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Abstract

Pearson defined the fourth standardized moment of a symmetric distribution as its kurtosis. There has been much
discussion in the literature concerning both the meaning of kurtosis, as well as the effectiveness of the classical
sample kurtosis as a reliable measure of peakedness and tail weight. In this paper, we consider an alternative
measure, developed by Crow and Siddiqui [1], used to describe kurtosis. Its value is calculated for a number of
common distributions, and a derivation of its asymptotic distribution is given. Simulations follow, which reveal an
interesting connection to the literature on the ratio of normal random variables.
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1. Introduction

Consider X1, . . . , Xn ∼ F , where F is an absolutely continuous cdf with density f . In practice, it can be important
either to classify data as heavy tailed, or to compare the tail heaviness and/or peakedness of two different samples.
The primary descriptor for these purposes is the kurtosis. There has been debate (see[2]) as to whether the
population kurtosis (and its variants), essentially defined as the fourth standardized moment

β2 =
µ4

σ4
=

E [X − E(X)]
4[

E [X − E(X)]
2
]2

is a reliable way to describe the movement of probability mass from the “shoulders” to the peak and tails of a
density function. If so, how should it be estimated and interpreted?

Much work has been done in the classical theory in the way of discussion on kurtosis. Fisher himself recommended
its use as a means to determine whether a sample mean or median is preferable as an estimate for a location
parameter see [3]. The desire to use the normal distribution (which has β2 = 3) as a baseline recommends the
definition of the excess kurtosis, β′

2 = β2 − 3. The law of large numbers motivates the asymptotically unbiased
estimator

β̂2 =
1
n

∑n
i=1

(
Xi − X̄

)4[
1
n

∑n
i=1

(
Xi − X̄

)2]2 ,
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with β̂′
2 = β̂2−3 an estimator for the excess kurtosis. However, being essentially a function of the sample mean and

sample deviations, β̂2, and β̂′
2 can be sensitive to the outlying observations often characteristic of data from heavy

tailed distributions. It has been noted that notions of risk and variation that arise in applications when making data
based decisions must take into account not only the variance, but also higher order characteristics of the shape of
the underlying distribution (see [4] for one such application in economics). Thus robust measures of tail heaviness
and peakedness based on quantiles have been developed. These measures provide a richer understanding of heavy
tailed data and distributions in a manner analogous to the way the sample median is preferable to the sample mean
for the Cauchy distribution (see [5]). The most popular of these take the form∑n

i=1 λ1iF
−1(αi)−

∑n
i=1 λ2iF

−1(1− αi)∑n
i=1 λ3iF−1(γi)−

∑n
i=1 λ4iF−1(1− γi)

.

One such alternative statistic introduced by Hogg [6], is

Q =
Ū(.05)− L̄(.05)

Ū(.5)− L̄(.5)
,

where Ū(α) and L̄(α) are the average of the upper and lower nα order statistics respectively.
Another statistic in this class was developed by Crow and Siddiqui [1]:

βCS =
F−1(0.95)− F−1(0.05)

F−1(0.75)− F−1(0.25)
. (1)

Using Ballanda and MacGillivray’s [7] notion of a spread function of a cdf F ,

SF (u) = F−1(0.5 + u)− F−1(0.5− u) for 0 ≤ u < 1
2 ,

we can write

βCS =
SF (0.45)

SF (0.25)
.

Ballanda and MacGillivray [2] give examples of more statistics of this type and describe how they are used, including
detecting heavy tails, ranking distributions in order of tail thickness, and testing for normality.

A rescaling similar to that imposed on the classical estimator guaranteeing a value of zero for the normal
distribution motivates the definition β′

CS = βCS − 2.44. It should be noted that both [6] as well as [4] use a slightly

modified definition of β̂CS , with numerator SF (0.475) replacing SF (0.45).

