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Abstract 

 

An approach to measure design rotatability and a measure, that quantifies the percentage of rotatability (from 0 to 100) 

in the central composite designs are introduced. This new approach is quite different from the ones provided by 

previous authors which assessed design rotatability by the viewing of tediously obtained contour diagrams. This new 

approach has no practical limitations, and the measure is very easy to compute. Some examples were used to express 

this approach. 
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1. Introduction 

The concept of rotatability was first introduced in experimental design in Box and Hunter [6], and has since become an 

important design criterion. Rotatability is a desirable feature of any experimental design (see, for example, [7]); and this 

is mainly; because the experimenter does not have any prior information or knowledge about the location of the 

optimum. Therefore, a design that provides equal precision of estimation in all directions would be preferred. Such a 

design will ensure the experimenter that no matter what direction is taken to search for the optimum, he/she will be able 

to estimate the response value with equal precision. 

As an illustrative example, consider an event where a (linear) response-surface polynomial of order 𝑑  is fit on 𝑘 

predictor variables, x1, x2, ⋯ , xk over a spherical region of interest, 𝑅, using a design consisting of n experimental runs; 

and is written as, 

 

y = Xβ + ε                                                                                                                                                                         (1) 

 

Where, 

y is a vector of n observations; X is an n × p matrix of rank p whose elements are known functions of the design 

settings of the predictor variables; β  is a vector of unknown regression coefficients, which can be estimated 

approximately by Ordinary Least Squares (OLS), given by 

 

β̂ = (X′X)−1X′y                                                                                                                                                                  (2) 

 

And ε~N(0, Inσ
2), where (σ2) is unknown and In is an n × n identity matrix. 

Now, let D denote the n × k  experimental design matrix whose uth  row consists of the settings of the k  predictor 

variables at the uth experimental run, x1u, x2u, ⋯ , xku; u = 1, 2,⋯ , n 

Also, let ŷ(x) denote the predicted response value at a particular point, x = (x1, x2, ⋯ , xk)
′ in the region, R. 

The experimental design matrix D is said to be rotatable if the variance of  ŷ(x), Var[ŷ(x)] is a function of only the 

distance of the point x from the center of the design and not on the direction. That is, if Var[ŷ(x)] is a function only of                     

r2 = x1
2 + x2

2 +⋯+ xk
2 (where r is the radius of a circle). Thus, the advantage of the rotatability property in a design is 
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that the prediction variance, Var[ŷ(x)] remains unchanged under any rotation of the coordinate axes. In addition, if 

optimization of ŷ(x) is desired on concentric hyper-spheres within R, then it would be desirable for the design to be 

rotatable (see, for example, [3]). Consequently, anything short of this might result in poor estimates of the optimum 

(see, [2]). 

Often times, in practical situations, experimenters encounter designs that may be best described as being “near 

rotatable”. That is, non-rotatable designs, that exhibit surfaces of constant prediction variances that are nearly spherical 

(see, for example, [1]). This condition of “near rotatable” can occur under the following circumstances: 

1) When a perfectly rotatable design is deformed ; because of incorrect settings of some of the predictor variables or; 

because certain specified levels of the predictor variables may be difficult to employ in practice; 

2) When a rotatable design undergoes certain modifications to fit the needs of the experiment; of which might 

involve in adding new design points or shifting existing design points to gain more information in a certain region 

of interest. 

According to Draper and Pukelsheim [7], it is still a good idea to make the design as rotatable as possible, even if 

circumstances are such as that exact rotatability is unattainable. Thus, it is important to know if a particular design is 

rotatable or, if it not, to know how rotatable the design is.  

Khuri [1] introduced a measure that quantifies the amount of rotatability in a given response-surface design; a measure 

which is expressible as a percentage taking the value 100 when the design is rotatable. This measure can also, be useful 

in the following situations: 

1) Comparison of designs on the basis of their degrees of rotatability. 

2) Assessment of the extent of departure from rotatability of a “deformed or modified” design. 

3) Repairing or improving rotatability, by a proper augmentation, of a non-rotatable design. 

It is worthy of note that, generally, assessing the degree of rotatability has been a pretty hard task to carry out with the 

customary technique of drawing and inspecting the prediction variance contour plots; to see how close they are being 

completely circular. Most likely, this could be quite subjective too. This practice is somehow manageable for k = 2 

input variables, but poses some practical limitations for dimensions, k ≥ 3. The assessment of rotatability has been 

discussed in published articles by different authors such as [8], [1], and [7]; but the subject matter had always been 

approached essentially via the drawing of contour plots. 

