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Abstract 

 

In this article, an alternative to ordinary least squares (OLS) regression based on analytical solution in the Statgraphics 

software is considered, and this alternative is no other than quantile regression (QR) model. We also present goodness 

of fit statistic as well as approximate distributions of the associated test statistics for the parameters. Furthermore, we 

suggest a goodness of fit statistic called the least absolute deviation (LAD) coefficient of determination. The procedure 

is well presented, illustrated and validated by a numerical example based on publicly available dataset on fuel 

consumption in miles per gallon in highway driving. 
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1. Introduction 

In most regression problems, interest lies in studying the relationship between two or more variables, this is because it is 

an important aspect in the philosophy of science to study the concept of relationship between varying qualities or 

events. The classical regression analysis procedures normally focus on the mean; that is to say, the relationship between 

the response and predictor variable(s) is summarized by the conditional mean of the response for each fixed value of the 

predictors. The idea of modeling and fitting the conditional-mean is at the core of a broad family of regression-

modeling approaches, including the familiar simple linear regression, multiple linear regression models with 

“heteroskedastic” errors using weighted least squares as well as nonlinear regression models. 

Robust estimation refers to the ability of a procedure to produce an estimate that is highly insensitive to model 

misspecifications. Hence, robust estimates should be good under wide range of possible data generating distributions. In 

regression context, under the normality assumptions, the errors are assumed to be independent, identically and normally 

distributed random variable; the OLS is believed to be one of the most efficient among the classical estimation 

procedures. However, once the normality assumption is dropped, it is possible to find estimation methods that are more 

efficient than the OLS. Specifically, this is true when the data generating process has fat tails resulting to several 

outliers. In these cases, the OLS becomes highly unstable and sample dependent because of the quadratic weighting, 

which makes the procedure very sensitive to outliers. 

QR was first introduced by Koenker and Bassett [7] and is intended to offer a comprehensive strategy for completing 

the regression picture (Koenker, [6]). Unlike OLS, QR does not impose any strict parametric assumptions. Response 

data in the tails, or outer quantiles, of a distribution may behave differently than data in the inner quantiles of the 

distribution in response to the predictor variables. 

As with multiple linear regressions (MLR), QR has many applications, and was originally developed for statistical use, 

as the first QR publication was in Econometrics (Koenker and Bassett, [7]) where it was insightfully envisioned a more 

robust regression approach capable of modeling conditional quantile functions beyond the classical OLS approach to 

model building. Koenker and Bassett [7] noted that “estimators are suggested, which have comparable efficiency to 

least squares for Gaussian linear models while substantially outperforming the least-squares estimator over a wide class 

of non-Gaussian error distributions”. 

http://creativecommons.org/licenses/by/3.0/
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QR also goes beyond the location shift model to determine the effect of covariates on the shape and scale of the entire 

response distribution. The spacing of the quantile lines indicates whether the distribution is skewed to the right or left. 

Quantiles are robust in relation to handling outliers (an interested reader should consult Lee [8] for further details).  

Sensitivity of an estimator to departures from its distributional assumptions is another important issue. The sample 

mean can be adversely affected even by a single observation if it is sufficiently far away from the rest of the data points. 

On the other hand, the effect of such a distant observation on the sample median (middle quartile) is bounded no matter 

how far the outlying observation is. Other quantiles enjoy similar property as the effect of outlying observations on the 

t-th sample quantile is bounded and QR inherits this robustness property Cizek [4]; hence QR estimates are reliable in 

the presence of extreme outliers. Chen [3] also investigated this property in a survey by considering the data of body 

mass index (BMI) against age for up to 8,280 men over a four year (1999-2002) period. 

Some other interesting applications of QR include those in ecological and environmental studies by Cade and Noon [2] 

in which some prediction intervals were estimated. As noted by Cade and Noon [2], it is extremely difficult to identify, 

document, and measure every ecological independent variable; as a result, using classical methods such as OLS may 

prove to be difficult in arriving at a statistically significant model. However, models built using only portions of the 

response variable distribution may be more useful (Cade and Noon, [2]). Interestingly, Green and Kozek [5] use an 

approximate QR method to model weather data. These models are approximate because they are formed by applying 

quantile functions onto parametric models. Parametric weather distributions are modeled over time and regression 

quantiles are then applied to the models. Five-curve summaries were obtained for the probability distributions of the 

weather data and the results were quite interesting. 