Note that the denominator is the interquartile range (IQR). It has been noted in [8] that for distributions with
thicker tails, IQR based estimates for the population variance can be more efficient. Related to this is the fact that
spread functions are more informative when exploring the relative tail thickness of various distributions, and can
be used to relate kurtosis for skewed distributions to that of their symmetrized versions (see [7]). These results
recommend βCS as a measure of kurtosis worthy of further study.

2. Calculating and Estimating βCS

2.1. β′
CS for Some Common Distributions

We now consider the value of β′
CS for some common distributions. Much has been made in the literature concerning

the shortcomings of β′
2 as a comparative measure of peakedness and/or tail thickness. Without getting into the

details of that discussion, we direct the reader to [7] for a thorough discussion on the topic. Table 1 lists the excess
kurtosis values for some distributions using the traditional as well as the Crow and Siddiqui notions of kurtosis. As
kurtosis is not impacted by location and scale, the parameters that appear in the lower part of the table are shape
parameters. Figures 1 and 2 indicate the relationship between the kurtosis and the shape parameter for both β′

2

and β′
CS . It is interesting to note the asymptotic nature of the kurtosis measures for the distributions that tend

toward symmetry as the shape parameter increases, as well as the similarity in shape for the two notions of kurtosis
for each of the selected distributions.
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Table 1: Excess Kurtosis Measures

Distribution β′
2 β′

CS

Exponential(σ) 6 0.241
Laplace 3 0.89
Uniform −1.20 −0.64
Logistic 1.20 0.24
Cauchy ∞ 3.88

Weibull(σ, ξ)
−6Γ4

1+12Γ2
1Γ2−3Γ2

2−4Γ1Γ3+Γ4

[Γ2−Γ2
1]

2

[−ln(0.05)]1/ξ−[−ln(0.95)]1/ξ

[−ln(0.25)]1/ξ−[−ln(0.75)]1/ξ
− 2.44

GEV (µ, σ, ξ)
g4−4g1g3+6g2g

2
1−3g4

1

(g2−g2
1)

2 − 3 [−ln(0.05)]−ξ−[−ln(0.95)]−ξ

[−ln(0.25)]−ξ−[−ln(0.75)]−ξ − 2.44

lnN(µ, σ2) e4σ
2

+ 2e3σ
2

+ 3e2σ
2 − 6 sinh 1.645σ

sinh 0.674σ − 2.44

Pareto(α, β) 6(α3+α2−6α−2)
α(α−3)(α−4)

(0.05)−1/α−(0.95)−1/α

(0.25)−1/α−(0.75)−1/α − 2.44

N(µ, σ2) 0 0
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Figure 1: Plots of excess kurtosis vs shape parameter for some distributions

2.2. Estimating βCS

The un-centered parameter βCS given in (1) may be viewed as a function of quantiles, and a reasonable statistic
that may be used to estimate it involves replacing the population quantiles with one of several quantile estimators
(see [9]). In this paper, we use the classical estimator for F−1(α) = ξα, i.e.

ξ̂α =

{
X(bnαc), if np is an inetger

X(bnαc+1), otherwise
(2)

This yields the statistic

β̂CS =
ξ̂0.95 − ξ̂0.05

ξ̂0.75 − ξ̂0.25
. (3)

Yang [10] stated in simulation studies with the Cauchy distribution that some of the more computationally
intensive quantile statistics, such as the kernel quantile estimator were outperformed by the sample quantile. In
the next section we develop the properties of β̂CS that will lead to a discovery of its asymptotic distribution.
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3. Asymptotic Distribution of β̂CS

The following is a well known statement concerning the asymptotic normality of (2). See [8] for a statement and
development of the theorem.

Theorem 3.1 LetXki:n, 1 ≤ i ≤ r, be r specified order statistics, and suppose, for some 0 < q1 < q2 < · · · < qr < 1,
that

√
n
(
ki

n − qi
)
→ 0 as n → ∞. Then

√
n[(Xk1:n, Xk2:n, . . . , Xkr:n)− (ξq1 , ξq2 , . . . , ξqr )] → Nr(0,Σ), (4)

where for i ≤ j, σij =
qi(1−qj)

f(ξqi )f(ξqj )
, provided f(ξqi) exists and is > 0 for each i = 1, 2, . . . , r.