Nevertheless, this paper presents a different approach to measuring design rotatability for the Central Composite 

Designs (CCDs). This approach provides a new measure of rotatability which takes values between 0 and 100, just like 

the measure provided by [1] and others, but its determination absolutely does not involve the art of drawing any 

prediction variance contour plots. This approach is devoid of subjectivity, has no practical limitations, and the measure 

is very easy to compute and provides the most accurate percentage of rotatability. 

2. Measuring design rotatability 

The concept of rotatability is not restricted to second-order designs, but most of the published works pertaining to 

design rotatability laid particular emphasis on the second-order model. For instance, Montgomery [4] stated that the 

preferred class of second-order response-surface designs is the class of rotatable designs. Myers [9] posited that the 

second-order rotatable response-surface designs which find the most use in practical situations are the rotatable Central 

Composite Designs (CCDs).Consequently, discussion in this paper on measuring design rotatability will be specifically 

centered on the Central Composite Designs. 

According to Myers [9], a second-order design is rotatable if its moments have the following conditions: 

1) All moments that have at least one δi odd are zero (where δ is the order of the design moment, such that for k 

variables, ∑ δi
k
i=1 = δ); 

2) Pure fourth moments are three times the mixed fourth moments. That is, 

 

∑ xiu
4 = 3N

u=1 ∑ xiu
2N

u=1 xi′u
2                                                                                                                                                  (3) 

 

Now, considering the typical design matrix for the general CCD with respect to the portion containing the second-order 

terms, x1
2, x2

2, ⋯ , xk
2 (see, [9]); it can easily be seen that, 

 

∑ xiu
4 = F + 2N

u=1 ∝4                                                                                                                                                          (4) 

 

and 

 

∑ xiu
2 xi′u

2 = FN
u=1                                                                                                                                                                  (5) 

 

Where F = 2k and i = 1, 2,⋯ , k. 

Of the two conditions given, which must be met in order that a second-order design is rotatable, the first is 

automatically met by the CCDs (this is verifiable by mere inspection of the entire X matrix of the CCDs). 



128 International Journal of Advanced Statistics and Probability 

 

 
Now, for the second condition, we recall the information matrix for the general CCD (see, [5]) given as, 

M = X̅′X̅ = diag (M1Ik, M2It, M3)                                                                                                                                    (6) 

 

Where 

 

M1 = 2
k + 2 ∝2                                                                                                                                                                 (7) 

 

M2 = 2
k                                                                                                                                                                              (8) 

 

and 

 

M3 = (p − q)Ik + qJk                                                                                                                                                        (9) 

 

In similarity to (4) and (5); 

 

p = 2k + 2 ∝4                                                                                                                                                                 (10) 

 

and 

 

q = 2k                                                                                                                                                                              (11) 

 

are, respectively, the diagonal and off-diagonal elements of the M3 portion of the information matrix, M. Invariably, for 

the CCD to satisfy the second condition for a second-order design to be rotatable, (3) now implies; 

 

p = 3q                                                                                                                                                                              (12) 

 

This is a strict condition for perfectly rotatable CCDs; and looking at the matrix M3 from the information matrix of the 

perfectly rotatable CCD as given (13) below, we obviously see that for i, j = 1, 2,⋯ , k; p11 = p22 = ⋯ = pkk = p and 

q12 = q13 = ⋯ = q1k = q (noting that qij = qji; i ≠ j). 

 

M3 =

(

 
 

p11  q12  q13  ⋯  q1k
        p22  q23  ⋯  q2k
                 p33  ⋯  q3k
                       ⋱      ⋮
SYM                        pkk)

 
 

                                                                                                                                       (13) 

 

Now, we involve all the elements of (13) in creating an expression which may be seen as yet a third condition for a 

central composite design to be rotatable. To do this, we take into consideration the relationship between sum of squares 

and sum of cross-products as well as the relationship between the trace and off-diagonal elements of (13). In terms of 

pij
′s and qij

′s, an extended expression that could be used to ascertain whether or not a CCD is rotatable can now be 

written as, 

 

(𝑘 − 1)∑ 𝑝𝑖𝑗𝑖=𝑗 = 3∑ 𝑞𝑖𝑗𝑖≠𝑗                                                                                                                                            (14) 

 

Just like (12), (14) is a strict condition for perfectly rotatable CCDs; and (14) accommodates (12) in the sense that any 

matrix in the form of (13) that satisfies the former will equally satisfy the latter. 