Buhai [1] provided an introduction to QR, discussing basic models and interpretations as well as computational and 

theoretical aspects of the algorithm, by concentrating only on two applications of QR which are: survival analysis and 

recursive structural equation models. Buhai [1] was able to articulate a thorough summary of each. 

Bayesian approach to quantile regression is another current area that has attracted a lot of interest as it has shown two 

obvious advantages over classical inference. First, Bayesian approach does not rely on approximations to asymptotic 

variances of the estimators thereby leading to nearly exact estimates. Second, it provides estimation and forecasts, 

which fully take into account parameter uncertainty (Yu and Zhang, [11]). The idea of Bayesian QR has been explored 

by Yu, Kerm and Moyeed, [10]. 

Conventional regression models have been used in numerous statistical downscaling studies and are the cornerstone of 

software packages such as SDSM (Wilby et al. [9]). Despite their popularity, these conditional mean models have some 

limitations. When interest is in the quantiles of the conditional distribution rather than the mean, standard regression 

models may fail to provide the desired information because the assumption of homogenous variance may not be 

justified. Also, it is common practice to assume that regression residuals are normally distributed but this may not be a 

valid assumption, even after application of some normalizing transformation. The non-normality of residuals may not 

be a serious issue if the only interest is in the mean of the conditional distribution. However, when interest is in the tails 

of the conditional distribution, the distribution of residuals becomes important. We also note that conventional 

regression models can be sensitive to outliers. While methods are available to deal with outliers, it is an issue that is 

often not properly dealt with in practice. 

This paper presents a QR approach which provides different estimator for each quantile, hence the main aim of the 

study is to investigate the robustness of QR as an alternative to OLS, especially when the number of regressors gets 

larger. The rest of this paper is organized in such a way that, the next section gives a brief background of the 

development of QR model. In section three, we provide a procedure for finding the estimate of the parameters of the 

models after which a numerical example and discussion of the results followed. Section four provides some concluding 

remarks.  

2. Materials and methods 

The data used in this research was obtained from statgraphics software. The response variable is miles per gallon and 

the independent variables are Horsepower, Weight (pounds), Width (inches), Length, Engine size and Wheel base 

(inches). The data set is publicly available at: http://www.csus.edu/indiv/v/velianitis/ds101/schedule.htm. In order to 

demonstrate the analytical power of QR, we have used statgraphics and Eviews (a complete programming package) to 

analyze the miles per gallon in highway driving data. 

 

2.1. Multiple linear regressions 
 

The general linear regression model can be expressed as 
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The OLS method chooses the 's in equation 1 so that the sum of the squares due to errors, 2
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i
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

  is minimized. The 

model in terms of the observations, Equation 1, may be written in matrix notation as: 
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Now we wish to find the vector of least squares estimators of the parameters, β̂  that minimizes: 

   2
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i
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     ε ε y Xβ y Xβ  and this can be obtained by: 
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 β XX Xy
                                                                                                                                                     (2)

 

 

Thus, the fitted regression model can be obtained by:  

ˆˆ y Xβ                                                                                                                                                                             (3) 

 

 

2.2 Quantile regression 
 

The model for linear quantile regression p-variables problem is given by: 

  y Xβ ε  

 

where y  a column vector of responses, X  is the regressor matrix of order xpn ,  β  is the vector of p unknown 

parameters for the generic conditional quantile θ and ε  is the vector of n unknown errors. 

 

The simpler notation β will be used to refer to the conditional median case having θ = 0.5. The least absolute estimates 

̂  for the conditional median is obtained as the solution of the minimization problem: 

min

  y Xβ                                                                                                                                                                         (4) 

Let us denote  x


 as the non-negative part of x. By posing: 
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The original L1 problem can be formulated as: 
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Furthermore, let  β = X XI - I  and 
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Such reformulation of the problem leads to a standard linear programming problem. The primal formulation of such a 

problem (equational form) is: 

 

.
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Therefore, its dual counterpart is: 
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Bearing in mind the main result of linear programming, that is the theorem for which the solutions of such a 

minimization problem have to be searched in the vertices of the simplex, by a simple position, the above problem can 

be reformulated as follows: 
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In fact the equality  X z = 0  can be transformed as follows: 
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permits the expression of the dual problem as follows: 
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The role of 1/2 in equation (4) is seemingly neutral, but it is the key to the generalization to the other conditional 

quantiles. In fact, the minimization problem for the conditional median, becomes for the generic θ-th conditional 

quantile: 
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A similar set of steps leads to the following dual formulation for the generic quantile regression problem: 
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where (1 − θ) plays the same role that 1/2 played for the median formulation. 
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2.3 Quantile regression goodness of fit 
 

It follows that the equivalent of the residual sum of squares is, for each considered quantile θ, the residual absolute sum 

of weighted differences between the observed dependent variable and the estimated quantile conditional distribution. 