Thus in particular, we can establish the following result concerning the numerator and denominator of β̂CS , and
generally any two values of the spread function, SF (α − 0.5) and SF (γ − 0.5) obtained from the same random
sample.

Corollary 3.2 Let Y =

(
ξ̂α − ξ̂1−α

ξ̂γ − ξ̂1−γ

)
and ξ =

(
ξα − ξ1−α

ξγ − ξ1−γ

)
then

√
n (Y− ξ) → N (0,Υ)

where Υ =(
α(1−α)
f2(ξα) − 2(1−α)2

f(ξα)f(ξ1−α) +
α(1−α)
f2(ξ1−α)

α(1−γ)
f(ξα)f(ξγ)

− αγ
f(ξα)f(ξ1−γ)

− (1−α)(1−γ)
f(ξ1−α)f(ξγ)

+ (1−α)(γ)
f(ξ1−α)f(ξ1−γ)

α(1−γ)
f(ξα)f(ξγ)

− αγ
f(ξα)f(ξ1−γ)

− (1−α)(1−γ)
f(ξ1−α)f(ξγ)

+ (1−α)(γ)
f(ξ1−α)f(ξ1−γ)

γ(1−γ)
f2(ξγ)

− 2(1−γ)2

f(ξγ)f(ξ1−γ)
+ γ(1−γ)

f2(ξ1−γ)

)

This yields a correlation coefficient between the numerator and denominator of β̂CS of

ραγ =
α(1− γ)f(ξ1−α)f(ξ1−γ)− αγf(ξ1−α)f(ξγ)− (1− α)(1− γ)f(ξα)f(ξ1−γ) + (1− α)(γ)f(ξα)f(ξγ)[
α (f2(ξα) + f2(ξ1−α))− α2 (f(ξα) + f(ξ1−α))

2
] [

γ (f2(ξγ) + f2(ξ1−γ))− γ2 (f(ξγ) + f(ξ1−γ))
2
] .

Proof: Define the following

ξ̂ =


ξ̂1−α

ξ̂1−γ

ξ̂γ
ξ̂α

 and A =

(
0 −1 1 0
−1 0 0 1

)

where the elements of ξ̂ are chosen so that the probabilities in the subscripts are in increasing order. The corollary
follows from elementary methods and the theorem, since Y = Aξ̂ and Υ = AΣAT . �

We will denote the variances of the numerator and denominator of β̂CS , which are the elements on the main
diagonal of Υ, as σ2

α and σ2
γ , respectively.

Thus both the numerator and denominator of β̂CS are asymptotically normally distributed with means and
variances indicated by the above corollary, taking α = 0.75 and γ = 0.95. It is known that the convergence in law
of the quantile function is relatively slow. This being said, the corollary indicates that for a large enough sample
size, we expect β̂CS to be approximately distributed as the ratio of two correlated normal variates.

A number of authors have explored the nature of the distribution of the ratio of normals, with a variety of mo-
tivations. Both Marsaglia ([11],[12]) and Pham-Gia et. al [13], give closed form expressions of the resulting density

and distribution functions. The most applicable form results from the fact that the denominator of β̂CS , i.e. the
IQR, is a positive random variable for nontrivial large samples. We apply Marsaglia’s notation to yield the following
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Proposition 3.3 Under the assumptions of the theorem, the density function of β̂CS is asymptotically equivalent
to

g(x) = φ

 µαx− µγ√
σ2
γ − 2cx+ σαx2

 µασ
2
α − cµγ + (µγσ

2
α − cµα)x

(σ2
γ − 2cx+ σ2

αx
2)3/2

(5)

where φ represents the standard normal pdf, and c = ραγσασγ represents the covariance between the numerator and

denominator of β̂CS.