For a rotatable CCD that has been deformed or modified, and is no longer perfectly rotatable, (14) will not hold. Now, 

suppose the difference between the left-hand side and the right-hand side of (14) is represented by ∆𝑅; such that, 

 

∆𝑅= (𝑘 − 1)∑ 𝑝𝑖𝑗𝑖=𝑗 − 3∑ 𝑞𝑖𝑗𝑖≠𝑗                                                                                                                                    (15) 

 

From (12), we see that 𝑝 is dependent on 𝑞, and as such we can express ∆𝑅 as a percentage of (𝑘 − 1)∑ 𝑝𝑖𝑗𝑖=𝑗  to give 

the extent to which the design is short of being perfectly rotatable. This expression is given as, 

 

∆𝑅
∎=

|∆𝑅|

(𝑘−1)∑ 𝑝𝑖𝑗𝑖=𝑗
× 100%                                                                                                                                               (16) 

 

Consequently, the measure of the extent to which a design is rotatable can be expressed as, 
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𝑅𝜗 = (100 − ∆𝑅
∎)%                                                                                                                                                         (17) 

 

Now, with (17), every perfectly rotatable CCD will have a measure of 100% rotatability; while for “near rotatable” as 

well as other non-rotatable CCDs, they will have less than 100% rotatability. This measure (as remarked in [1] on the 

measure of rotatability introduced), in conjunction with other measures of design efficiency, can be used to select a 

design that possesses several characteristics of interest to the experimenter.  

3. Examples/applications 

Some numerical examples of CCDs are presented in this section to illustrate the applications of the measures of 

rotatability developed in this paper. The main purpose of presenting and discussing these examples is to demonstrate the 

actual implementation of (17) in measuring design rotatability. These CCDs, which are described in Examples 1 to 3, 

include some well-known rotatable CCDs as well as two specific non-rotatable CCDs already considered by previous 

authors using the approaches and measures they derived. The essence of determining the measures of rotatability for 

these two specific designs is not at all for comparison sake; rather it is to have already existing designs to which 

references would be made. 

NB: These designs are titled in such a way that the first digit is the number of variables; the next two digits are the 

number of design points. A letter differentiates designs of the same size (see, for example, [1]). 
 

Example1: Consider three CCDs with the following descriptions: a 9-point CCD in two input variables (209) with axial 

distance, ∝= 1.414; a 15-point CCD in three input variables (315) with axial distance, ∝= 1.682; and a 26-point CCD 

in four input variables (426) with axial distance, ∝= 2.000. Recall that, given the values of their axial distances, the 

209, 315, and 426 CCDs are qualified to be rotatable designs (see, for example, [5]).  
 

Example 2: Consider the non-rotatable 210 design due originally to Hebble and Mitchell [10], which was discussed in 

[1] and also in [7]. This design is presented in Table 1. 

 
Table 1: The Non-Rotatable 210 CCD (Example 2) 

Run No. 𝑥1 𝑥2 

1 -1 1.35 

2 1 -1.25 

3 -1.6 -0.85 

4 1 1 

5 -1.5 0 

6 1.55 0 

7 0 -1 

8 0 1.55 

9 0.55 0.30 

10 0 0 

 

Repairing the non-rotatable 210 CCD in Example 2 to become as rotatable as possible, Khuri [1] augmented the design 

with three additional repair points, one at a time, to get the sequence of designs 211A, 212A, and 213A, respectively.  

In another attempt to repair the same non-rotatable 210 CCD in Example 2, Draper and Pukelsheim [7] augmented the 

design with four additional repair points, one at a time, to get the sequence of designs 211B, 212B, 213B, and 214, 

respectively. 
 

Example 3: Consider the non-rotatable 316 design discussed in [1] and also in [7] as presented in Table 2. 

Khuri [1] ventured repairing the non-rotatable 316 CCD in Example 3 by augmenting the design with two additional 

repair points, one at a time, to get the sequence of designs 317A and 318A, respectively. 

In another development, Draper and Pukelsheim [7] went about to repair the same non-rotatable 316 CCD in Example 3 

by augmenting the design with three additional repair points, one at a time, to arrive at the sequence of designs 317B, 

318B, and 319, respectively. 

It is worthy of note also that Khuri [1] and Draper and Pukelsheim [7] used their approaches to determine the measures 

of rotatability of the respective designs credited to them.  

