 
2.636085 

(0.8565167) 

2.498494 
(0.7164693) 

2.495339  

(0.6997264) 
2.639214  

(0.8543500) 

2.365678  
(0.6278139) 

2.494930  

(0.7191410) 
2.696056  

(0.9401784) 

2.574432  
(0.7840664) 

 

As expected, it is observed that the performances of both the Maximum likelihood and Bayesian estimates become better when sample 

size increases. Also the MLEs and Bayesian estimates become closer as sample size increases. The MSEs of the Bayesian estimate is 

lower than the MSEs of the MLEs. Hence, the Bayesian estimators are more stable than the MLEs. 

 
Table 2:Average Estimates and Corresponding MSEs (within Parenthesis) for n=30, 50 and 100 

n            Method                     α= 0.25                       α= 0.5                           α=1.0                        α=1.5                        α=2                           α =2.5 

30 

MLE 

 
SL, r=1 

 

SL, r=2 
 

EL, k=1, r=1 

 
EL, k=-1, r=1 

 

EL, k=1, r=2 
 

EL, k=-1, r=2 

 

0.266518752 

(0.007174223) 
0.2584255 

(0.005336049) 

0.2502024 
(0.004787001) 

0.2488482  

(0.004664762) 
0.2583532  

(0.005181345) 

0.2407661  
(0.004299593) 

0.2492276  

(0.004652067) 

0.53514531 

(0.02895296) 
0.5173756 

(0.02023931) 

0.5002525 
(0.018064346) 

0.5002077  

(0.018205672) 
0.5165333  

(0.020229817) 

0.4834828  
(0.016648594) 

0.4990409  

(0.017868968) 

1.07019192 

(0.11390888) 
1.038036 

(0.08161683) 

0.9993081 
(0.07282910) 

0.9997663  

(0.07376873) 
1.034430  

(0.08245872) 

0.9681059  
(0.06710460) 

0.9964926  

(0.07157098) 

1.6018373 

(0.2548194) 
1.555971  

(0.18462182) 

1.500592  
(0.16506706) 

1.499512  

(0.16352676) 
1.553988  

(0.18501567) 

1.445357  
(0.14762973) 

1.497007  

(0.16182772) 

2.1322716 

(0.4523064) 
2.069341 

(0.32741443) 

1.993739 
(0.28561993) 

1.999066  

(0.29164141) 
2.070084  

(0.33010988) 

1.926913  
(0.26748084) 

1.998780  

(0.2937815) 

2.6624329 

(0.7020738) 
2.586416 

(0.5110973) 

2.500098 
(0.4514712) 

2.508588  

(0.4519725) 
2.584417  

(0.5115743) 

2.421546  
(0.4106913) 

2.491784  

(0.4568782) 
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PL, r=1 

 

PL, r=2 
 

0.2622906  

(0.005725977) 

0.2532669  
(0.004944039) 

0.5274802  

(0.02173467) 

0.5068763  
(0.019277770) 

1.052114  

(0.08695072) 

1.017359  
(0.07602797) 

1.582793  

(0.19655293) 

1.524587  
(0.17308480) 

2.103336  

(0.34958272) 

2.034270  
(0.30535555) 

2.627797  

(0.5478624) 

2.544990  
(0.4842226) 

50 

MLE 

 

SL, r=1 
 

SL, r=2 

 
EL, k=1, r=1 

 

EL, k=-1, r=1 
 

EL, k=1, r=2 

 
EL, k=-1, r=2 

 

PL, r=1 
 

PL, r=2 

0.260090516 

(0.004171391) 
0.2540292 

(0.003095190) 

0.2487903 
(0.002922661) 

0.2497113  

(0.002857177) 
0.2548652  

(0.003034190) 

0.2442470  
(0.002710622) 

0.2495269  

(0.002827207) 

0.2565684  

(0.003173853) 

0.2511433  
(0.002975853) 

0.521780837 

(0.015863054) 
0.5106458 

(0.01139947) 

0.5005318 
(0.010603305) 

0.4998774  

(0.010424658) 
0.5100395  

(0.011293011) 

0.4882093  
(0.009890655) 

0.5012636  

(0.010526118) 

0.5152390  

(0.01182771) 

0.5048657  
(0.010793183) 

1.04228548 

(0.06246572) 
1.019428 

(0.04522238) 

1.0016037 
(0.04219147) 

1.0013999  

(0.04187141) 
1.022284  

(0.04522616) 

0.9790828  
(0.04026443) 

1.0021887  

(0.04273875) 

1.031658  

(0.04745128) 

1.011027  
(0.04391043) 

1.55944646 

(0.13935669) 
1.528757  

(0.10043913) 

1.500484  
(0.09481906) 

1.500827  

(0.09480684) 
1.535469  

(0.10352546) 

1.470826  
(0.08960196) 

1.499406  

(0.09339190) 

1.544358  

(0.10594323) 

1.517659  
(0.09817375) 

2.07742220 

(0.24894747) 
2.036420 

(0.17924122) 

2.001939 
(0.17085560) 

2.000067  

(0.16783165) 
2.039084 

(0.18070001) 

1.955461  
(0.16044452) 

1.997564  

(0.1700191) 

2.065079  

0.19040767) 