Depending on the values of the parameters, this distribution can be unimodal or bimodal (although in many of the
bimodal cases, the second mode is very far to the left of the primary mode, and often encompasses a relatively trivial
amount of area). Many of the unimodal instances actually end up being surprisingly close to familiar distributions.
As stated in [12], “for many practical situations, the densities of the ratios of normals... may be considered to have
the familiar kinds of shapes often seen in Statistics- normal, t, chi, etc”. In the simulations that follow, we explore
the distributional properties of β̂CS , under normal sampling, and will see that its asymptotic distribution is itself
approximately normal.

4. Simulations

In this section, we assume we have a random sample, X1 . . . , Xn ∼ N(µ, σ2). The first fact we sought to establish

was that the β̂CS statistic indeed followed a distribution with density given in (5). The corresponding cdf is

G(x) = Φ

 µαx− µγ√
σ2
γ − 2cx+ σαx2

 (6)

where Φ represents the standard normal cumulative distribution function. One way to verify this empirically is
given in the following procedure:

1. Generate M standard normal simple random samples of size n.
2. For the jth sample, calculate the β̂CS value, j = 1 . . .M .
3. Evaluate the cdf G(x) in (6) at the M values obtained in step 2.
4. Employ a goodness-of-fit test to compare the outcome from step 3 to the uniform distribution on (0, 1).

If the goodness-of-fit test finds the distributions sufficiently close, we can conclude that β̂CS follows the distri-
bution G(x). We employed a Chi-Square goodness of fit test, as well as the Kolmogorov-Smirnoff test to get an
indication as to what number of replications were large enough to yield agreement with the theoretical distribution
(as should be expected, M had a much more discernible impact on the results than n, though a larger sample size
had a stabilizing effect on the distribution of p-values). The results of Table 2 were obtained for simulations with
a sample size of n = 50, 000.

Table 2: Goodness of Fit p-Values

M Chi-Sq K-S
100 0.1320 0.2499
500 0.9999 0.2604
1000 0.9999 0.2422

It is clear that the Monte Carlo sample of β̂CS starts behaving close to (6) relatively quickly, with replication
sizes of a little less than 200 leading to very high p-values for the Chi-Square goodness of fit test. This is encouraging,
given it is known that the sample quantile function converges to normality at a sluggish pace.

The question now remains, does this distribution take an asymptotic form that is approximately equivalent to
a familiar density?

We conducted simulations to compare g(x), the theoretical pdf of β̂CS , i.e. (5), with the normal pdf, f(x) with
parameters estimated by their corresponding maximum likelihood estimators. The results for three simulations may
be seen in Fig. 2 to 4. There seems to be greater agreement with the normal distribution as the number of trials
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increases. The results of the Shapiro-Wilk and Shapiro-Francia tests for normality are given in Table 3. It should
be noted that any given realization of the Monte Carlo simulations may lead to an acceptance or rejection of the
null hypothesis of normality for the β̂CS statistic. The simulations presented were typical for their M values.
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Figure 2: Simulation with M = 100 and n = 1000
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Figure 3: Simulation with M = 500 and n = 1000
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Figure 4: Simulation with M = 1000 and n = 1000

Table 3: Normality Testing p-Values

M S-F S-W
100 0.2353 0.1824
500 0.0459 0.0534
1000 0.1878 0.1310

5. Conclusion

Kurtosis is a foundational parameter used to describe the shape of statistical distributions from the earliest days of
the discipline. In spite of its potential for comparing and categorizing distributions, the classical notion of kurtosis,
defined by β2 has been shown to have some drawbacks as a measure of the location and scale free movement of
probability mass from the “shoulders” to the peak and tails of a probability density. Crow and Siddiqui’s βCS

kurtosis parameter is based on functions of quantities with desirable consistency and efficiency properties for heavy
tailed distributions. The fact that for some important cases the corresponding statistic β̂CS has an asymptotic
distribution that is approximately normal indicates that this parameter can be increasingly used to determine and
discover properties of distributions in both a theoretical as well as a data analytic framework.
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