For the simplest regression model with one explanatory variable, we’ve: 

 

     
0 1

ˆ ˆˆQ y x x                (6) 

 

The residual absolute sum of weighted differences is the corresponding minimizer 
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The equivalent of the total sum of squares of the dependent variable is, for each considered quantile θ, the total absolute 

sum of weighted differences between the observed dependent variable and the estimated quantile: 
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 The obtained pseudo R
2
 can be considered as an index comparing the residual absolute sum of weighted differences 

using the selected model with the residual absolute sum of weighted differences using a model with only the intercept. 

The obtained pseudo R
2
 can be computed as follows: 

 

2 RASW
1

TASW
pseudo R 





   

 

As RASWθ is always less than TASWθ, the pseudo 2R  ranges between 0 and 1. It is worth noting that the index cannot 

be considered a measure of the goodness of fit of the whole model because it is related to a given quantile of size θ. In 

practice, for each considered quantile, the corresponding pseudo 2R  can be evaluated at a local level, thereby indicating 

whether the presence of the covariates influences the considered quantile. The pseudo 2R  can also be used to assess the 

model with the best goodness of fit between nested models.  

3. Results and discussions 

In previous sections, we described the two regression methods considered in this article; while in this section, we 

conduct an analysis using numerical data obtained from statgraphics software package to investigate a good alternative 

to ordinary least square. The analysis was performed using Eviews statistical package. 

 

3.1. Results on OLS and QR as the number of regressors increases 
 

Table 1: Comparison for Simple OLS and QR Methods 

 OLS Q(0.25) Q(0.50) Q(0.75) 

Parameter Estimate 
P-

Values 
Estimate P-Values Estimate P-Values Estimate P-Values 

Constant 79.0963 0.0000 73.9091  0.0000 73.2857 0.0000 75.5714 0.0000 

Wheelbase -0.4811  0.0000 -0.4545  0.0000 -0.4286 0.0000 -0.4286 0.0000 

 

Important Regression Statistics 

 R
2
 =  0.3787 pseudo R

2
 = 0.1822 pseudo R

2
 = 0.2295 pseudo R

2
 = 0.2772 

 

 
R

2
-Adj = 0.3719 R

2
-Adj = 0.1732 R

2
-Adj = 0.2210 R

2
-Adj = 0.2693 

Dependent variable: MPG Highway 

 

From table 1 the output of the results of fitting a linear model to describe the relationship between MPG and wheelbase. 

In determining whether the model can be simplified, notice that the highest P-value on the independent variables is 

0.0000, belonging to Wheelbase. Since the P-value is less than 0.05, that term is statistically significant at the 95% 

confidence level. Consequently, we may not want to remove any variable from the model, despite this our quantile 

regression differs with each of its coefficient estimates showing significance variation with each quantile. This suggests 
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that a benefit exists to utilizing quantile regression to examine the impact of our independent variable on our dependent 

variable MPG. From our model explaining MPG through wheelbase, the impact of wheelbase on MPG showed a 

decrease in MPG per unit increase in wheelbase. The OLS R
2
 statistic indicates that the model as fitted explains 37.78% 

of the variability in MPG Highway and R0.75-squared statistic indicates that the model as fitted explains only 27.72% of 

the variability in MPG Highway. 

 
Table 2: Comparison for Multiple OLS and QR Methods 

 OLS Q(0.25) Q(0.50) Q(0.75) 

Parameter Estimate 
P-

Values 
Estimate P-Values Estimate P-Values Estimate P-Values 

Constant 68.6614 0.0000 65.9155 0.0000 57.6544 0.0000 63.3398 0.0000 

Wheelbase -0.3218 0.0000 -0.3383 0.0001 -0.2234 0.0018 -0.2471 0.0003 

Horsepower -0.0426 0.0000 -0.0303 0.0002 -0.0375 0.0000 -0.0483 0.0000 

 

Important Regression Statistics 

 R
2
 = 0.5124 Pseudo R

2
 =  0.2773 Pseudo R

2
 = 0.3161 Pseudo R

2
 = 0.3528 

 R
2
-Adj = 0.5016 R

2
-Adj =  0.2612 R

2
-Adj = 0.3009 R

2
-Adj = 0.3384 

Dependent variable: MPG Highway 

 

From table 2 the results of fitting a MLR and QR model to describe the relationship between MPG Highway and 2 

independent variables. In determining whether the model can be simplified, notice that the highest P-value on the 

independent variables is 0.0000, belonging to wheelbase and horsepower. Since the P-value is less than 0.05, that term 

is statistically significant at the 95% confidence level. Consequently, we probably don't want to remove any variables 

from the model, despite this our quantile regression differs with each of its coefficient estimates showing significance 

varying with each quantile. This suggests that a benefit exists to utilizing quantile regression to examine the impact of 

our independent variable on our dependent variable MPG. 