2.020152  
(0.17343730) 

2.6014566 

(0.3888973) 
2.555916 

(0.2854233) 

2.499811 
(0.2622421) 

2.497600  

(0.2637163) 
2.555111 

(0.2833150) 

2.448781  
(0.2514753) 

2.498958  

(0.2611444) 

2.576615  

(0.2929627) 

2.533191  
(0.2752971) 

100 

MLE 

 

SL, r=1 
 

SL, r=2 

 
EL, k=1, r=1 

 

EL, k=-1, r=1 
 

EL, k=1, r=2 

 
EL, k=-1, r=2 

 
PL, r=1 

 

PL, r=2 

0.252916501 

(0.002443436) 
0.2503591 

(0.001848853) 

0.2478385 
(0.001859602) 

0.2483971  

(0.001738842) 
0.2507855  

(0.001824803) 

0.2453083  
(0.001821130) 

0.2479325  

(0.001812998) 
0.2516830  

(0.001946571) 
0.2493552  

(0.001841481) 

0.509738443 

(0.007234328) 
0.5049108 

(0.00526002) 

0.4996020 
(0.005132773) 

0.5004839  

(0.005169403) 
0.5048234  

(0.005349108) 

0.4946687  
(0.004990276) 

0.5000948  

(0.005137149) 
0.5066952  

(0.00544743) 
0.5031723 

(0.005228682) 

1.01985270 

(0.02881461) 
1.010304 

(0.02130580) 

1.0011630 
(0.02066969) 

0.9989757  

(0.02051745) 
1.010069  

(0.02135144) 

0.9901949  
(0.02006835) 

0.9979656  

(0.02010039) 
1.014331  

(0.02168572) 
1.004760  

(0.02065068) 

1.53025829 

(0.06510115) 
1.513652  

(0.04797307) 

1.500530  
(0.04588683) 

1.499899  

(0.04598710) 
1.514847  

(0.04812344) 

1.482126  
(0.04488398) 

1.499204  

(0.04587503) 
1.523015  

(0.04894979) 
1.509310  

(0.04729740) 

2.03867602 

(0.11608332) 
2.022072 

(0.08485918) 

2.002233 
(0.08227402) 

2.001247  

(0.08233682) 
2.020954  

(0.08526826) 

1.980570  
(0.08039079) 

1.999122  

(0.0816968) 
2.033072  

(0.08781563) 
2.007441  

(0.08233816) 

2.55020387 

(0.18134812) 
2.528728 

(0.1343140) 

2.496723 
(0.1266430) 

2.500503  

(0.1285524) 
2.528189  

(0.1339325) 

2.470485  
(0.1261188) 

2.503251  

(0.1285189) 
2.540273  

(0.1346011) 
2.513429  

(0.1299110) 

 

The estimates under the extended Jeffrey’s prior is more stable 

than the MLEs since the MSEs under the extended Jeffrey’s prior 

is smaller than the MSEs. under MLEs. Under the extended Jef-

frey’s prior, the MSEs when r=2 were found to be smaller than the 

MSEs when r=1. Hence, the estimates are more stable when r=2 

than when r=1. 

It is further observed that the Bayesian estimators under entropy 

and squared error loss functions perform better than the Bayesian 

estimates under the precautionary loss function and the estimates 

under the entropy loss function have a lower mean square error 

than the estimates under the squared error loss function. 

Figs. 2-8 shows the Relative Efficiency of estimators for different 

values of n, r and k. The graphs provide an impression on how the 

efficiencies change with changes in the values of n, r and k. The 

graphs are plotted using efficiency against sample sizes. It is ob-

served from Figs. 2, 4 and 6 that as sample size increases, the 

efficiency decreases while the efficiencies increase when k ≤ −2 

in Fig. 3 and in Fig 5 when k ≤ −3. In Fig. 7, the efficiencies 

fluctuate when k is between -3 and -1 but increase when k ≤ −4. 

It is further observed that the rate of decrease/ increase in these 

graphs varies for different values of k and as sample size becomes 

very large, the effect of k on efficiency is negligible. 

Fig. 8 reveals the relative efficiency of α̂SL with respect to α̂PL of 

α, α̂SL with respect to α̂MLE of α and α̂PL with respect to α̂MLE of 

α. It is observed that the relative efficiency of α̂SL with respect to 

α̂PL  of α  is always greater than one when r ≥ 1  and decreases 

when sample size is large. The relative efficiency of α̂SL  with 

respect to α̂MLE of α and that of α̂PL with respect to α̂MLE of α are 

greater than one when r ≥ 2. When r = 1, the relative efficiency 

of α̂SL with respect to α̂MLE of α is equal to one and is less than 

one for the relative efficiency of α̂PL with respect to α̂MLE of α. 

5. Conclusion 

In this paper, Bayes estimation of the shape parameter of general-

ized Rayleigh distribution is considered. Non-informative prior is 

assumed under the assumption of squared error, entropy and pre-

cautionary los functions. Comparison between the performances 

of the MLEs and the Bayes estimators were carried out and it was 

observed that Bayes estimator under the Entropy loss function is 

better than the Bayes estimators under the squared error and pre-

cautionary loss functions and that of MLEs. 
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