In order to measure the percentages of rotatability of the designs cited in Examples 1 to 3, using our approach, the 𝑀3 

portions of the respective information matrices of these designs are obtained first (these are presented in Table 3). The 

corresponding measures of rotatability, 𝑅𝜗 for each of the designs are determined using (17); and the numerical values 

of these measures are presented in Table 4.  
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Table 2: The Non-Rotatable 316 CCD (Example 3) 

Run No. 𝑥1 𝑥2 𝑥3 

1 -1 -1 -1 

2 1 -1 -1 

3 -1 1 -1 

4 1 1 -1 

5 -1 -1 1 

6 1 -1 1 

7 -1 1 1 

8 0.48 1 1 

9 -1.682 0 0 

10 1 0 0 

11 0 -1.682 0 

12 0 1.682 0 

13 0 0 -1.682 

14 0 0 1.682 

15 0 0 0 

16 0 0 0 

4. Conclusions 

A new approach to measure design rotatability, as it affects the central composite designs, is presented. With the 

approach, the CCDs (209, 315, and 426) whose design structures show clear rotatability property (i.e., from the 

respective 𝑀3 portions of their information matrices; 𝑝 = 3𝑞) have 𝑅𝜗 values of exactly 100%. On the other hand, the 

other CCDs in Table 3 that are not rotatable given their design structures (such that 𝑝 ≠ 3𝑞) have 𝑅𝜗 values less than 

100%; affirming the non-rotatable statuses of these designs. 

In fact that the approach involves the use of the diagonal and the off-diagonal elements of the 𝑀3  portion of the 

information matrix of the design, it can be used to determine the percentage rotatability of central composite designs of 

any dimension. The most interesting aspect of the new approach is that it does not involve contour plots - which are 

quite tedious to go about, and it has no practical limitations. It is very easy to apply. 

 
Table 3: The 𝑀3 Portions of the Information Matrices of the Designs in Examples 1 to 3 

S/N Design The 𝑀3 Portion S/N Design The 𝑀3 Portion 

1 209 (
12 4
4 12

)  9 212B (
20.4813 6.2907
6.2907 19.1531

)  

2 315 (
24     8  8
         24 8
𝑆𝑌𝑀        24

)  10 213B & 214 (
20.4814 6.2907
6.2907 19.1531

)  

3 426 (

48   16   16   16
        48   16   16
                48   16
𝑆𝑌𝑀               48

)  11 316 (
16.0570   7.2304   7.2304
                24.0079   8.0000
𝑆𝑌𝑀                         24.0079

)  

4 210 (
20.4796 6.2618
6.2618 14.0650

)  12 317A (
16.5270   7.4060   7.4060
                24.0735   8.0655
𝑆𝑌𝑀                       24.0735

)  

5 211A (
20.4798 6.3105
6.3105 26.0158

)  13 318A (
17.3979   7.4273   7.4273
                 24.0740   8.0660
𝑆𝑌𝑀                        24.0740

)  

6 212A (
20.9533 6.3106
6.3106 26.0158

)  14 317B (
16.8715   7.2868   7.2868
                24.0118   8.0039
𝑆𝑌𝑀                       24.0118

)  

7 213A (
20.9537 6.3122
6.3122 26.0216

)  15 318B (
17.8715   7.2868   7.2868
                24.0118   8.0039
𝑆𝑌𝑀                       24.0118

)  

8 211B (
20.4796 6.2843
6.2843 26.0158

)  16 319 (
18.0011   7.3012   7.3012
                24.0134   8.0055
𝑆𝑌𝑀                       24.0134

)  
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Table 4: Summary of the Measures of Rotatability for the Designs in Examples 1 to 3 

S/N Design (𝑘 − 1)∑ 𝑝𝑖𝑗𝑖=𝑗   3∑ 𝑞𝑖𝑗𝑖≠𝑗   𝑅𝜗  

1 209 24 24 100 

2 315 144 144 100 

3 426 576 576 100 

4 210 34.5446 37.5708 91.24 

5 211A 46.4956 37.8630 81.43 

6 212A 46.9691 37.8636 80.61 

7 213A 46.9753 37.8732 80.62 

8 211B 39.6071 37.7058 95.20 

9 212B 39.6344 37.7442 95.23 

10 213B 39.6345 37.7442 95.23 

11 214 39.6345 37.7442 95.23 

12 316 128.1456 134.7648 94.83 

13 317A 129.3480 137.2650 93.88 

14 318A 131.0918 137.5236 95.09 

15 317B 129.7902 135.4650 95.63 

16 318B 131.7902 135.4650 97.21 

17 319 132.0558 135.6474 97.28 
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