From our model explaining MPG through wheelbase, the impact of wheelbase on MPG showed a decrease in MPG per 

unit increase in wheelbase while horsepower will remain constant and the impact of horsepower on MPG also show a 

decrease in MPG per unit increase in horsepower while wheelbase will remain constant.  

The OLS R
2
 statistic indicates that the model as fitted explains 51.24% of the variability in MPG Highway. The 

adjusted R
2
 statistic, which is more suitable for comparing models with different numbers of independent variables, is 

50.16%. The R0.75-squared statistic indicates that the model as fitted explains 35.28% of the variability in MPG 

Highway. The adjusted R-squared statistic, which is more suitable for comparing models with different numbers of 

independent variables, is 33.84%. 

 
Table 3: Comparison for Multiple OLS and QR Methods 

 OLS Q(0.25) Q(0.50) Q(0.75) 

Parameter Estimate 
P-

Values 
Estimate P-Values Estimate P-Values Estimate P-Values 

Constant 26.2699 0.0009 31.3873 0.0042 29.8301 0.0030 28.3395 0.0084 

Wheelbase 0.3563 0.0012 0.2256 0.1199 0.2678 0.0530 0.3396 0.0287 

Horsepower 0.0116 0.2526 -0.0107 0.2657 0.0070 0.5668 -0.0015 0.9190 

Weight -0.0117 0.0000 -0.0095 0.0000 -0.0096 0.0000 -0.0108 0.0000 

 

Important Regression Statistics 

 R
2
         = 0.6965 pseudo R

2
 = 0.4136 pseudo R

2
 = 0.4422 pseudo R

2
 = 0.4792 

 R
2
-Adj  =  0.6863 R

2
-Adj = 0.3938 R

2
-Adj = 0.4234 R

2
-Adj = 0.4617 

Dependent variable: MPG Highway 
 

From table 3 the results of fitting a MLR and QR model to describe the relationship between MPG Highway and 3 

independent variables. The independent variable horsepower, showed insignificance in our OLS regression or in any of 

our quantile regressions. Since the P-value in the other variables is less than 0.05, that term is statistically significant at 

the 95% confidence level. Consequently, we probably want to remove horsepower variables from OLS model.  

Two of our independent variables Wheelbase and Horsepower showed no significance in our QR model. Interestingly, 

only weight showed significant impact across the QR. 

The OLS R
2
 statistic indicates that the model as fitted explains 69.65% of the variability in MPG Highway. The 

adjusted R
2
 statistic, which is more suitable for comparing models with different numbers of independent variables, is 

68.63%. 

The R0.75-squared statistic indicates that the model as fitted explains 47.92% of the variability in MPG Highway. The 

adjusted R-squared statistic, which is more suitable for comparing models with different numbers of independent 

variables, is 46.17%. 
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Table 4: Comparison for Multiple OLS and QR Methods 

 OLS Q(0.25) Q(0.50) Q(0.75) 

Parameter Estimate 
P-

Values 
Estimate P-Values Estimate P-Values Estimate P-Values 

Constant 22.7061 0.0040 33.0546 0.0017 26.24442 0.0252 27.9184 0.0417 

Wheelbase 0.4243 0.0002 0.1879 0.1811 0.339352 0.0441 0.3899 0.0417 

Horsepower -0.0051 0.6857 -0.0024 0.8597 -0.011886 0.4807 -0.0137 0.5169 

Weight -0.0102 0.0000 -0.0072 0.0006 -0.007924 0.0003 -0.0088 0.0001 

Passengers -1.1291 0.0341 -0.5714 0.2657 -1.236038 0.0605 -1.7158 0.0070 

Important Regression Statistics 

 R
2
 =  0.7117 pseudo R

2
 = 0.4201 pseudo R

2
 = 0.4590 pseudo R

2
 = 0.5174 

 R
2
-Adj = 0.6986 R

2
-Adj = 0.3938 R

2
-Adj = 0.4344 R

2
-Adj = 0.4955 

Dependent variable: MPG Highway 

 

From table 4 the results of fitting OLS and QR model to describe the relationship between MPG and 4 independent 

variables (Wheelbase, Horsepower, Weight and Passengers).  

Three of our independent variables Wheelbase, Weight and Passengers showed significance in our OLS regression and 

probably horsepower should be removed after fitting stepwise regression. 

Three of our independent variables Wheelbase, Horsepower and Passengers showed no significance in our QR model. 

Interestingly, we have one independent variable (weight) that exists to utilizing quantile regression to examine the 

impact of our independent variable on our dependent variable MPG. The OLS R
2
 statistic indicates that the model as 

fitted explains 71.17% of the variability in MPG Highway. The adjusted R
2
 statistic, which is more suitable for 

comparing models with different numbers of independent variables, is 69.86%. 

The R0.75-squared statistic indicates that the model as fitted explains 51.74% of the variability in MPG Highway. The 

adjusted R
2
 statistic, which is more suitable for comparing models with different numbers of independent variables, is 

49.55%. 

 

3.2. Result on stepwise model 
 

Table 5: Variable Selection Model 

     

Parameter Estimate Standard Error t-Statistic P-Value 

CONSTANT 22.1484 7.5291 2.9417 0.0042 

Weight -0.0107 0.0011 -10.0767 0.0000 

Wheelbase 0.4322 0.1064 4.0624 0.0001 

Passengers -0.9975 0.4105 -2.4299 0.0171 
Dependent variable: MPG Highway 

 

From Table 5 the output shows the results of fitting a MLR model to describe the relationship between MPG Highway 

and 4 independent variables. The equation of the fitted model is 

 

MPG Highway =  22.1484 −  0.0107 ∗ Weight +  0.4322 ∗ Wheelbase −  0.9975 ∗ Passengers  

 

The R
2
 statistic indicates that the model as fitted explains 71.12% of the variability in MPG Highway. The adjusted R

2
 

statistic, which is more suitable for comparing models with different number of independent variables is 70.14%.  

4. Main results 

The following table shows the comparison between the quantiles models generated  

 
Table 6: Comparison QR (0.25), QR (0.50) and QR (0.75) Regression Methods 

 Q(0.25) Q(0.50) Q(0.75) 

Parameter Estimate P-Values Estimate P-Values Estimate P-Values 

Constant 47.1907 0.0000 48.5484 0.0000 55.0870 0.0000 

Weight -0.0065 0.0000 -0.0065 0.0000 -0.0078 0.0000 

 pseudo R
2

  = 0.3851  pseudo R
2

   = 0.4161  pseudo R
2
   =  0.4487  

 R
2
-Adj      =  0.3783  R

2
-Adj       = 0.4097  R

2
-Adj       =  0.4487  

Dependent variable: MPG Highway 

From table 6 we found the impact of weight across the QR model with each of its coefficient estimates showing 

significance varying with each quantile. This suggests that a benefit exists to utilizing quantile regression to examine 

the impact of our independent variable on our dependent variable MPG.  



International Journal of Advanced Statistics and Probability 145 

 

 

 

 

 

The equations of the fitted QR models are therefore: 

 

MPG Highway (0.25)  =  47.1907 −  0.0065 ∗ Weight   
 

MPG Highway (0.50)  =  48.5484 −  0.0064 ∗ Weight   
 

MPG Highway (0.75)  =  55.0870 −  0.0078 ∗ Weight  
 

The R0.75-Squared statistic indicates that the model as fitted explains 44.87% of the variability in MPG Highway. The 

adjusted R0.75-squared statistic, which is more suitable for comparing ssmodels with different numbers of independent 

variables, is 44.87%.  In determining whether the model can be simplified, notice the p-value of 0.0000, belonging to 

Weight, which is less than 0.05 indicating that weight is statistically significant at 95% confidence level.  

5. Conclusion 

QR is offering a comprehensive strategy for completing the regression picture as it goes beyond this primary goal of 

determining only the conditional mean, and enables one to pose the question of relationship between the response 

variable and covariate at any quantile of the conditional distribution function. QR overcomes various problems that 

OLS is confronted with; especially the fact that error terms are not constant across distribution, thereby violating vital 

assumption of homoscedasticity. Also, by focusing on the mean as a measure of location, information about the tails of 

a distribution is lost as indicated in the data of miles per gallon in highway driving. 
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